Quantum Electrodynamics

C.-P. Yuan

Michigan State University

Typesetting: prepared by Jianghao Yu at MSU

PHY905-004

QED Lagrangian

The Lagrangian is

$$\mathcal{L} = \bar{\psi} \left(i \gamma_{\mu} D^{\mu} - m \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}, \qquad (1)$$

where $iD^{\mu} = i\partial^{\mu} - eA^{\mu}$ (charge of e^- : e = -|e|) and $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$.

The equation of motion are

• Dirac equation

$$(i\gamma^{\mu}D_{\mu} - m)\psi = 0, \qquad (2)$$

• Maxwell equation

$$\partial_{\mu}F^{\mu\nu} = e\bar{\psi}\gamma^{\nu}\psi = ej^{\nu}, \qquad (3)$$

where j^{ν} is current density.

PHY905-004

Gauge Theory

The Lagrangian is invariant under local gauge transformation

$$\psi(x) \rightarrow e^{i\alpha(x)}\psi(x),$$
 (4)

$$A_{\mu}(x) \rightarrow A_{\mu}(x) - \frac{1}{e}\partial_{\mu}\alpha(x),$$
 (5)

where $\alpha(x)$ depends on space-time x.

Under the above local transformation, we know that

• $D^{\mu}\psi(x) \rightarrow e^{i\alpha(x)}D^{\mu}\psi(x)$,

•
$$\bar{\psi}(x) \rightarrow \bar{\psi}(x) e^{-i\alpha(x)}$$
 ,

• $F^{\mu\nu} \to F^{\mu\nu}$.

Since $\bar{\psi}D^{\mu}\psi$, $\bar{\psi}\psi$ and $F^{\mu\nu}F_{\mu\nu}$ are invariant, the Lagrangian is invariant.

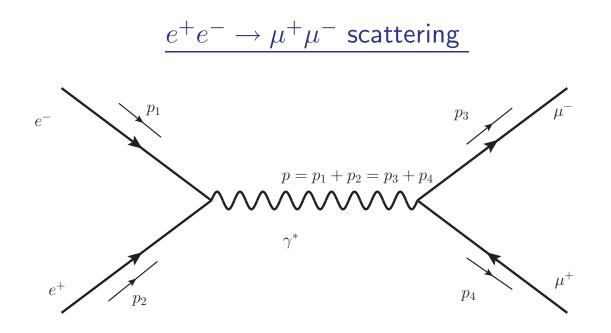
PHY905-004

Feynman Rules and Feynman Diagrams

Dirac propagator:	p	$=\frac{i(\not\!\!p+m)}{p^2-m^2+i\epsilon}$	
Photon propagator:	$\sim p$	$=rac{-ig_{\mu}}{p^2+}$	$\frac{i\nu}{i\epsilon}$
QED vertex:		$= iQe\gamma^{\mu}$ = -1 for	an electron
	ر» م		(initial)
External fermions:	<i>p</i>		
	\sum_{p}	$= \overline{u}^s(p)$	(final)
External antifermions:	\sum_{r}	$= \overline{v}^s(p)$	(initial)
	$\sum_{p \to \infty}$	$= v^s(p)$	(final)
External photons:	$\downarrow \sim \sim$	$=\epsilon_{\mu}(p)$	(initial)
	$\downarrow \sim \sim$	$= \epsilon_{\mu}^{*}(p)$	(final)

S-matrix and Cross Section

- Given *L*, one can obtain *H*, and then construct Smatrix element, which is denoted as *M*(scattering amplitude).
- The probability is given by taking $\mathcal{M}^{\dagger}\mathcal{M} = |\mathcal{M}|^2$. Thus one can obtain the scattering cross section.
- We take $e^+e^- \rightarrow \mu^+\mu^-$ as an example to calculate the scattering cross section.



Following the QED Feynman Rules, the invariant amplitude is

$$-i\mathcal{M} = \left[\bar{u}(p_3)\left(ieQ\gamma^{\beta}\right)v(p_4)\right]\frac{-ig_{\alpha\beta}}{p^2 + i\epsilon}\left[\bar{v}(p_2)\left(-ie\gamma^{\beta}\right)u(p_1)\right],\qquad(6)$$

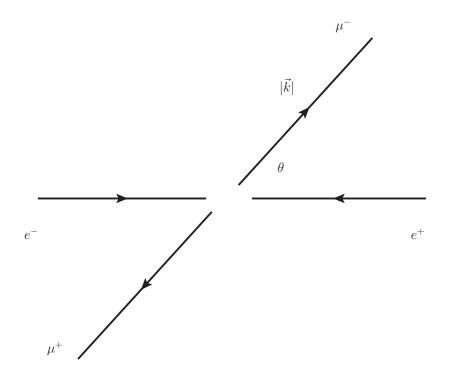
where we take the muon charge as Q, and electron charge -1. For an unpolarized e^+ and e^- beam, one needs to average the initial spins and sum over the final spins. So the amplitude square is

$$\frac{1}{22} \sum_{spin} |\mathcal{M}|^2 = \frac{e^4 Q^2}{4p^4} \sum_{spin} \left[\bar{v}(p_4) \gamma^\beta u(p_3) \bar{u}(p_3) \gamma^\alpha v(p_4) \right] \\ \left[\bar{u}(p_1) \gamma_\beta v(p_2) \bar{v}(p_2) \gamma_\alpha u(p_1) \right] \\ = \frac{8e^4}{p^4} \left(p_1 \cdot p_4 p_2 \cdot p_3 + p_1 \cdot p_3 p_2 \cdot p_4 + m_\mu^2 p_1 \cdot p_2 \right)$$
(7)

PHY905-004

 $e^+e^- \rightarrow \mu^+\mu^-$ scattering (2)

Specialize to the center of mass frame,



$$p_1 = (E, 0, 0, E)$$
 (8)

$$p_2 = (E, 0, 0, -E) \tag{9}$$

$$p_3 = (E, |\vec{k}| \sin \theta, 0, |\vec{k}| \cos \theta)$$
(10)

$$p_4 = (E, -|\vec{k}|\sin\theta, 0, -|\vec{k}|\cos\theta)$$
(11)

$$p^{2} = (p_{1} + p_{2})^{2} = (p_{3} + p_{4})^{2} = 4E^{2} = s$$
 (12)

PHY905-004

C.–P. Yuan (MSU)

7

 $e^+e^- \rightarrow \mu^+\mu^-$ scattering (3)

The differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\cos\theta d\phi} = \frac{1}{2s} \frac{|\vec{p}_3|}{32\pi^2 |\vec{p}_1|} \frac{1}{4} \sum_{spin} |\mathcal{M}|^2$$
$$= \frac{1}{2s} \frac{k}{32\pi^2 E} \frac{1}{4} \sum_{spin} |\mathcal{M}|^2 = \frac{\alpha^2 Q^2 \beta}{4s} \left(2 - \beta^2 + \beta^2 \cos^2 \theta\right), \quad (13)$$

where
$$\alpha = \frac{e^2}{4\pi}$$
 and $\beta = \sqrt{1 - \frac{4m_{\mu}^2}{s}}$.

The total cross section is

$$\sigma = \int \frac{d\sigma}{d\Omega} d\Omega = \frac{4\pi \alpha^2 Q^2 \beta}{3s} \frac{3 - \beta^2}{2}.$$
 (14)

In the relativistic limit, $m_{\mu} \ll \sqrt{s}, \beta \to 1.$ The differential cross section will be

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 Q^2}{4s} \left(1 + \cos^2\theta\right), \qquad (15)$$

The total cross section will be

$$\sigma = \frac{4\pi\alpha^2 Q^2}{3s}.\tag{16}$$

PHY905-004