Since the beginning of physics, symmetry
considerations have provided us with an
extremely powerful and useful tool in our
effort to understand nature. Gradually they
become the backbone of our theoretical
formulation of physical laws.
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8
Discrete Symmetries

8.1
Time-Reversal Invariance

According to Section 7.10, the symmetry transformations leaving the Hamiltoni-
an invariant give rise to conservation laws. For discrete symmetries, the unitary
operator of the transformation, U = exp(i G), commutes with the Hamiltonian,
(7.153), and the Hermitian observable G is conserved. Time-reversal operation 7
is exceptional since it does not lead to a conservation law. However, its consequences
for quantum systems are indispensable.

In classical mechanics, the equations of motion in constant potential fields are
invariant with respect to time reversal. This statement is to be understood as follows.
The solution of classical equations requires initial conditions — we give the values
of coordinates g(0) and momenta p (0) at some initial moment taken, for example,
as t = 0. By solving the equations up to the time t > 0, we determine the phase
space trajectory g(t), p (). The system is time-reversal invariant f, for any “forward”
solution, we can find the “backward” solution starting at the final point with the
reversed final velocities and going all the way back to the initial point through all
intermediate points within the same time intervals, Figure 8.1.

The classical Hamiltonian H(q, p) of a closed system is T-invariant if H(q, p) =
H(q, —p). This is the point where the coordinates and momenta which appear on
equal footing in the Hamiltonian formalism can be distinguished. Although in
classical mechanics, this difference is not significant (recall however the arguments
used for the states of finite motion in Section 7.7).

The T-invariance is violated in an external magnetic field. Through the Lorentz
force, the magnetic field discerns two opposite directions of the velocity. The dif-
ference between the static electric and magnetic fields is due to their origin: elec-
tric fields are generated by charges while magnetic fields are generated by cur-
rents which follow the direction of motion of charges. If we include the source
of the magnetic field as a part of our system, the extended system will again be
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8 Discrete Symmetries

Figure 8.1 Forward and backward trajectories.

T -invariant since the time reversal implies that all motions in the system should
be reversed. The reversed current will create the reversed magnetic field and cause
the reversed motion in the system, restoring the 7 -invariance of the entire big com-
plex. The same arguments are applicable to the rotating system where the angular
velocity is similar to the magnetic field.

The non-relativistic quantum mechanics allows one to formulate the time reversal
in a way close to classical mechanics, but the form of the result depends on the rep-
resentation. Let us consider the Schrédinger equation for the wave function ¥ (t)
in some representation (the number of variables in the wave function is arbitrary),

IW (1)

ih 5

=HY(1). (8.1)

Assuming that the system is closed, d H /3t = 0, let us formally reverse time, t —
—i
oV (—t .
4wj%J=prn. (8.2)

To bring the equation back to the form of (8.1), we make complex conjugation and
come to

W™ (—t A
in D ey (8.3)
dt
Thus, the time-reversed function
P (t) = W (1) (8.4)

satisfies the Schrodinger equation with the time-reversed Hamiltonian

H=H*. (8.5)

The substitution ¥ — ¥, H — H describes the time reversal in quantum
mechanics. Here, the complex conjugation has meaning similar to the reversal



8.2 Time-Reversal Transformation of Operators

Br trajectories in the classical case; for the plane wave ¢®1 this is equivalent to
. _k. Matrix elements of the Hamiltonian,

Hiy = (Vh(1)| E| W (1)) = / Aoy () H (1) | (5.6)

where the Y -functions and the operator H are taken in a chosen representation
with the volume element d, are transformed into

Hy = / AT (—t) H* Wy (—t) = / AT(HW(—1))* Wi (~t) , (8.7)
or, using the Hermiticity (6.62) of the Hamiltonian H,
Hy = / AT (—t) HP () . (8.8)

We see that in the transformed matrix element Hi,, not only is the arrow of time
reversed, but also the roles of the “initial”, ¥, and the “final”, ¥}, states are inter-
changed compared to the original matrix element Hy,, in keeping with the idea of
interchanging the start and finish of the process.

The transformed Hamiltonian (8.5) coincides with the original one if it is re-
al. Then, we say that the system is 7-invariant and both functions, ¥(t) and
¥ (t), (8.4), are the solutions of the same Schrédinger equation. For the stationary
state,

p(t) = e (MEY (1) = My (8.9)

 and y* satisfy the stationary Schrodinger equation with the same real energy E.
If this eigenvalue is non-degenerate, there is only one independent solution with
this value of E, and 1 and y* coincide up to an irrelevant phase. If the eigenvalue
is degenerate, then 1 and y* can be independent and we can take their combina-
tions, Re(1) and Im(y'), as new functions with the same energy. Thus, in the case
of T-invariance, the stationary basis wave functions can be chosen to be real.

8.2
Time-Reversal Transformation of Operators

Time reversal is not a usual unitary transformation since it includes the complex
conjugation K, (8.4). Its action on a superposition of states is not linear as it was de-
fined in (6.46). It also changes the coefficients of the superposition to their complex
conjugate (such transformations are sometimes called antilinear). We can define
the time-reversal operation as

7 =0:K0,, (8.10)

where O, changes t — —t in the explicit time dependence, K is the complex conju-
gation, and U is an additional unitary operator that is needed to ensure the correct
behavior of physical observables under time reversal.
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The operator Ur depends on the representation. The similarity transforma-
tion (6.101) defines the time-reversed operator,

A=TAT L. (8.11)

On the other hand, in many cases, we know the result of time reversal from our
classical experience (correspondence principle). The position operator does not
change, while the momentum has to change its sign,

T=%, pP=-p. (8.12)

Using the coordinate representation (7.17), we see that the desired result is
achieved without adding a special unitary operator in (8.10); it is sufficient to
have the complex conjugation:

P=KpKk™! =p* = (—iAV)* = ihV = —p. (8.13)
The orbital momentum also changes sign,

P= RExpK=-4. (8.14)

S| o=

However, an additional unitary operation is needed when non-classical degrees of
freedom are involved. The spin components, being a part of the total angular mo-
mentum, have to change their sign under time reversal precisely as the compo-
nents of the orbital momentum do. This requires a definition of the time reversal
7 with additional unitary operators acting in spin space, Section 20.5.

Summarizing these two subsections, we can say that the state vector ¥ obtained
from the initial vector ¥ by the 7 -operation describes the final state with all ve-
locity-type characteristics reversed: in the state ¥ all linear momenta and angular
momenta become p = —p and ] = —J, respectively, if in the state ¥, they were p
and J. If the process i — f develops according to the Schrédinger equation as

W) = Ay (8.15)
the time-reversed process is f -1,
|W ) = e WRHY G (8.16)

The time-reversal invariance (reversibility of quantum mechanics) means that H=
H, so that for each direct process (8.15), there exists a reversed process (8.16) evolv-
ing according to the same laws. Currently, we know that 7 -invariance is violated
in nature. However, this violation was only observed as a small effect in specific
processes of decay of neutral K- and B-mesons [15].
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8.3
Inversion and Parity

Another discrete symmetry of the Hamiltonian is important for the search and
classification of stationary states. The operation P of spatial inversion changes the
sign of spatial coordinates so that the localized state |r) of a particle transforms as

)= Plr)=|-1). (8.17)
In the coordinate representation, for an arbitrary state |), we have
wPly) = [ ExelPRy) = [ @t -xei)
= / dxO(r+x)y(x) = p(-T) . (8.18)
Therefore, the action of inversion onto a coordinate wave function is simply
Py(r) = y(-1). (8.19)

When applied to the plane wave v, (r) = exp[(i/h)(p - 1)), this is equivalent to the
reversal of the direction of motion, p — —p, as expected for spatial inversion.

It is easy to check that the inversion operator is linear, in contrast to time reversal.
The operator P is Hermitian and satisfies an obvious geometric relation

Pl=1, (8.20)

which shows that ? = P~!, and therefore the Hermitian operator P is also uni-
tary. This operator only has two different eigenvalues /7 = +1. These eigenvalues
define the quantum number of parity that distinguishes between even functions,

Py =y@n =y, 1=+1, (8.21)
and odd functions,
Py =y =—p@), T=-1. (8.22)

Any function can be uniquely presented as a superposition of the parity eigenfunc-
tions,

PO+ vn) | vm =y

. 5 (8.23)

P (1) = Yeven(r) + YPodd(r) =
Problem 8.1

Show that parity of a wave function (with respect to its corresponding argument) is
the same in the coordinate and momentum representations.
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8.4
Scalars and Pseudoscalars, Vectors and Pseudovectors

The inversion transformation of the operators is, in accordance with the genera]
rule (6.101),

o =Popt. (8.24)

An invariant quantity, Q’ = Q commutes with the inversion operator. This giveg
a criterion for classifying observables.

It is useful to combine this classification with the one based on the rotationa]
properties (later, they will be studied in much more detail). The quantities invariant
under rotations are called scalars. The mathematical definition of a scalar S follows
from the meaning of the angular momentum J as a generator of rotations,

J,51=0. (8.25)

However, a scalar may not commute with the inversion. We can divide scalar ob.-
servables that obey (8.25) into genuine scalars and pseudoscalars that change sign
under inversion. To give a physical example, let us first consider vectors.

We have already discussed that the general definition of a vector V can be based
on its behavior under infinitesimal rotations, Section 6.10. Now, we can distinguish
two classes of vector observables: genuine (polar) vectors V, whose Cartesian com-
ponents V; change sign under spatial inversion,

PV P =PVP=-V, (8.26)

1

and pseudovectors, or axial vectors, A, whose components A; do not change under
inversion,

PAD = A, 8.27)

The operators of coordinates, r, and momentum, p, are genuine vectors. However,
the components of the orbital momentum operator, [r x p], built as a cross product
of two polar vectors do not change under inversion and therefore the orbital mo-
mentum is an axial vector. The formal proof states, for example, for the position
operator, that by using the Hermiticity of P, an arbitrary matrix element of the
transformed operator PiP is given by

/d3r1/'f‘(r)73f751/'2(r) Z/dgrl/'l*(~r)fl/’2(—r)
— [ @rotwchym, 8.28)

which means that t is a genuine vector,

>

PP = —t. (8.29)
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similarly,

PpP =D, (8.30)
in agreement with the classical definition p = mt which is also valid for quantum
equations of motion (7.89 and 7.90). In addition to the difference between electric
and magnetic fields with respect to time reversal, they behave differently under in-
version as well: the electric field vector £ and electric current j are polar vectors,
while the magnetic field vector B is axial. Then, the Lorentz force ~ [v x B], a
cross-product of a polar and an axial vector, is again a polar (and time-even) vec-
tor.

Note that we use the picture of an active transformation that acts on the object
while the coordinate unit vectors el are kept intact. The polar vector V is trans-
formed to —V; then, its coordinates V; with respect to the same old set el’) change
sign. The coordinates of axial vectors remain the same along with the object itself.
In the passive formulation, we invert the coordinate frame, el) = —el!). This con-
verts the right-handed triplet of coordinate axes defined according to [e*) x eV] =
¢l into the left-handed one and therefore changes the sign of all quantities whose
definition contains the reference to the handedness or the sense of rotation. The
polar vectors are not touched while their coordinates V; again change sign. The
axial vectors, such as the orbital momentum, change their direction, while their
coordinates, once again, do not change.

Now, we can construct a pseudoscalar as a scalar product of a polar and an axial
vector. However, we cannot use the examples of the previous paragraph for this
purpose. Indeed,

(r-4)=(p-¢)=0. (8.31)

This property has a simple meaning: if £ is the generator of rotation, it moves the
particle perpendicularly to the radius-vector. A pseudoscalar called helicity can be
constructed using another part of the angular momentum, namely, the spin mo-
mentum s which is, as any angular momentum, also an axial vector. The helicity h
is the projection of the spin onto the direction of motion,

A (8.32)
p
With respect to rotation, helicity is a scalar; though it does change sign under in-
version,
PhP = —h. (8.33)
8.5
Parity Conservation

If the potential in the Schrédinger equation is invariant under inversion,

U(r) = U(-1), (8.34)
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the Hamiltonian as a whole, H = K + U, commutes with the inversion Operator,
Therefore, we can ascribe a quantum number of parity to the stationary states.

In other words, if 1 (r) describes a stationary state of the P-invariant Hamiltonj.
an with energy E, the reflected function 1 (—r) also corresponds to a stationary state
with the same energy. If this energy is not degenerate, the two functions can differ
by a constant factor only, i (—r) = ¢ (r). By repeating the inversion, we obtain
Y(r) = cyp(—1) = c?y(r), which means ¢* = 1, ¢ = +1. This is the same state.
ment as obtained earlier in the operator language: with an even potential (8.34), the
non-degenerate stationary solutions have certain parity. If the energy eigenvalue is
degenerate, 1 (r) and 1 (—r) can be linearly independent. However then, any linear
combination of them also describes a stationary state with the same energy and we
can always construct even and odd superposition, 1 (r) & ().

Thus, if (8.34), or, more generally,

[P,H]=0, (8.35)

is fulfilled, the stationary solutions of the Schrodinger equation can be classified
by parity. In our simple examples of Chapter 2, the bound states in a box or a finite
well (where we have only one-dimensional inversion) can acquire certain parity if
we set the coordinate axis in such a way that the origin coincide with the middle
point. In the continuum problems (reflection and transmission), the symmetry was
violated by the boundary condition when we assumed that the source of the wave
was located on one side of the observed region. The symmetry is restored by the
existence of the equivalent, mirror-reflected solution with the same energy when
the source is put on the opposite side.

Problem 8.2

Establish the correspondence between the stationary states of one-dimensional mo-
tion in a symmetric potential, U;(x) = Uj(—x), and in the potential U,(x) that
coincides with Uj(x) at x > 0 and cut off from the left half of the plane by an
impenetrable wall at x = 0.

Parity of a complex system is a multiplicative quantum number being a product
of parities of subsystems or constituents. In application to elementary particles,
one can speak about their intrinsic parity: the internal wave function of a particle
is also transformed in a certain way under spatial reflection. Intrinsic parity of the
proton and the neutron is the same (and then it does not matter if we assume this
parity even or odd because in all nuclear processes, where parity is conserved, the
total number of nucleons, neutrons and protons, — the so-called baryon charge — is
conserved as well). But relativistic theory shows that this parity is opposite to that
of the antineutron and antiproton. Also, the intrinsic parity of the electron and the
positron, quark and antiquark is opposite. In the case of mesons, for example pions
or kaons, it makes sense to speak of absolute intrinsic parity since these particles
can be created and absorbed one at a time changing therefore total parity of the
state in a certain way. The wave function of these mesons is scalar under rota-
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tions, but pseudoscalar under inversion; this is determined by the internal struc-
ture of the meson built of the quark and antiquark which have opposite intrinsic
pal’it}’- o )

In order to get information on intrinsic parity of particles, one needs to observe
the processes of their creation, annihilation and mutual transformation and com-
pare parity of the initial and final state, taking into account the intrinsic wave func-
tions of the particles as well as the wave functions of their relative motion. The
experiment shows that the majority of interactions of elementary particles are in-
variant under spatial inversion. As far as we know, only the Hamiltonian of the
weak interactions does not conserve parity. The interactions of this type occur at
very small distances between the particles, ~ 107 1° cm; they are responsible for
the slowest nuclear processes, such as beta-decay of the neutron into the proton,
electron and electron antineutrino, or beta-decay of complex nuclei. The lifetime of
the free neutron, ~ 10° s, is large compared to the typical time of nuclear processes
of 10~21523) s that can be estimated by the time of flight of a particle with velocity
~ (0.1 + 1)c through the nuclear radius ~ 10~12* ) cm.

Roughly speaking, if the parity conservation in a process holds, then in a mirror-
reflected laboratory, the process occurs in complete analogy and leads to the mir-
ror-reflected result. It is not the case in beta-decay. In the famous experiment by
C.S. Wu et al. [16], Figure 8.2, the beta-decay of polarized (having fixed orientation
of angular momentum J) nuclei of ®*Co was studied. The distribution of emitted
electrons depends on the angle ¥ between the electron momentum p, or velocity v,
and polarization direction J. The number of electrons emitted at the angle ¢ turned
out to be proportional to

N(¥) x 1+ acost, (8.36)

with the asymmetry coefficient « &~ —v/c (the relativistic electrons are emitted
mostly opposite to the nuclear polarization). In this specific case, the result is due
to the property of the so-called left current responsible for weak interactions in-
cluding the beta-decay; the antineutrino are practically completely longitudinally
polarized along the motion (see Vol. 2 Section 14.6). Then, the recoil electron with
the same spin polarization (total spin has to be conserved) is forced by the momen-
tum conservation to move in the opposite direction. Since cos ¥ is determined by
the scalar product of the polar vector p and axial vector J, this is a pseudoscalar
quantity. Therefore, in the mirror-reflected laboratory, this quantity would change
sign and we would obtain the different angular distribution, o« 1 — « cos . The
presence of the scalar and the pseudoscalar in the experimental result (8.36) makes
the results in two laboratories non-equivalent and corresponds to parity non-conser-
vation in weak interactions.

For parity-conserving systems, the operators with certain behavior under spatial
inversion reveal specific selection rules: their matrix elements with a given initial
state can only connect to a certain class of final states. The operators changing sign
under inversion change parity of the state so that parity of the final state should be
opposite to that of the initial state. Take, for example, transitions induced by the
dipole moment of the charge distribution, recall Problem 7.9. A dipole transition,
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Figure 8.2 Scheme of the experiment by Wu et al.

described by the matrix element ( f |d|i), is only possible between the states of
opposite parity. If parity is conserved, the expectation value of d in any state of
certain parity is forbidden. The presence of the non-vanishing dipole moment in
a stationary state reveals parity non-conservation. The existence of polar molecules
(like water or NH3) shows that either the state is not stationary, although maybe
with a long lifetime, or the orientation of the molecule is fixed by external fields.
In a free stationary state, the molecule has a certain angular momentum and the
rotation averages out the intrinsic dipole.

Until now, the long-going experimental search for the electric dipole moment
(EDM) of elementary particles, atoms and nuclei did not provide certain results. It
did, however, push the upper boundary if the EDM lower and lower. Meanwhile,
parity non-conservation in weak interactions is a well established fact. The prob-
lem with the dipole moment is aggravated by the vector character of this operator.
Its expectation value in a stationary state has to be directed along the only con-
served vector characterizing the system, namely, that of its total angular momen-
tum. However, the angular momentum changes sign under time reversal while
the dipole moment does not. Therefore, the discovery of the dipole moment would
also contradict the 7-invariance [17]. The forces which are simultaneously P- and
T -violating are much weaker than “normal” weak interactions.

Another polar vector, the so-called anapole moment, proportional to the cross
product [r x s] where s is a spin operator, changes parity of the state, though its
existence does not contradict 7 -invariance. The parity violating anapole moment
was measured in cesium atoms [18]. On the other hand, magnetic dipole moment
p is an axial vector proportional to the orbital or spin moment of a particle, (1.74).
The nonzero expectation of the magnetic moment agrees with both P- and 7-
invariance.



