Homework #2

- 1. A free neutron decays via the weak interaction, $n \to p e^- \bar{\nu}$. Please explain why the neutron inside atoms is stable.
- 2. Consider the scattering process of $A+B \rightarrow R \rightarrow C+D+\cdots$. The Lorentz invariant form of the cross section is

$$= \frac{\sigma(A+B\to R\to C+D+\cdots)}{k^2} \left[\frac{(2S_R+1)C_R}{(2S_A+1)(2S_B+1)C_AC_B}\right] \frac{\Gamma(R\to AB)\Gamma(R\to C+D+\cdots)}{(s-m_R^2)^2+m_R^2\Gamma_R^2},$$

where s denotes the c.m. energy of the system, k labels the wave number of the incoming particle, S_i and C_i is the spin and color of particle *i*, respectively. m_R (Γ_R) is the mass (width) of the resonance R. $\Gamma(R \to XY)$ represents the partial decay width of the decay channel $R \to XY$. The resonance R contributes maximally to the cross section in the vicinity of $s \approx m_R^2$. Please show the cross section in the limit of $\Gamma_R \ll m_R$. Explain your results.

- 3. Use CalcHEP to calculate the top-quark decay $t \to be^+\nu_e$ and the μ -lepton decay $\mu^+ \to e^+\bar{\nu}_{\mu} + \nu_e$. Draw Feynman diagrams of each process. Are they identical if we ignore the color of quarks? Please plot the correlation between m_{be^+} and $m_{e^+\nu_e}$ in the top-quark decay and the correlation between $m_{\bar{\nu}_{\mu}e^+}$ and $m_{e^+\nu_e}$ in the μ^+ -decay. The correlation figures are often called as Dalitz plots. Do you see resonances in both plots? Explain why? Note that: $m_t = 172 \text{ GeV}, m_b = 4.7 \text{ GeV}, m_{\mu} =$
- 4. Consider a process in which one proton (p) is at rest and the other collides with it. As a result of collision a particle of rest mass M is produced, in addition to the two protons,

$$p + p \to M + p + p. \tag{1}$$

- (a) Find the minimum energy the moving proton must have in order to make this reaction possible.
- (b) What could be the corresponding energy if both the protons are moving.
- 5. The kaon and pion are spineless. Is the decay $K^+ \to \pi^+ \gamma$ allowed? Why so? See PDG 2014 for detailed information of both particles, if needed.
- 6. Consider the decay $\pi^0 \to \gamma \gamma$.
 - (a) Show that its is a *p*-wave decay.
 - (b) Show that the decay amplitude can only have the form:

$$F = e^2 F_{\pi^0 \gamma \gamma} \vec{k} \cdot (\epsilon^\lambda \times \epsilon^{\lambda'}) \tag{2}$$

where $F_{\pi^0\gamma\gamma}$ is a form factor (you can treat it as a real number), \vec{k} the 3momentum of a photon in the rest frame of π^0 , ϵ^{λ} the polarization vector of photon where λ denotes the polarization state. Show that in the rest frame of π^0 the decay width

$$\Gamma(\pi^0 \to \gamma\gamma) = 2\pi\alpha^2 F_{\pi^0\gamma\gamma}^2 \frac{|\vec{k}|^2}{m_{\pi^0}} = \frac{\pi\alpha^2}{4} F_{\pi^0\gamma\gamma}^2 m_{\pi^0}.$$
 (3)

Find $F_{\gamma^0\gamma\gamma}$, using the experimental value of τ_{π^0} given in PDG 2014.

7. The figure below shows the Dalitz plot for a process in $p\bar{p}$ annihilation at rest into $\pi^+\pi^-\pi^0$, i.e.

$$p\bar{p} \to \pi^+\pi^-\pi^0$$

from A. Abele, *et al.*, Phys. Lett. B469, 270 (1999). Resonance are apparent. Identify the three resonances as specific hadrons. (Hint: reading the PLB paper might help. Use http://www.gfsoso.com or inspires-hep website to find the journal paper.)

Fig. 1. $\pi^+\pi^-\pi^0$ Dalitz-plot for antiprotons stopping in a liquid H₂ target.

BONUS:

The gluon was discovered in the so-called 'three-jet event' in the TASSO experiment at the Deutsches Elektronen-Synchrotron (DESY) in 1979. The scattering process is

$$e^{-}(p_1) + e^{+}(p_2) \rightarrow \bar{q}(k_1) + q(k_2) + g(k_3).$$

Define $s = (p_1 + p_2)^2 = q^2$, $q = p_1 + p_2 = k_1 + k_2 + k_3$,

$$x_i = \frac{2k_i \cdot q}{q^2}.$$

Show that the phase space integral is

$$\int \frac{d^3k_1 d^3k_2 d^3k_3}{(2\pi)^9} \frac{1}{2E_1} \frac{1}{2E_2} \frac{1}{2E_3} (2\pi)^4 \delta^4 (q - k_1 - k_2 - k_3) = \frac{q^2}{128\pi^3} \int dx_1 \int dx_2 \quad .$$

Textbook: "Particles and Fundamental Interactions: An Introduction to Particle Physics", by Braibant, Giacomeeli and Spurio.