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Non-Relativistic QM
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• Take as the starting point non-relativistic energy:

• In QM we identify the energy and momentum operators:

 which gives the time dependent Schrödinger equation (take V=0 for simplicity)   

• The SE is first order in the time derivatives and second order in spatial 
   derivatives – and is manifestly not Lorentz invariant. 

• In what follows we will use probability density/current extensively. For 
  the non-relativistic case these are derived as follows

(S1)

(S1)*
(S2)

with plane wave solutions: where

• For particle physics need a relativistic formulation of quantum mechanics. But  
     first take a few moments to review the non-relativistic formulation QM
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★ For              particles per unit volume moving at velocity    , have               passing  
     through a unit area per unit time (particle flux). Therefore     is a vector in the  
     particle’s direction with magnitude equal to the flux.

• Which by comparison with the continuity equation 

leads to the following expressions for probability density and current: 
   

★ The number of particles per unit volume is

• For a plane wave 

and



The Klein-Gordon Equation
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• Applying to the relativistic equation for energy: 

gives the Klein-Gordon equation:

KG can be expressed compactly as

(KG1)

(KG3)

(KG2)

★ Not surprisingly, the KG equation has negative energy solutions – this is 
    just what we started with in eq. KG1

⬧  Historically the –ve energy solutions were viewed as problematic. But for the KG  
    there is also a problem with the probability density …

• For plane wave solutions,                                , the KG equation gives:

• Using
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★ Particle densities are proportional to E. We might have anticipated this from the  
    previous discussion of Lorentz invariant phase space (i.e. density of 1/V in the  
    particles rest frame will appear as E/V in a frame where the particle has energy E 
    due to length contraction).

(KG2)*

• Proceeding as before to calculate the probability and current densities:

(KG4)

• Which, again, by comparison with the continuity equation allows us to identify

• For a plane wave 

and



The Dirac Equation

!6

★ Historically, it was thought that there were two main problems with the  
    Klein-Gordon equation:

⬧ Negative energy solutions 
⬧ The negative particle densities associated with these solutions

★ We now know that in Quantum Field Theory these problems are 
    overcome and the KG equation is used to describe spin-0 particles 
     (inherently single particle description  ª multi-particle quantum  
     excitations of a scalar field).

★These problems motivated Dirac (1928) to search for a  
    different formulation of  relativistic quantum mechanics  
    in which all  particle densities are positive.

★The resulting wave equation had solutions which not only 
    solved this problem but also fully describe the  
    intrinsic spin and magnetic moment of the electron!

Nevertheless:



Chronology
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★ 1928, Dirac ︎invents ︎ the Dirac equation.︎ The probability density is positive ︎;   
     however ︎ negative energies are allowed ︎(Proc.︎ Roy. ︎ Soc.︎ A117, 610-628)︎︎︎︎ ︎︎︎︎︎︎︎︎︎

★ 1930, Dirac solves the problem of negative energies via the ︎“hole” ︎ theory ︎  
     An ︎ti-particles are related to negative energy eigenstates 
                                                   ︎(Proc. Cambridge Phil. Soc. 26, 376-381)︎︎︎︎ ︎︎︎︎︎︎︎︎︎

★ 1 ︎︎︎︎︎934, Pauli and Weisskopf present a new interpretation︎ of Klein-Gordon 
     equation: as field equation for a charged spin-0 field.      represents the 
     charge density. Instead through      , the energy is given via 
      

     and thus per definition positive (Helv. Phys. Acta 7, 709-734) 

⇢
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★ 1934, The Dirac equation acquires a field-theoretic interpretation︎  
     It does no longer determine a probability amplitude, rather the field       
     operator for a spin 1/2 field.



The Dirac Equation
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• Schrödinger eqn: 1st  order in  
2nd order in

• Dirac looked for an alternative which was 1st order throughout:

where is the Hamiltonian operator and, as usual, 

(D1)

“squaring” this equation gives

• Which can be expanded in gory details as…

• Writing (D1) in full:

• Klein-Gordon eqn:  2nd order throughout
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★Immediately we see that the        and       cannot be numbers.  
              Require 4 mutually anti-commuting matrices 

★Must be (at least) 4x4 matrices (see Appendix I) 

• For this to be a reasonable formulation of relativistic QM, a free particle  
   must also obey                           , i.e. it must satisfy the Klein-Gordon equation: 

• Hence for the Dirac Equation to be consistent with the KG equation require:
(D2)
(D3)
(D4)

i i i

.
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•Consequently the wave-function must be a four-component  Dirac Spinor

A consequence of introducing an equation 
that is 1st order in time/space derivatives is that 
the wave-function has new degrees of freedom !

• For the Hamiltonian                                                           to be Hermitian
  requires

• At this point it is convenient to introduce an explicit representation for         .  
   It should be noted that physical results do not depend on the particular  
   representation – everything is in the commutation relations.

with

(D5)

   i.e. the require four anti-commuting Hermitian 4x4 matrices.

• The matrices are Hermitian and anti-commute with each other

• A convenient choice is based on the Pauli spin matrices:



Dirac Equation: Probability Density and Current
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(D6)

(D7)

• Start with the Dirac equation

 and its Hermitian conjugate

• Consider

•Now using the identity:

• Now consider probability density/current – this is where the perceived  
   problems with the Klein-Gordon equation arose.

remembering           are Hermitian

.
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where

• The probability density and current can be identified as:

and

where

• Unlike the KG equation, the Dirac equation has probability densities which  
    are always positive. 
• In addition, the solutions to the Dirac equation are the four component  
   Dirac Spinors. A great success of the Dirac equation is that these  
   components naturally give rise to the property of intrinsic spin. 
• It can be shown that Dirac spinors represent spin-half particles  (appendix II)  
    with an intrinsic magnetic moment of

gives the continuity equation (D8)

(appendix III)⾼高量内容 
本节不讲



Covariant Notation: the Dirac γ Matrices
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• The Dirac equation can be written more elegantly by introducing the 
   four Dirac gamma matrices:

Premultiply the Dirac equation (D6) by 

using this can be written compactly as:

★ NOTE: it is important to realize that the Dirac gamma matrices are NOT  
     four-vectors -  they are constant matrices which remain invariant under a  
     Lorentz transformation. However it can be shown that the Dirac equation 
     is itself Lorentz covariant (see Appendix IV)

(D9)

量⼦子场论内容 
本节不讲



Properties of the γ matrices
• From the properties of the       and      matrices (D2)-(D4) immediately obtain:

which can be expressed as:

•  Are the gamma matrices Hermitian? 

are anti-Hermitian

and

• The full set of relations is

⬧       is Hermitian so       is Hermitian. 
⬧  The      matrices are also Hermitian, giving

⬧  Hence

(defines the algebra)
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Pauli-Dirac Representation
• From now on we will use the Pauli-Dirac representation of the gamma matrices:

which when written in full are

and• Using the gamma matrices can be written as:

• Finally the expression for the four-vector current 

can be simplified by introducing the adjoint spinor 

where       is the four-vector current. 
 (The proof that        is indeed a four vector is given in Appendix V.) 

• In terms of the four-vector current the continuity equation becomes 
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The Adjoint Spinor
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• The adjoint spinor is defined as 

•  In terms the adjoint spinor the four vector current can be written:

★ We will use this expression in deriving the Feynman rules for the  
    Lorentz invariant matrix element for the fundamental interactions.

★ That’s enough notation, start to investigate the free particle solutions  
      of the Dirac equation...

i.e.



Dirac Equation: Free Particle at Rest
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• Look for free particle solutions to the Dirac equation of form:

where               , which is a constant four-component spinor which must satisfy 
the Dirac equation

• For a particle at rest 

• Consider the derivatives of the free particle solution

substituting these into the Dirac equation gives:

• This is the Dirac equation in “momentum” – note it contains no derivatives.

which can be written: (D10)

eq. (D10)

and
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• This equation has four orthogonal solutions:

E = m E = -m

Two spin states with E>0

(D11)

 (D11)  (D11)

• Including the time dependence from gives

Two spin states with E<0

★ In QM mechanics can’t just discard the E<0 solutions as unphysical  
    as we require a complete set of states  - i.e. 4 SOLUTIONS

still have NEGATIVE ENERGY SOLUTIONS 



Dirac Equation: Plane Wave Solutions
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• Now aim to find general plane wave solutions: 
• Start from Dirac equation (D10):

and use

Note in the above equation the 4x4 matrix is  
    written in terms of four 2x2 sub-matrices

• Writing the four component 
   spinor as

Giving two coupled  
simultaneous equations 
for 

(D12)

Note
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Expanding

• Therefore (D12)

    gives

andgiving
where N is the 
wave-function 
normalisation

NOTE: For             these correspond to the E>0 particle at rest solutions 

• Solutions can be obtained by making the arbitrary (but simplest) choices for

or i.e.

★ The choice of         is arbitrary,  but this isn’t an issue since we can express any  
    other choice as a linear combination. It is analogous to choosing a basis for  
    spin which could be eigenfunctions of Sx, Sy or Sz
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Repeating for and gives the solutions       and 

★ The four solutions are:

• For            :                 correspond to the E>0 particle at rest solutions 
                                      correspond to the E<0 particle at rest solutions 

• One rather subtle point: One could ask the question whether we can interpret  
  all four solutions as positive energy solutions. The answer is no. If we take 
  all solutions to have the same value of  E, i.e. E = +|E|, only two of the solutions  
  are found to be independent.  
• There are only four independent  solutions when the two are taken to have E<0. 

• If any of these solutions is put back into the Dirac equation, as expected, we obtain

  which doesn’t  in itself identify the negative energy solutions.

★ To identify which solutions have E<0 energy refer back to particle at rest (eq. D11 ).

★ So are the +ve energy solutions and              are the -ve energy solutions



Interpretation of –ve Energy Solutions
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★The Dirac equation has negative energy solutions. Unlike the KG equation 
    these have positive probability densities. But how should –ve energy  
    solutions be interpreted?  Why don’t all +ve energy electrons fall into  
    to the lower energy –ve energy states?  

Dirac Interpretation:  the vacuum corresponds to all –ve energy states  
 being full with the Pauli exclusion principle preventing electrons falling into 
 -ve energy states. Holes in the –ve energy states correspond to +ve energy 
 anti-particles with opposite charge. Provides a picture for pair-production 
 and annihilation.

....

....

mc2

-mc2

....

....

mc2

-mc2

γ
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....

mc2
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γ



Discovery of the Positron
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C.D.Anderson, Phys Rev 43 (1933) 491★ Cosmic ray track in cloud chamber:

23 MeV

63 MeV

6 mm 
Lead 
Plate

e+

e+

• e+ enters at bottom, slows down in the 
    lead plate – know direction 
• Curvature in B-field shows that it is a  
    positive particle 
• Can’t be a proton as would have stopped in the lead

Provided Verification of Predictions of Dirac Equation

★Anti-particle solutions exist ! But the picture of the vacuum corresponding to  
    the state where all –ve energy states are occupied is rather unsatisfactory, what 
    about bosons (no exclusion principle),…. 

B

Positronium (an atom made up of electron and positron) was discovered by Martin Deutsch in 1951.



Feynman-Stückelberg Interpretation
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★Interpret a negative energy solution as a negative energy particle which  
   propagates backwards in time or equivalently a positive energy anti-particle 
   which propagates forwards in time

Feynman-Stückelberg Interpretation:

tim
e

e+ e-

E>0 E<0

γ γ
e– (E<0)

e– (E>0)

e+ (E>0)

e– (E>0)

NOTE: in the Feynman diagram the arrow on 
the anti-particle remains in the backwards in 
time direction to label it an anti-particle 
solution.   

★At this point it become more convenient to work with anti-particle 
   wave-functions with                                  motivated by this interpretation

★There are many problems with the Dirac interpretation of anti-particles 
    and it is best viewed as of historical interest – don’t take it too seriously.



Anti-Particle Spinors
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• Want to redefine our –ve energy solutions such that:

Where E is understood to 
be negative

• Can simply “define” anti-particle wave-function by flipping the sign  
  of      and       following the Feynman-Stückelburg interpretation:  

where E is now understood to be positive,  

i.e. the energy of the physical anti-particle.

We can look at this in two ways:

❶ Start from the negative energy solutions 



Anti-Particle Spinors
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Find negative energy plane wave solutions to the Dirac equation of  
the form: where

• Note that although these are still negative energy solutions 

• Solving the  Dirac equation

(D13)

• Proceeding as before:

❷

in the sense that

•The same wave-functions that were written down on the previous page.

etc., … 

✶ The Dirac equation in terms of momentum for ANTI-PARTICLES     (c.f. D10)



Particle and anti-particle Spinors
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★ Four solutions of form:

★ Four solutions of form

★ Since we have a four component spinor, only four are linearly independent
▪ Could choose to work with                              or                               or …  
▪ Natural to use choose +ve energy solutions 



Wave-Function Normalization
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• Consider

Probability density

which for the desired 2E particles per unit volume, requires that

• Obtain same value of N  for

• We want to normalize wave-functions  
   to        particles per unit volume



Charge Conjugation

!29

• In the Relativity and Electrodynamics course it was shown that 
   the motion of a charged particle in an electromagnetic field 
   can be obtained by making the minimal substitution

with 

this can be written

and the Dirac equation becomes:

• Taking the complex conjugate and pre-multiplying by 

•Define the charge conjugation operator:

But and

(D14)

D14 becomes:
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• Comparing to the original equation

we see that the spinor        describes a particle of the same mass but with 
opposite charge,  i.e. an anti-particle !

• Now consider the action of       on the free particle wave-function:

hence
similarly

★ Under the charge conjugation operator the particle spinors      and      
     transform to the anti-particle spinors       and      

particle spinor  1 anti-particle spinor

D14 becomes:



Using the anti-particle solutions
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•There is a subtle but important point about the anti-particle solutions written as

Applying normal QM operators for momentum and energy 

★Hence the quantum mechanical operators giving the physical energy and  
    momenta of the anti-particle solutions are: 

★But have defined solutions to have E>0 

and

Conservation of total angular momentum 

• Under the transformation :

.

-mc2

0

In the hole picture:
A spin-up hole leaves the 
negative energy sea in a spin  
down state

★The physical spin of the anti-particle solutions is given by

gives and



Summary of Solutions to the Dirac Equation
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• The normalised free PARTICLE solutions to the Dirac equation:

with

 satisfy

• For both particle and anti-particle solutions:

• The ANTI-PARTICLE solutions in terms of the physical energy and momentum:

with

satisfy

For these states the spin is given by  



Spin States
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• In general the spinors                          are not Eigenstates of

• However particles/anti-particles travelling in the z-direction:

(Appendix II)

z z

are Eigenstates of 

★ Spinors                          are only eigenstates of         for    

Note the change of sign  
of     when dealing with   
antiparticle spinors



Pause for Breath…
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• Have found solutions to the Dirac equation which are also eigenstates        but  
   only for particles traveling along the z axis.

• More generally, want to label our states in terms of “good quantum numbers”,  
   i.e. a set of  commuting observables.       

(Appendix II)

• Not a particularly useful basis 

• Can’t use z component of spin:        

• Introduce a new concept “HELICITY” 

Helicity plays an important role in much that follows



• If we make a measurement of the component of spin of a spin-half particle 
  along any axis it can take two values           , consequently the eigenvalues 
  of the helicity operator for a spin-half particle are:    

Helicity
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★ The component of a particles spin along its direction of flight is a good quantum  
     number:

“right-handed” “left-handed”

★ Define the component of a particles spin along its direction of flight as HELICITY:

 Often termed:

★ NOTE: these are “RIGHT-HANDED” and LEFT-HANDED HELICITY eigenstates 
★ In handout 4 we will discuss RH and LH CHIRAL eigenstates. Only in the limit 
                   are the HELICITY eigenstates the same as the CHIRAL eigenstates 



Helicity Eigenstates
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★ Wish to find solutions of Dirac equation which are also eigenstates of Helicity:

where       and        are right and left handed helicity states and here       is 
the unit vector in the direction of the particle.   

• The eigenvalue equation:

gives the coupled equations:
(D15)

• Consider a particle propagating in              direction                  
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• Writing either or then (D15) gives the relation

So for the components of BOTH       and     

• For the right-handed helicity state, i.e. helicity +1:

(For helicity       ) 

• Putting in the constants of proportionality gives:
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★(D15) determines the relative normalisation of        and        , i.e. here

•The negative helicity particle state is obtained in the same way. 

•The anti-particle states can also be obtained in the same manner although  
   it must be remembered that

i.e.

•From the Dirac Equation (D12) we also have

(D16)

Helicity
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★ The particle and anti-particle helicity eigenstates states are:

★ For all four states, normalising to 2E particles/Volume again gives

particles anti-particles

The helicity eigenstates will be used extensively in the calculations that follow.  



Intrinsic Parity of Dirac Particles
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★ The parity operation is defined as spatial inversion through the origin:

•Consider a Dirac spinor,                      , which satisfies the Dirac equation

•Under the parity transformation:
Try

•Expressing derivatives in terms of the primed system:

so

Since        anti-commutes with                    :

★ Before leaving the Dirac equation, consider parity non-examinable

(D17)

(D17)
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★There for under parity transformations the form of the Dirac equation is  
    unchanged provided Dirac spinors transform as                                     
    

•For a particle/anti-particle at rest the solutions to the Dirac Equation are: 

with

etc.

★Hence an anti-particle at rest has opposite intrinsic parity to a particle at rest.  
★Convention: particles are chosen to have +ve parity; corresponds to choosing 

(note the above algebra doesn’t depend  on the choice of                   )

Pre-multiplying by 

•Which is the Dirac equation in the new coordinates.



Summary
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★The formulation of relativistic quantum mechanics starting from the  
    linear Dirac equation

New degrees of freedom : found to describe Spin ½ particles

★ With the Dirac equation: forced to have two positive energy and two  
    negative energy solutions  
★Feynman-Stückelberg interpretation: -ve energy particle solutions  
    propagating backwards in time correspond to physical +ve energy   
    anti-particles propagating forwards in time 

★ In terms of 4x4 gamma matrices the Dirac Equation can be written:

★ Introduces the 4-vector current and adjoint spinor:
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★ Most useful basis: particle and anti-particle helicity eigenstates  

★ In terms of 4-component spinors, the charge conjugation and parity 
    operations are: 

★ Now have all we need to know about a relativistic description of 
    particles…  next discuss particle interactions and QED.



Appendix I : Dimensions of the Dirac Matrices
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non-examinable
Starting from 

For       to be Hermitian for all       requires   
To recover the KG equation:

Consider 
with

Therefore

similarly

(using commutation relation)

.
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the eigenvalue equation, e.g.

Eigenvalues of a Hermitian matrix are real so 
but 

Since the             are trace zero Hermitian matrices with eigenvalues of  
        they must be of even dimension

For N=2 the 3 Pauli spin matrices satisfy

But we require 4 anti-commuting matrices. Consequently the          of the 
Dirac equation must be of dimension 4, 6, 8,….. The simplest choice for 
is to assume that the            are of dimension 4. 

We can now show that the matrices are of even dimension by considering

.



Appendix II : Spin
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non-examinable
•For a Dirac spinor is orbital angular momentum a good quantum number? 
   i.e. does                    commute with the Hamiltonian?

Consider the x component of L:

The only non-zero contributions come from:

Therefore
★Hence the angular momentum does not commute with the Hamiltonian 
    and is not a constant of motion

(A.1)



!47

Introduce a new 4x4 operator:

where       are the Pauli spin matrices: i.e.

Now consider the commutator

here

and hence

Consider the x comp:
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Taking each of the commutators in turn:

Hence
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Therefore:

•Hence the observable corresponding to the operator      is also not 
  a constant of motion. However, referring back to (A.1)

•Because

the commutation relationships for      are the same as for the      , e.g.     
. Furthermore both S2 and Sz are diagonal

•Consequently and for a particle traveling along
the z direction

★S has all the properties of spin in quantum mechanics and therefore the 
    Dirac equation provides a natural account of the intrinsic angular  
    momentum of fermions

.



Appendix III : Magnetic Moment
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non-examinable
• In the part II Relativity and Electrodynamics course it was shown that 
   the motion of a charged particle in an electromagnetic field 
   can be obtained by making the minimal substitution

• Applying this to equations (D12)

(A.2)

Multiplying (A.2) by 

where kinetic energy 
(A.3)

•In the non-relativistic limit                  (A.3) becomes 

(A.4)
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•Now

which leads to 
and

•The operator on the LHS of (A.4): 

★Substituting back into (A.4) gives the Schrödinger-Pauli equation for 
   the motion of a non-relativisitic  spin ½ particle in an EM field
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 Since the energy of a magnetic moment in a field       is              we can 
    identify the intrinsic magnetic moment of  a spin ½ particle to be: 

In terms of the spin:

 Classically, for a charged particle current loop

 The intrinsic magnetic moment of  a spin half Dirac particle is twice 
    that expected from classical physics. This is often expressed in terms 
    of the gyromagnetic ratio is g=2. 



Appendix IV : Covariance of Dirac Equation
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non-examinable
•For a Lorentz transformation we wish to demonstrate that the Dirac  
  Equation is covariant i.e. 

where

and is the transformed spinor.
•The covariance of the Dirac equation will be established if the 4x4 matrix  
   S exists.

 transforms to

(A.5)
(A.6)

•Consider a Lorentz transformation with the primed frame moving with 
  velocity v along the x axis

where
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With this transformation equation (A.6)

which should be compared  to the matrix S multiplying  (A.5)

★Therefore the covariance of the Dirac equation will be demonstrated if 
    we can find a matrix S such that

•Considering each value of 

where 
and 

(A.7)



!55

•It is easy (although tedious) to demonstrate that the matrix:

with

satisfies the above simultaneous equations

NOTE: For a transformation along in the –x direction 

★To summarise, under a Lorentz transformation a spinor          transforms 
    to                            . This transformation preserves the mathematical 
    form of the Dirac equation        



Appendix V : Transformation of Dirac Current
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non-examinable

•Under a Lorentz transformation we have
 and for the adjoint spinor:

•First consider the transformation properties of 

where
giving

hence
★The product          is therefore a Lorentz invariant. More generally, the   
    product             is Lorentz covariant

★The Dirac current                        plays an important rôle in the description 
   of particle interactions. Here we consider its transformation properties. 
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★Now consider

•To evaluate this wish to express          in terms of  
(A.7)

where we used 
•Rearranging the labels and reordering gives:

★Hence the Dirac current,             , transforms as a four-vector



Ernst Stueckelberg (1905-1984)：被⼈人遗忘的天才
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1934年，他提出了一个完全协变的微扰量子场理
论。Stueckelberg提出的方法更加强大，但
是没有被同时代的人采纳。 � 

1935年，他独立于Hideki � Yukawa提出通过玻色
子交换来解释强核力的理论。 � 

1938年，他认识到有质量的电动力学包含一个隐
藏的标量，并发展了一个后来称为阿贝尔希
格斯机制的理论。 � 

1941年到1942年，他提出了一个相对论动力学
的参数化理论。 � 

1943年，他提出了一个量子电动力学的重整化方
案来解决的无穷大问题，但他的论文被《物
理评论》拒绝。 � 

1953年，他与数学家Andre � Petermann发现了
重整化群

非常遗憾，他的工作直到上个世纪90年代才开始被人们认识到。这么多原创性的、
超前于时代的贡献，结果就才得了一个比较有名的奖：1976年的Max � Planck奖。 .


