

4. 衰变宽度、散射截面和相空间

本节内容基于Thomson教授的幻灯片

Special Relativity and 4-Vector Notation

•Will use 4-vector notation with p^0 as the time-like component, e.g.

 $p_{\mu} = g_{\mu\nu}p^{\mu} = \{E, -p\} = \{E, -p_x, -p_y, -p_z\}$

$$p^{\mu} = \{E, \vec{p}\} = \{E, p_x, p_y, p_z\}$$
 (contravariant)

with

$$g_{\mu\nu} = g^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

(covariant)

 In particle physics, usually deal with relativistic particles. <u>Require</u> all calculations to be <u>Lorentz Invariant</u>. L.I. quantities formed from 4-vector scalar products, e.g.

$$p^{\mu}p_{\mu} = E^2 - p^2 = m^2$$
 Invariant mass
 $x^{\mu}p_{\mu} = Et - \vec{p}.\vec{r}$ Phase

•A few words on NOTATION

Four vectors written as either: p^{μ} or p

Four vector scalar product: $p^{\mu}q_{\mu}$ or p.qThree vectors written as: \vec{p}

Quantities evaluated in the centre of mass frame: \vec{p}^* , p^* etc.

Mandelstam s, t and u

 (Simple) Feynman diagrams can be categorized according to the four-momentum of the exchanged particle

•Can define three kinematic variables: s, t and u from the following four vector scalar products (squared four-momentum of exchanged particle)

$$s = (p_1 + p_2)^2$$
, $t = (p_1 - p_3)^2$, $u = (p_1 - p_4)^2$

Example: Mandelstam s, t and u

$$s = (p_1 + p_2)^2$$
, $t = (p_1 - p_3)^2$, $u = (p_1 - p_4)^2$

Note:
$$s+t+u = m_1^2 + m_2^2 + m_3^2 + m_4^2$$

 \star e.g. Centre-of-mass energy, S:

$$s = (p_1 + p_2)^2 = (E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2$$

•This is a scalar product of two four-vectors 📥 Lorentz Invariant

• Since this is a L.I. quantity, can evaluate in any frame. Choose the most convenient, i.e. the centre-of-mass frame:

$$p_1^* = (E_1^*, \vec{p}^*) \quad p_2 = (E_2^*, -\vec{p}^*)$$

 $s = (E_1^* + E_2^*)^2$

 \star Hence \sqrt{s} is the total energy of collision in the centre-of-mass frame

From Feynman diagrams to Physics

Particle Physics = Precision Physics

- ★ Particle physics is about building fundamental theories and testing their predictions against precise experimental data
 - •Dealing with fundamental particles and can make very precise theoretical predictions not complicated by dealing with many-body systems
 - Many beautiful experimental measurements
 - → precise theoretical predictions challenged by precise measurements
 - •For all its flaws, the Standard Model describes all experimental data ! This is a (the?) remarkable achievement of late 20th century physics.

Requires understanding of theory and experimental data

- ★ Feynman diagrams mainly used to describe how particles interact
 - will use Feynman diagrams and associated Feynman rules to perform calculations for many processes
 - hopefully gain a fairly deep understanding of the Standard Model and how it explains all current data

Before we can start, need calculations for:

- Interaction cross sections
- Particle decay rates

Cross Sections and Decay Rates

 In particle physics we are mainly concerned with particle interactions and decays, i.e. transitions between states

- these are the experimental observables of particle physics
- Calculate transition rates from Fermi's Golden Rule

$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho(E_f)$$

 $\begin{array}{ll} \Gamma_{fi} & \text{is number of transitions per unit time from initial state} \\ & |i\rangle \text{ to final state } \langle f| & - \operatorname{not Lorentz Invariant !} \end{array}$

$$T_{fi}$$
 is Transition Matrix Element
 $T_{fi} = \langle f | \hat{H} | i \rangle + \sum_{j \neq i} \frac{\langle f | \hat{H} | j \rangle \langle j | \hat{H} | i \rangle}{E_i - E_j} + \dots$
 \hat{H} is the perturbing Hamiltonian

★ Rates depend on MATRIX ELEMENT and DENSITY OF STATES

the ME contains the fundamental particle physics

Next a few lectures

Aiming towards a proper calculation of decay and scattering processes Will concentrate on:

▲ Need <u>relativistic</u> calculations of particle decay rates and cross sections: $\sigma = \frac{|M_{fi}|^2}{flux} \times (\text{phase space})$

Need <u>relativistic</u> treatment of spin-half particles: Dirac Equation

 Need <u>relativistic</u> calculation of interaction Matrix Element: Interaction by particle exchange and Feynman rules
 + and a few mathematical tricks along, e.g. the Dirac Delta Function

Particle Decay Rates

Consider the two-body decay

 $i \rightarrow 1+2$

 Want to calculate the decay rate in first order perturbation theory using plane-wave descriptions of the particles (Born approximation):

$$\psi_1 = N e^{i(\vec{p}.\vec{r}-Et)}$$
$$= N e^{-ip.x}$$

$$(\vec{k}.\vec{r}=\vec{p}.\vec{r} \text{ as } \hbar=1)$$

where *N* is the normalization and $p \cdot x = p^{\mu} x_{\mu}$

For decay rate calculation need to know:

- Wave-function normalization
- Transition matrix element from perturbation theory
- Expression for the density of states
- ★ First consider wave-function normalization
 - Non-relativistic: normalized to one particle in a cube of side a

$$\int \psi \psi^* \mathrm{d}V = N^2 a^3 = 1 \implies N^2 = 1/a^3$$

All in a Lorentz Invariant form

Non-relativistic Phase Space

- Apply boundary conditions $(\vec{p} = \hbar \vec{k})$:
- Wave-function vanishing at box boundaries
 - quantized particle momenta:

$$p_x = \frac{2\pi n_x}{a}; \ p_y = \frac{2\pi n_y}{a}; \ p_z = \frac{2\pi n_z}{a}$$

Volume of single state in momentum space:

$$\left(\frac{2\pi}{a}\right)^3 = \frac{(2\pi)^3}{V}$$

• Normalizing to one particle/unit volume gives number of states in element: $d^3\vec{p} = dp_x dp_y dp_z$

$$dn = \frac{d^3 \vec{p}}{\frac{(2\pi)^3}{V}} \times \frac{1}{V} = \frac{d^3 \vec{p}}{(2\pi)^3}$$

Therefore density of states in Golden rule:

$$\rho(E_f) = \left| \frac{\mathrm{d}n}{\mathrm{d}E} \right|_{E_f} = \left| \frac{\mathrm{d}n}{\mathrm{d}|\vec{p}|} \frac{\mathrm{d}|\vec{p}|}{\mathrm{d}E} \right|_{E_f}$$

а

а

• Integrating over an elemental shell in momentum-space gives $(d^3\vec{p} = 4\pi p^2 dp)$ $\rho(E_f) = \frac{4\pi p^2}{(2\pi)^3} \times \frac{1}{\beta}$

Dirac δ **Function**

• In the relativistic formulation of decay rates and cross sections we will make use of the Dirac δ function: "infinitely narrow spike of unit area"

• Any function with the above properties can represent $\delta(x)$

e.g.
$$\delta(x) = \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi\sigma}} e^{-\left(\frac{x^2}{2\sigma^2}\right)} \quad \text{(an infinitesimally narrow Gaussian)}$$

• In relativistic quantum mechanics delta functions prove extremely useful for integrals over phase space, e.g. in the decay $a \rightarrow 1+2$

$$\int \dots \,\delta(E_a - E_1 - E_2) \mathrm{d}E \qquad \text{and} \qquad \int \dots \,\delta^3(\vec{p}_a - \vec{p}_1 - \vec{p}_2) \mathrm{d}^3\vec{p}$$

express energy and momentum conservation

Dirac δ **Function**

 \star We will soon need an expression for the delta function of a function $\delta(f(x))$

• Start from the definition of a delta function

$$\int_{y_1}^{y_2} \delta(y) dy = \begin{cases} 1 & \text{if } y_1 < 0 < y_2 \\ 0 & \text{otherwise} \end{cases}$$

• Now express in terms of y = f(x) where $f(x_0) = 0$ and then change variables

$$\int_{x_1}^{x_2} \delta(f(x)) \frac{\mathrm{d}f}{\mathrm{d}x} \mathrm{d}x = \begin{cases} 1 & \text{if } x_1 < x_0 < x_2 \\ 0 & \text{otherwise} \end{cases}$$

• From properties of the delta function (i.e. here only non-zero at x_0)

$$\left|\frac{\mathrm{d}f}{\mathrm{d}x}\right|_{x_0} \int_{x_1}^{x_2} \delta(f(x)) \mathrm{d}x = \begin{cases} 1 & \text{if } x_1 < x_0 < x_2 \\ 0 & \text{otherwise} \end{cases}$$

• Rearranging and expressing the RHS as a delta function

The Golden Rule revisited

$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho(E_f)$$

• Rewrite the expression for density of states using a delta-function

$$\rho(E_f) = \left| \frac{\mathrm{d}n}{\mathrm{d}E} \right|_{E_f} = \int \frac{\mathrm{d}n}{\mathrm{d}E} \delta(E - E_i) \mathrm{d}E \qquad \text{since} \quad E_f = E_i$$

Note : integrating over all final state energies but energy conservation now taken into account explicitly by delta function

• Hence the golden rule becomes: $\Gamma_{fi} = 2\pi \int |T_{fi}|^2 \delta(E_i - E) dn$

the integral is over all "allowed" final states of any energy

• For dn in a two-body decay, only need to consider one particle : mom. conservation fixes the other

$$\Gamma_{fi} = 2\pi \int |T_{fi}|^2 \delta(E_i - E_1 - E_2) \frac{\mathrm{d}^3 \vec{p}_1}{(2\pi)^3} \qquad 2 \qquad \mathrm{d}n = \frac{\mathrm{d}^3 \vec{p}_1}{(2\pi)^3}$$

• However, can include momentum conservation explicitly by integrating over the momenta of both particles and using another δ -function

$$\Gamma_{fi} = (2\pi)^4 \int |T_{fi}|^2 \underbrace{\delta(E_i - E_1 - E_2)}_{\text{Energy cons.}} \delta^3(\vec{p}_i - \vec{p}_1 - \vec{p}_2) \underbrace{\frac{d^3 \vec{p}_1}{(2\pi)^3} \frac{d^3 \vec{p}_2}{(2\pi)^3}}_{\text{Density of sta}}$$

Phase Space is Critical

Lorentz Invariant Phase Space

- In non-relativistic QM normalise to one particle/unit volume: $\int \psi^* \psi dV = 1$
- When considering relativistic effects, volume contracts by $\gamma = E/m$

- Particle density therefore increases by $\gamma = E/m$
 - ★ Conclude that a relativistic invariant wave-function normalization needs to be proportional to E particles per unit volume
- Usual convention: Normalise to 2E particles/unit volume $\int \psi'^* \psi' dV = 2E$
 - Previously used ψ normalized to 1 particle per unit volume $\int \psi^* \psi dV = 1$
 - Hence $\psi' = (2E)^{1/2} \psi$ is normalized to 2E per unit volume
- <u>Define</u> Lorentz Invariant Matrix Element, M_{fi} in terms of the wave-functions normalized to 2E particles per unit volume

$$M_{fi} = \langle \psi_1', \psi_2', \dots, |\hat{H}|, \dots, \psi_{n-1}', \psi_n' \rangle = (2E_1, 2E_2, 2E_3, \dots, 2E_n)^{1/2} T_{fi}$$

Two Body Decay

• For the two body decay $M_{fi} = \langle \psi'_1 \psi'_2 | \hat{H}' | \psi'_i \rangle$ $i \to 1+2$ $= (2E_i . 2E_1 . 2E_2)^{1/2} \langle \psi_1 \psi_2 | \hat{H}' | \psi_i \rangle$ $= (2E_i . 2E_1 . 2E_2)^{1/2} T_{fi}$

\star Now expressing T_{fi} in terms of M_{fi} gives

$$\Gamma_{fi} = \frac{(2\pi)^4}{2E_i} \int |M_{fi}|^2 \delta(E_i - E_1 - E_2) \delta^3(\vec{p}_a - \vec{p}_1 - \vec{p}_2) \frac{d^3\vec{p}_1}{(2\pi)^3 2E_1} \frac{d^3\vec{p}_2}{(2\pi)^3 2E_2}$$

<u>Note:</u>

- M_{fi} uses relativistically normalised wave-functions. It is Lorentz Invariant $d^3 \vec{n}$ is the Lorentz Invariant Phase Space for each final state particle
- $\frac{d^3 \vec{p}}{(2\pi)^3 2E}$ is the Lorentz Invariant Phase Space for each final state particle the factor of 2E arises from the wave-function normalization

This form of Γ_{fi} is simply a rearrangement of the original equation but the integral is now frame independent (i.e. L.I.)

- Γ_{fi} is inversely proportional to E_i , the energy of the decaying particle. This is exactly what one would expect from time dilation ($E_i = \gamma m$).
- Energy and momentum conservation in the delta functions

Decay Rate Calculations

$$\Gamma_{fi} = \frac{(2\pi)^4}{2E_i} \int |M_{fi}|^2 \delta(E_i - E_1 - E_2) \delta^3(\vec{p}_i - \vec{p}_1 - \vec{p}_2) \frac{\mathrm{d}^3 \vec{p}_1}{(2\pi)^3 2E_1} \frac{\mathrm{d}^3 \vec{p}_2}{(2\pi)^3 2E_2}$$

★ Because the integral is Lorentz invariant (i.e. frame independent) it can be evaluated in any frame we choose. The C.o.M. frame is most convenient

• In the C.o.M. frame
$$E_i = m_i$$
 and $\vec{p}_i = 0$
 $\implies \Gamma_{fi} = \frac{1}{8\pi^2 E_i} \int |M_{fi}|^2 \delta(m_i - E_1 - E_2) \delta^3(\vec{p}_1 + \vec{p}_2) \frac{\mathrm{d}^3 \vec{p}_1}{2E_1} \frac{\mathrm{d}^3 \vec{p}_2}{2E_2}$

• Integrating over \vec{p}_2 using the δ -function:

$$\Rightarrow \Gamma_{fi} = \frac{1}{8\pi^2 E_i} \int |M_{fi}|^2 \delta(m_i - E_1 - E_2) \frac{d^3 \vec{p}_1}{4E_1 E_2}$$

$$\xrightarrow{1}{\text{now }} E_2^2 = (m_2^2 + |\vec{p}_1|^2) \text{ since the } \delta \text{-function imposes } \vec{p}_2 = -\vec{p}_1$$

$$\xrightarrow{2}{\text{Writing }} d^3 \vec{p}_1 = p_1^2 dp_1 \sin \theta d\theta d\phi = p_1^2 dp_1 d\Omega$$

$$\xrightarrow{\text{For convenience, here}}_{|\vec{p}_1| \text{ is written as } p_1}$$

$$\Rightarrow \Gamma_{fi} = \frac{1}{32\pi^2 E_i} \int |M_{fi}|^2 \delta\left(m_i - \sqrt{m_1^2 + p_1^2} - \sqrt{m_2^2 + p_1^2}\right) \frac{p_1^2 dp_1 d\Omega}{E_1 E_2}$$

• Which can be written in the form

$$\Gamma_{fi} = \frac{1}{32\pi^2 E_i} \int |M_{fi}|^2 g(p_1) \delta(f(p_1)) dp_1 d\Omega$$
(2)
where $g(p_1) = p_1^2 / (E_1 E_2) = p_1^2 (m_1^2 + p_1^2)^{-1/2} (m_2^2 + p_1^2)^{-1/2}$
and $f(p_1) = m_i - (m_1^2 + p_1^2)^{1/2} - (m_2^2 + p_1^2)^{1/2}$
Note: $\delta(f(p_1))$ imposes energy conservation.
 $f(p_1) = 0$ determines the C.o.M momenta of
the two decay products
i.e. $f(p_1) = 0$ for $p_1 = p^*$

★ Eq. (2) can be integrated using the property of δ -function derived earlier (eq. (1)) $\int g(p_1)\delta(f(p_1))dp_1 = \frac{1}{|df/dp_1|_{p^*}}\int g(p_1)\delta(p_1 - p^*)dp_1 = \frac{g(p^*)}{|df/dp_1|_{p^*}}$ where p^* is the value for which $f(p^*) = 0$

• All that remains is to evaluate df/dp_1

$$\frac{\mathrm{d}f}{\mathrm{d}p_1} = -\frac{p_1}{(m_1^2 + p_1^2)^{1/2}} - \frac{p_1}{(m_2^2 + p_1^2)^{1/2}} = -\frac{p_1}{E_1} - \frac{p_1}{E_2} = -p_1 \frac{E_1 + E_2}{E_1 E_2}$$

giving:
$$\Gamma_{fi} = \frac{1}{32\pi^2 E_i} \int |M_{fi}|^2 \left| \frac{E_1 E_2}{p_1 (E_1 + E_2)} \frac{p_1^2}{E_1 E_2} \right|_{p_1 = p^*} d\Omega$$

$$= \frac{1}{32\pi^2 E_i} \int |M_{fi}|^2 \left| \frac{p_1}{E_1 + E_2} \right|_{p_1 = p^*} d\Omega$$

• But from $f(p_1) = 0$, i.e. energy conservation: $E_1 + E_2 = m_i$ $\Gamma_{fi} = \frac{|\vec{p}^*|}{32\pi^2 E_i m_i} \int |M_{fi}|^2 d\Omega$

In the particle's <u>rest frame</u> $E_i = m_i$

$$\frac{1}{\tau} = \Gamma = \frac{|\vec{p}^*|}{32\pi^2 m_i^2} \int |M_{fi}|^2 \mathrm{d}\Omega$$
(3)

VALID FOR ALL TWO-BODY DECAYS !

•
$$p^*$$
 can be obtained from $f(p_1) = 0$
 $(m_1^2 + p^{*2})^{1/2} + (m_2^2 + p^{*2})^{1/2} = m_i$
 $\Rightarrow p^* = \frac{1}{2m_i} \sqrt{\left[(m_i^2 - (m_1 + m_2)^2\right] \left[m_i^2 - (m_1 - m_2)^2\right]}$

Cross section definition

Flux = number ofincident particles/ unit area/unit time

- The "cross section", σ , can be thought of as the <u>effective</u> cross-sectional area of the target particles for the interaction to occur.
- In general this has nothing to do with the physical size of the target although there are exceptions, e.g. neutron absorption

here (σ) is the projective area of nucleus

Differential Cross section

Example

 $(v_a + v_b)\delta t$

• Consider a single particle of type *a* with velocity, v_a , traversing a region of area

A containing n_b particles of type b per unit volume

In time δt a particle of type *a* traverses region containing $n_b(v_a + v_b)A\delta t$ particles of type b ★Interaction probability obtained from effective cross-sectional area occupied by the $n_b(v_a + v_b)A\delta t$ particles of type b $\frac{n_b(v_a+v_b)A\delta t\sigma}{dt}=n_bv\delta t\sigma$ Interaction Probability = $v = v_a + v_b$ Rate per particle of type $a = n_b v \sigma$

• Consider volume V, total reaction rate = $(n_b v \sigma) \cdot (n_a V) = (n_b V) (n_a v) \sigma$ = $N_b \phi_a \sigma$

• As anticipated: Rate = Flux x Number of targets x cross section

Cross Section Calculations

3

 \vec{v}_2

Consider scattering process

 $1+2 \rightarrow 3+4$

Start from Fermi's Golden Rule:

$$\Gamma_{fi} = (2\pi)^4 \int |T_{fi}|^2 \delta(E_1 + E_2 - E_3 - E_4) \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \frac{\mathrm{d}^3 \vec{p}_3}{(2\pi)^3} \frac{\mathrm{d}^3 \vec{p}_4}{(2\pi)^3}$$

where T_{fi} is the transition matrix for a normalization of 1/unit volume

• Now Rate/Volume = (flux of 1) × (number density of 2) × σ = $n_1(v_1 + v_2) \times n_2 \times \sigma$

• For 1 target particle per unit volume Rate = $(v_1 + v_2)\sigma$

$$\sigma = \frac{\Gamma_{fi}}{(v_1 + v_2)}$$

$$\sigma = \frac{(2\pi)^4}{v_1 + v_2} \int |T_{fi}|^2 \delta(E_1 + E_2 - E_3 - E_4) \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \frac{d^3 \vec{p}_3}{(2\pi)^3} \frac{d^3 \vec{p}_4}{(2\pi)^3}$$

the parts are not Lorentz Invariant

- •To obtain a Lorentz Invariant form use wave-functions normalized to 2*E* particles per unit volume $\psi' = (2E)^{1/2} \psi$
- Again define L.I. Matrix element $M_{fi} = (2E_1 2E_2 2E_3 2E_4)^{1/2} T_{fi}$ $\sigma = \frac{(2\pi)^{-2}}{2E_1 2E_2 (v_1 + v_2)} \int |M_{fi}|^2 \delta(E_1 + E_2 - E_3 - E_4) \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \frac{\mathrm{d}^3 \vec{p}_3}{2E_3} \frac{\mathrm{d}^3 \vec{p}_4}{2E_4}$
- The integral is now written in a Lorentz invariant form
- The quantity $F = 2E_1 2E_2(v_1 + v_1)$ can be written in terms of a four-vector scalar product and is therefore also Lorentz Invariant (the Lorentz Inv. Flux) $F = 4 \left[(p_1^{\mu} p_{2\mu})^2 - m_1^2 m_2^2 \right]^{1/2}$ (see appendix I)
- Consequently cross section is a Lorentz Invariant quantity
- Two special cases of Lorentz Invariant Flux:
- Centre-of-Mass Frame $F = 4E_1E_2(v_1 + v_2)$ $= 4E_1E_2(|\vec{p}^*|/E_1 + |\vec{p}^*|/E_2)$ $= 4|\vec{p}^*|(E_1 + E_2)$ $= 4|\vec{p}^*|\sqrt{s}$ • Target (particle 2) at rest $F = 4E_1E_2(v_1 + v_2)$ $= 4E_1m_2v_1$ $= 4E_1m_2(|\vec{p}_1|/E_1)$ $= 4m_2|\vec{p}_1|$

2→2 Body Scattering in C.o.M. Frame

- We will now apply above Lorentz Invariant formula for the interaction cross section to the most common cases used in the course. First consider 2→2 scattering in C.o.M. frame
- Start from

$$\sigma = \frac{(2\pi)^{-2}}{2E_1 2E_2(\nu_1 + \nu_2)} \int |M_{fi}|^2 \delta(E_1 + E_2 - E_3 - E_4) \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \frac{\mathrm{d}^3 \vec{p}_3}{2E_3} \frac{\mathrm{d}^3 \vec{p}_4}{2E_4}$$

• Here $\vec{p}_1 + \vec{p}_2 = 0$ and $E_1 + E_2 = \sqrt{s}$

$$\implies \sigma = \frac{(2\pi)^{-2}}{4|\vec{p}_i^*|\sqrt{s}} \int |M_{fi}|^2 \delta(\sqrt{s} - E_3 - E_4) \delta^3(\vec{p}_3 + \vec{p}_4) \frac{\mathrm{d}^3 \vec{p}_3}{2E_3} \frac{\mathrm{d}^3 \vec{p}_4}{2E_4}$$

The integral is exactly the same integral that appeared in the particle decay calculation but with m_a replaced by \sqrt{s}

$$\implies \sigma = \frac{(2\pi)^{-2}}{4|\vec{p}_i^*|\sqrt{s}} \frac{|\vec{p}_f^*|}{4\sqrt{s}} \int |M_{fi}|^2 \mathrm{d}\Omega^*$$

$$\sigma = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} \int |M_{fi}|^2 \mathrm{d}\Omega^*$$

- In the case of elastic scattering $|\vec{p}_i^*| = |\vec{p}_f^*|$ $\sigma_{\text{elastic}} = \frac{1}{64\pi^2 s} \int |M_{fi}|^2 d\Omega^*$
 - For calculating the total cross-section (which is Lorentz Invariant) the result on the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating the differential cross section in a rest frame other than the C.o.M:

$$d\sigma = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} |M_{fi}|^2 d\Omega^*$$

because the angles in $~~\mathrm{d}\Omega^* = \mathrm{d}(\cos heta^*)\mathrm{d}\phi^*~$ refer to the C.o.M frame

- For the last calculation in this section, we need to find a L.I. expression for $d\sigma$
- ★ Start by expressing $d\Omega^*$ in terms of Mandelstam *t* i.e. the square of the four-momentum transfer

$$e^{-}$$
 p_{1}^{μ} p_{3}^{μ} e^{-}
 $\chi q^{\mu} = p_{1}^{\mu} - p_{3}^{\mu}$

$$q^2 = (p_1 - p_3)^2$$
Product of
four-vectors
therefore L.I.

• Want to express $d\Omega^*$ in terms of Lorentz Invariant dt

where
$$t \equiv (p_1 - p_3)^2 = p_1^2 + p_3^2 - 2p_1 \cdot p_3 = m_1^2 + m_3^2 - 2p_1 \cdot p_3$$

♦ In C.o.M. frame:

$$p_{1}^{*\mu} = (E_{1}^{*}, 0, 0, |\vec{p}_{1}^{*}|)$$

$$p_{3}^{*\mu} = (E_{3}^{*}, |\vec{p}_{3}^{*}| \sin \theta^{*}, 0, |\vec{p}_{3}^{*}| \cos \theta^{*})$$

$$p_{1}^{\mu} p_{3\mu} = E_{1}^{*} E_{3}^{*} - |\vec{p}_{1}^{*}| |\vec{p}_{3}^{*}| \cos \theta^{*}$$

$$t = m_{1}^{2} + m_{3}^{3} - E_{1}^{*} E_{3}^{*} + 2|\vec{p}_{1}^{*}| |\vec{p}_{3}^{*}| \cos \theta^{*}$$

$$giving \quad dt = 2|\vec{p}_{1}^{*}| |\vec{p}_{3}^{*}| d(\cos \theta^{*})$$

$$therefore \quad d\Omega^{*} = d(\cos \theta^{*}) d\phi^{*} = \frac{dt d\phi^{*}}{2|\vec{p}_{1}^{*}| |\vec{p}_{3}^{*}|}$$

$$hence \quad d\sigma = \frac{1}{64\pi^{2}s} \frac{|\vec{p}_{1}^{*}|}{|\vec{p}_{1}^{*}|} |M_{fi}|^{2} d\Omega^{*} = \frac{1}{2 \cdot 64\pi^{2}s} |\vec{p}_{1}^{*}|^{2}} |M_{fi}|^{2} d\phi^{*} dt$$

 $\boldsymbol{\chi}$

• Finally, integrating over $\mathrm{d}\phi^*$ (assuming no ϕ^* dependence of $|M_{fi}|^2$) gives:

$$\frac{d\sigma}{dt} = \frac{1}{64\pi s |\vec{p}_i^*|^2} |M_{fi}|^2$$

Lorentz Invariant differential cross section

• All quantities in the expression for $d\sigma/dt$ are Lorentz Invariant and therefore, it applies to any rest frame. It should be noted that $|\vec{p}_i^*|^2$ is a constant, fixed by energy/momentum conservation

$$|\vec{p}_i^*|^2 = \frac{1}{4s}[s - (m_1 + m_2)^2][s - (m_1 - m_2)^2]$$

• As an example of how to use the invariant expression $d\sigma/dt$ we will consider elastic scattering in the laboratory frame in the limit where we can neglect the mass of the incoming particle $E_1 \gg m_1$

$$E_1$$
 m_2 e.g. electron or neutrino scattering
In this limit $|\vec{p}_i^*|^2 = \frac{(s-m_2^2)^2}{4s}$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{1}{16\pi(s - m_2^2)^2} |M_{fi}|^2 \qquad (m_1 = 0)$$

2→2 Body Scattering in Lab. Frame

- The other commonly occurring case is scattering from a fixed target in the Laboratory Frame (e.g. electron-proton scattering)
- First take the case of elastic scattering at high energy where the mass of the incoming particles can be neglected: $m_1 = m_3 = 0$, $m_2 = m_4 = M$

 $\ensuremath{^\circ}$ Wish to express the cross section in terms of scattering angle of the $\ensuremath{e^-}$

therefore
$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{dt}\frac{dt}{d\Omega} = \frac{1}{2\pi}\frac{dt}{d(\cos\theta)}\frac{d\sigma}{dt}$$
 Integrating over $d\phi$

• The rest is some rather tedious algebra... start from four-momenta $p_1 = (E_1, 0, 0, E_1), p_2 = (M, 0, 0, 0), p_3 = (E_3, E_3 \sin \theta, 0, E_3 \cos \theta), p_4 = (E_4, \vec{p}_4)$ so here $t = (p_1 - p_3)^2 = -2p_1 \cdot p_3 = -2E_1E_3(1 - \cos \theta)$ But from (E,p) conservation $p_1 + p_2 = p_3 + p_4$ and, therefore, can also express *t* in terms of particles 2 and 4

$$t = (p_2 - p_4)^2 = 2M^2 - 2p_2 \cdot p_4 = 2M^2 - 2ME_4$$

= $2M^2 - 2M(E_1 + M - E_3) = -2M(E_1 - E_3)$

Note E_{τ} is a constant (the energy of the incoming particle) so $\frac{\mathrm{d}t}{\mathrm{d}(\cos\theta)} = 2M \frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)}$ $E_3 = \frac{E_1 M}{M + E_1 - E_1 \cos \theta}$ • Equating the two expressions for *t* gives so $\frac{dE_3}{d(\cos\theta)} = \frac{E_1^2 M}{(M+E_1-E_1\cos\theta)^2} = E_1^2 M \left(\frac{E_3}{E_1 M}\right)^2 = \frac{E_3^2}{M}$ $\frac{d\sigma}{d\Omega} = \frac{1}{2\pi} \frac{dt}{d(\cos\theta)} \frac{d\sigma}{dt} = \frac{1}{2\pi} 2M \frac{E_3^2}{M} \frac{d\sigma}{dt} = \frac{E_3^2}{\pi} \frac{d\sigma}{dt} = \frac{E_3^2}{\pi} \frac{1}{16\pi(s-M^2)^2} |M_{fi}|^2$ Using $s = (p_1 + p_2)^2 = M^2 + 2p_1 \cdot p_2 = M^2 + 2ME_1$ Particle 1 massless $\rightarrow (p_1^2 = 0)$ gives $(s-M^2) = 2ME_1$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{E_3}{ME_1}\right)^2 |M_{fi}|^2$$

In limit
$$m_1
ightarrow 0$$

In this equation, E_3 is a function of θ :

$$E_3 = \frac{E_1 M}{M + E_1 - E_1 \cos \theta}$$
giving
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{1}{M + E_1 - E_1 \cos \theta}\right)^2 |M_{fi}|^2 \quad (m_1 = 0)$$

General form for 2→2 Body Scattering in Lab. Frame

★ The calculation of the differential cross section for the case where m_1 can not be neglected is longer and contains no more "physics" (see <u>appendix II</u>). It gives:

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \cdot \frac{1}{p_1 m_1} \cdot \frac{|\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta} \cdot |M_{fi}|^2$$

Again there is only one independent variable, $\theta,\;$ which can be seen from conservation of energy

$$E_1 + m_2 = \sqrt{|\vec{p}_3|^2 + m_3^2} + \sqrt{|\vec{p}_1|^2 + |\vec{p}_3|^2 - 2|\vec{p}_1||\vec{p}_3|\cos\theta + m_4^2}$$
$$\vec{p}_4 = \vec{p}_1 - \vec{p}_3$$

Summary

★ Used a Lorentz invariant formulation of Fermi's Golden Rule to derive decay rates and cross-sections in terms of the Lorentz Invariant Matrix Element (wave-functions normalised to 2E/Volume)

Main Results:

★ Particle decay:

$$\Gamma = \frac{|\vec{p}^*|}{32\pi^2 m_i^2} \int |M_{fi}|^2 d\Omega \qquad \text{Where} \quad p^* \text{ is a function of particle masses} \\ p^* = \frac{1}{2m_i} \sqrt{\left[(m_i^2 - (m_1 + m_2)^2\right] \left[m_i^2 - (m_1 - m_2)^2\right]}$$

★ Scattering cross section in C.o.M. frame:

$$\sigma = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} \int |M_{fi}|^2 \mathrm{d}\Omega^*$$

★ Invariant differential cross section (valid in all frames):

$$\frac{d\sigma}{dt} = \frac{1}{64\pi s |\vec{p}_i^*|^2} |M_{fi}|^2$$

$$\vec{p}_i^*|^2 = \frac{1}{4s}[s - (m_1 + m_2)^2][s - (m_1 - m_2)^2]$$

Summary cont.

 \star Differential cross section in the lab. frame ($m_1=0$)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{E_3}{ME_1}\right)^2 |M_{fi}|^2 \quad \Longleftrightarrow \quad \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \left(\frac{1}{M+E_1-E_1\cos\theta}\right)^2 |M_{fi}|^2$$

★ Differential cross section in the lab. frame $(m_1 \neq 0)$

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \cdot \frac{1}{|\vec{p}_1|m_1} \cdot \frac{|\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta} \cdot |M_{fi}|^2$$

with $E_1 + m_2 = \sqrt{|\vec{p}_3|^2 + m_3^2} + \sqrt{|\vec{p}_1|^2 + |\vec{p}_3|^2 - 2|\vec{p}_1||\vec{p}_3|\cos\theta + m_4^2}$

Summary of the summary:

★Have now dealt with kinematics of particle decays and cross sections
★The fundamental particle physics is in the matrix element
★The above equations are the basis for all calculations that follow

Appendix I : Lorentz Invariant Flux

•Collinear collision: $a \xrightarrow{v_a, \vec{p}_a} \xrightarrow{v_b, \vec{p}_b} b$ $F = 2E_a 2E_b(v_a + v_b) = 4E_a E_b \left(\frac{|\vec{p}_a|}{E_a} + \frac{|\vec{p}_b|}{E_b}\right)$ $= 4(|\vec{p}_a|E_b + |\vec{p}_b|E_a)$

To show this is Lorentz invariant, first consider

$$p_{a} \cdot p_{b} = p_{a}^{\mu} p_{b\mu} = E_{a} E_{b} - \vec{p}_{a} \cdot \vec{p}_{b} = E_{a} E_{b} + |\vec{p}_{a}||\vec{p}_{b}|$$
Giving
$$F^{2}/16 - (p_{a}^{\mu} p_{b\mu})^{2} = (|\vec{p}_{a}|E_{b} + |\vec{p}_{b}|E_{a})^{2} - (E_{a} E_{b} + |\vec{p}_{a}||\vec{p}_{b}|)^{2}$$

$$= |\vec{p}_{a}|^{2} (E_{b}^{2} - |\vec{p}_{b}|^{2}) + E_{a}^{2} (|\vec{p}_{b}|^{2} - E_{b}^{2})$$

$$= |\vec{p}_{a}|^{2} m_{b}^{2} - E_{a}^{2} m_{b}^{2}$$

$$= -m_{a}^{2} m_{b}^{2}$$

$$F = 4 \left[(p_a^{\mu} p_{b\mu})^2 - m_a^2 m_b^2 \right]^{1/2}$$

Appendix II : general 2→2 Body Scattering in lab frame

 $p_1 = (E_1, 0, 0, |\vec{p}_1|), \ p_2 = (M, 0, 0, 0), \ p_3 = (E_3, E_3 \sin \theta, 0, E_3 \cos \theta), \ p_4 = (E_4, \vec{p}_4)$

again
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}\Omega} = \frac{1}{2\pi}\frac{\mathrm{d}t}{\mathrm{d}(\cos\theta)}\frac{\mathrm{d}\sigma}{\mathrm{d}t}$$

But now the invariant quantity *t*:

$$t = (p_2 - p_4)^2 = m_2^2 + m_4^2 - 2p_2 \cdot p_4 = m_2^2 + m_4^2 - 2m_2 E_4$$

= $m_2^2 + m_4^2 - 2m_2 (E_1 + m_2 - E_3)$
 $\rightarrow \frac{dt}{d(\cos \theta)} = 2m_2 \frac{dE_3}{d(\cos \theta)}$

Which gives
$$\frac{d\sigma}{d\Omega} = \frac{m_2}{\pi} \frac{dE_3}{d(\cos\theta)} \frac{d\sigma}{dt}$$

To determine $dE_3/d(\cos\theta)$, first differentiate $E_3^2 - |\vec{p}_3|^2 = m_3^2$ $2E_3 \frac{dE_3}{d(\cos\theta)} = 2|\vec{p}_3| \frac{d|\vec{p}_3|}{d(\cos\theta)}$ (AII.1)

Then equate $t = (p_1 - p_3)^2 = (p_4 - p_2)^2$ to give

$$m_1^2 + m_3^2 - 2(E_1E_3 - |\vec{p}_1||\vec{p}_3|\cos\theta) = m_4^2 + m_2^2 - 2m_2(E_1 + m_2 - E_3)$$

Differentiate wrt. $\cos\theta$

$$(E_1 + m_2) \frac{dE_3}{d\cos\theta} - |\vec{p}_1| \cos\theta \frac{d|\vec{p}_3|}{d\cos\theta} = |\vec{p}_1||\vec{p}_3|$$
Using (1)
$$\longrightarrow \frac{dE_3}{d(\cos\theta)} = \frac{|\vec{p}_1||\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta}$$
(All.2)
$$\frac{d\sigma}{d\Omega} = \frac{m_2}{\pi} \frac{dE_3}{d(\cos\theta)} \frac{d\sigma}{dt} = \frac{m_2}{\pi} \frac{dE_3}{d(\cos\theta)} \frac{dE_3}{d(\cos\theta)} \frac{1}{64\pi s |\vec{p}_i^*|^2} |M_{fi}|^2$$

It is easy to show $|\vec{p}_i^*|\sqrt{s} = m_2|\vec{p}_1|$

$$\frac{d\sigma}{d\Omega} = \frac{dE_3}{d(\cos\theta)} \frac{m_2}{64\pi^2 m_2^2 |\vec{p}_1|^2} |M_{fi}|^2$$

and using (AII.2) obtain

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \cdot \frac{1}{p_1 m_1} \cdot \frac{|\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta} \cdot |M_{fi}|^2$$