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ABSTRACT

This paper is a continuation of the study of the advection–diffusion problem for stratospheric flow, and deals
with the probability distribution function (PDF) of gradients of a freely decaying passive tracer. Theoretical
arguments are reviewed and extended showing that mixing of a weakly diffused tracer by random large-scale
flows produces a tracer gradient field whose probability distribution function has ‘‘stretched exponential’’ tails
P( | =u | ) } exp(2b | =u | g) with g , 1. This contrasts with the lognormal distribution expected for advective
mixing in the absence of diffusion. The non-Gaussian distribution of tracer gradients can be derived in terms
of the statistics of strain rates of the random driving flow. It is shown that the tails of the gradient PDF provide
information about the dissipation scale, the scale selectivity of the dissipation law, and the fluctuations of short-
term strain. The gradient PDF is shown to contain information about tracer variability that is not present at all
in the power spectrum of the tracer field.

To show that the predictions remain valid for the gradient statistics of passive tracers driven by the well-
organized lower-stratospheric flow with mixing barriers, a series of advection–diffusion simulations of a decaying
passive tracer are presented. The mixing is driven by ECMWF winds on the 420-K isentropic surface using the
high-resolution finite-volume model employed in Part I of this paper. It is found that the probability distribution
function of the simulated tracer gradients is indeed stretched exponential, with the stretching parameter g ø
0.55. The largest gradients are not found in the regions of highest Lyapunov exponents, but rather in the surf-
zone regions adjacent to the reservoirs of high tracer fluctuation amplitude.

1. Introduction

In Hu and Pierrehumbert (2001, hereafter Part I), we
studied the probability distribution function (PDF) of a
decaying passive tracer driven by the stratospheric flow.
It was found that small-scale, large-amplitude tracer
fluctuations are characterized by non-Gaussian PDF tails
(nearly exponential). An extensive study of observed
PDFs of stratospheric tracers, touching on many of the
same themes we have examined theoretically, can be
found in Sparling (2000). In the present paper we turn
our attention to the PDFs of tracer gradients in the lower
stratosphere. Characterization of tracer gradients is im-
portant because the gradient distribution can provide
information about the aggregate effects of tracer vari-
ance dissipation, which occurs on scales that are difficult
to observe directly. Further, the dissipation or diffusive
scale is the scale at which chemical reactants are actually
brought into contact, so that characterization of tracer
behavior at this scale can have a bearing on the rate of
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progress of chemical reactions in an inhomogeneous
environment.

There have been a number of attempts to estimate an
effective horizontal diffusivity for the stratosphere by
using observed properties of tracer filaments. The gen-
eral idea behind these efforts is that, if one has an es-
timate of the strain rate due to stratospheric winds, then
the thinnest observed filaments allow one to estimate
the diffusivity by balancing thinning by strain against
broadening by diffusion. The estimate by Waugh et al.
(1997) was carried out by balancing strain against hor-
izontal diffusion, but Haynes and Anglade (1997)
showed that the dissipation is primarily accomplished
by vertical diffusion acting on enhanced vertical gra-
dients; the latter employed quantitative statistical mod-
els of the enhancement of vertical gradients in an at-
tempt to estimate vertical diffusivity. Balluch and
Haynes (1997) carried the program further, examining
case studies of filament evolution in comparison with
simulations carried out with various estimates of dif-
fusivity. They pointed out that the maximum gradients
at the edge of filaments may provide a better basis for
estimating dissipation than the overall width of the fil-
ament itself. They also suggested that PDFs of tracer
gradients might provide a good basis for such an anal-
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ysis. In the present work, we develop some of the the-
oretical underpinnings needed to interpret the PDFs of
tracer gradients. In effect, we consider the statistics of
tracer gradients that would result from an ensemble of
strain–diffusion processes of the sort examined in the
case studies in Balluch and Haynes (1997).

Characterizing tracer diffusive dissipation has been
one of the main concerns since the very beginning of
turbulence research. Gurvich and Yaglom (1967) first
suggested that the PDF of local diffusive dissipation
rate of a tracer should be lognormal. However, Kraich-
nan (1974) pointed out that the lognormal distribution
of gradients is valid only for the case of nondiffusive
tracers in homogeneous turbulent flows, and that dif-
fusive dissipation should cut off the tail of the lognormal
distribution. The study of tracer gradient PDFs was re-
invigorated in the late 1980s, when intriguing Rayleigh–
Benard thermal convection experiments were carried out
at the University of Chicago (Castaing et al. 1989). The
experimental results stimulated considerable theoretical
efforts, and a great deal of theoretical progress has been
made on the PDF of tracers and their gradients in tur-
bulence research (Sinai and Yakhot 1989; Yakhot et al.
1990; Shraiman and Siggia 1994; Chertkov et al. 1998;
Balkovsky and Falkovich 1998, Balkovsky and Fouxon
1999). The phenomenon of non-Gaussian tracer and gra-
dient PDFs is quite robust, and is encountered for de-
veloped 3D turbulence as well as for smoother flows.
A review emphasizing the former case can be found in
Warhaft (2000). The theory of the PDFs is best devel-
oped for the case of advection–diffusion by spatially
smooth flow, and this is the case that shall principally
concern us in stratospheric applications. For this case,
Balkovsky and Fouxon (1999) have shown that the gra-
dients of a stochastically forced tracer have stretched
exponential tails, defined by P( | =u | ) } exp(2b | =u | g )
with g , 1.

The freely decaying case is at present unsettled. Bal-
kovsky and Fouxon (1999) do not explicitly discuss the
form of the tracer or gradient PDF for the decaying case,
but they do present results for the evolution of the mo-
ments of the fields [see section 3a of Balkovsky and
Fouxon (1999)]. These results imply that the shape of
the PDFs evolves with time toward progressively slower
decaying, or ‘‘fatter,’’ tails. These would qualitatively
resemble stretched exponentials with g evolving toward
zero as time goes on. The evolution of the tracer PDF
for stratospheric mixing in Part I was consistent with
these predictions, at least over the 60-day timescale.
However, the long-term simulations (albeit with more
idealized flows) described in Pierrehumbert (2000) are
inconsistent with Balkovsky and Fouxon (1999), as the
PDF of both the tracer and its gradient in the simulations
eventually settles into a self-similar form wherein the
width changes in proportion to the decay of standard
deviation, but the shape remains invariant. The corre-
sponding tracer pattern is sometimes referred to as a
‘‘strange eigenmode’’ (Pierrehumbert 1994) and is com-

patible with the assumptions made (though not justified)
in Sinai and Yakhot (1989). In Pierrehumbert (2000) it
was suggested that the discrepancy was due to limita-
tions of the theory imposed by correlation-time as-
sumptions, but a closer reading of Balkovsky and Foux-
on (1999) shows that the prediction for the far tails is
not subject to any such limits. The state of understanding
of the problem is at present much in flux, but there are
theoretical reasons Fereday et al. (2002) believe that the
strange eigenmode behavior represents the correct long-
term evolution, with the kind of evolution described in
Balkovsky and Fouxon (1999) representing a transient,
and possibly very limited, stage in the evolution.

Motivated by these recent studies, we inquire whether
the aforementioned results can carry over to the more
structured stratospheric flow, particularly in view of the
existence of barriers to mixing, and to what extent the
PDF of stratospheric tracer gradients can be understood
in terms of concepts arising from theories for idealized
flows. Examination of simulated tracer gradient PDFs
is particularly important to progress, because the theory
of these PDFs is much less complete than the corre-
sponding theory for PDFs of the tracer itself. Further,
the form of the gradient PDF is less universal (i.e., more
sensitive to details of the advecting flow) than is the
case for the tracer PDF (Balkovsky and Fouxon 1999).
We address this issue by carrying out advection–dif-
fusion simulations of a decaying passive tracer, driven
by analyzed lower stratospheric winds [European Centre
for Medium-Range Weather Forecasts (ECMWF) ana-
lyzed winds] on the 420-K isentropic surface using a
high-resolution finite-volume model. Detailed infor-
mation about the data source and the numerical model
has been described in Part I.

Theoretical considerations on the PDF of tracer gra-
dients are presented in section 2. Here we have recast
the essential ideas of Balkovsky and Fouxon (1999) in
a manner that draws out explicitly their implications for
the shape of the gradient PDF in the decaying case. Our
derivation also isolates the portion of the argument that
is not subject to the uncertainties alluded to above. Sim-
ulation results on the PDFs of tracer gradients for re-
alistic lower stratospheric flow are discussed in section
3, where the simulated PDFs are also compared with
the PDFs of N2O from the SKYHI model. A summary
of our principal conclusions in the context of earlier
work, together with some pointers to future work, is
provided in section 4.

2. Theory of the gradient PDF for advection by
smooth flow

a. Basic concepts

The problem of passive tracer mixing is governed by
the advection–diffusion equation

]u
21 v · =u 5 k¹ u, (1)

]t
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where u indicates concentration or mixing ratio of a
passive tracer; v is velocity, which satisfies the incom-
pressible condition = ·v 5 0 and the smoothness con-
dition | =v | , `; and k is diffusivity (molecular, nu-
merical, or effective diffusivity). We study the problem
of advection–diffusion in the limit of large Péclet num-
ber Pe 5 VL/k k 1. Here, V and L indicate velocity
scale and its correlation length scale, respectively.

Multiplying (1) by u and taking the space average
gives

2]^u &
25 22k^|=u | &. (2)

]t

Equation (2) means that the dissipation rate of a passive
tracer is a function of the mean square of tracer gradients
(=u) for a given diffusivity k. Thus, the problem of the
statistics of tracer diffusive dissipation is reduced to the
statistics of tracer gradients. The fluctuations of tracer
gradients determine the degree of spatial intermittency
of dissipation.

It can be easily shown that in the absence of diffusion
the gradient PDF should be lognormal. Consider a tracer
blob with initial size l0 located at a point in an incom-
pressible flow with Lyapunov exponent l (assume l is
the positive Lyapunov exponent). After time t, the parcel
has been stretched into a thin filament with length l 5
l0 exp(lt) and width r 5 l0 exp(2lt). Since there is no
diffusion, tracer concentration tagged to a given fluid
parcel does not change with time at all. Thus, the gra-
dient associated with the tracer filament exponentially
grows with time. Assume that the initial gradient near
the blob is g0; the gradient variation with time will be

g(t) 5 g exp(lt).0 (3)

Here, g indicates the absolute value of the gradient; that
is, g 5 | =u | . Thus,

1 g
l 5 ln . (4)

t g0

Based on generalizations of the central limit theorem,
Chertkov et al. (1995) and Balkovsky and Fouxon
(1999) showed that at long times the PDF of l has the
Gaussian form

2(l 2 l)
P (l) } exp 2 , (5)l 2[ ]2sl

with } t21. This form of the PDF is only valid if l2sl

is not too far out on the tail of the distribution. On the
far tails, Eq. (5) must be replaced by the large deviation
form

P (l) } exp[2tJ(l 2 l)],l (6)

where J(z) is a nonuniversal function with a maximum
at z 5 0; expanding in a Taylor series about z 5 0
recovers the Gaussian behavior in the core.

From Eq. (5) it follows that, in the core of the dis-

tribution, we have a lognormal PDF of the tracer gra-
dients

P (t, g) } P (l)g l

1
2} exp 2 (ln(g) 2 ln(g ) 2 lt) , (7)0[ ]at

where a is a parameter characterizing the standard de-
viation of tracer gradients. This argument is essentially
the same as that given in Pierrehumbert and Yang
(1993). Equation (7) shows that the lognormal distri-
bution never reaches an equilibrium: its peak moves
toward progressively higher gradients, while the width
of the distribution increases. Without diffusion, there is
nothing to halt the cascade of tracer variance to arbi-
trarily small scales. Additional results on the lognormal
behavior of the gradient PDF can be found in Fouxon
(1998). The far tails are not necessarily lognormal, and
are governed by large-deviation theory.

b. The tail of the gradient PDF in the presence of
diffusion

When diffusion is present, the situation is completely
different. Our discussion in the following applies equal-
ly to the decaying tracer and forced equilibrium tracer
cases. The filament arising from elongation of the tracer
blob cannot be made infinitely thin, and therefore the
tracer gradient does not grow exponentially. After time
t 5 1/l ln(l0/rd), the straining process will be checked
by diffusion so that there will be a quasi-steady balance
between local strain and diffusion. Let rd be the diffusive
scale, that is, the smallest width scale the filament could
sustain against diffusive dissipation. At the quasi steady
state, the diffusive scale rd can be determined by com-
paring the straining and diffusion terms in Eq. (1). The
typical filament width, given by the most probably Lya-
punov exponent, is thus

k
r* 5 . (8)d !l

Then, if du 5 u1 2 u2 is the typical concentration fluc-
tuation (u1 and u2 being the concentration values at op-
posite sides of a filament), the typical gradient is du/

.r*d
From here, the argument leading to the PDF of the

tracer gradients proceeds from estimating the gradient
in terms of the typical fluctuation of the tracer across
the filament, and the diffusive equilibrium width of the
filament. If the concentration difference across a fila-
ment of thickness r is du, the gradient at the quasi steady
state is g 5 | =u | ø du/r. Both du and r fluctuate in
space and time, and the PDF of g must be derived in
terms of the PDFs of its two ingredients. We will assume
first that the values of u on the two sides of the filament
are uncorrelated, so that Pdu(du) is simply the convo-
lution of the one-point tracer PDF P(u) with itself. It is
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easily shown that the large du tail of Pdu has exactly
the same form as the large u tail of P(u), though Pdu

will always look more Gaussian than P(u) near its core.
The second assumption we make, following Balkovsky
and Fouxon (1999), is that the tracer fluctuation du is
statistically independent of the filament thickness r. This
is at first glance a surprising assumption to make, as it
might have been thought that thin filaments would be
associated with greater strain-induced diffusive decay
and therefore systematically smaller du. However, Bal-
kovsky and Fouxon (1999) argue that the generation of
anomalously large gradients proceeds via a process that
decorrelates filament thickness and fluctuation ampli-
tude. There are three measures of strain involved in the
argument. The first is the instantaneous strain s(t),
which is determined by the instantaneous velocity gra-
dient matrix. The second is the strain S(t) accumulated
over a ‘‘short’’ averaging interval, whose span we will
soon elucidate. The third is the Lyapunov exponent l,
which is a long-term accumulation of strain.

Long-term processes fill space with filaments decay-
ing at the dominant scale , and having various du.r*d
These filaments provide the background of gradients of
a ‘‘typical’’ magnitude. Large gradients arise when one
of these filaments is subjected to an anomalously large
short-term strain S, which rapidly strains the filament
from down to a smaller scale r 5 , . Ther* Ïk/S r*d d

straining happens so rapidly that du is preserved in the
process, and thus remains independent of S. With the
independence assumption, the gradient PDF is given by
the convolution

`

P (g) 5 rP (gr)P (r) dr. (9)g E du r

r50

If there were only a single filament scale r 5 , thenr*d
Pr would be a delta function concentrated at , andr*d
hence the gradient PDF would have the same form as
Pdu. In the actual case, we must obtain the form of Pr(r).

The reason that the tail of the gradient PDF is sen-
sitive only to short-term strain fluctuations is that anom-
alously large strain fluctuations that persist a long time
lead to exponentially large enhancement of the decay
rate of du, wiping out the advantage of these fluctuations
for creating large gradients. This remark also tells us
what is meant by ‘‘short term.’’ For an instantaneous
strain s to cascade tracer down to a new dissipation
scale requires a time of order 1/s. Hence, when we speak
of short-term accumulation of strain, we mean accu-
mulation over times comparable to the reciprocal of the
typical strain rate. In the case where the instantaneous
strain s(t) is a white-noise process in time (the so-called
Kraichnan model), Balkovsky and Fouxon (1999)
showed that Pr has the form

2r*
P (r) } exp 2 , (10)r 1 2[ ]r

where r* is a coefficient determining the broadness of

the distribution. The discussion in Balkovsky and Foux-
on (1999) assumes that s has a Gaussian distribution,
but in fact it is easy to show for the Kraichnan model
that the resulting finite-time strain PDF is independent
of the form of the instantaneous strain PDF. It can be
inferred from the derivation in appendix A of Balkovsky
and Fouxon (1999) that r* is on the order of ,Ïk/srms

where sr ms is the rms of the instantaneous strain. The
derivation assumes that the ‘‘typical’’ strain has the
same magnitude as its fluctuations about the typical val-
ue.

What happens if the instantaneous strain has finite
correlation time? The PDF of the long-time Lyapunov
exponents has a Gaussian core whose peak and width
depend only on a few overall statistics of the advecting
flow. This happy universality does not apply to the
short-term strain PDF that determines Pr because a long
correlation time makes it impossible for the filament to
experience many independent strains in the time avail-
able, whence the central limit theorem never becomes
applicable. It is only when the strain experienced by a
parcel has a very short correlation time (relative to the
strain rate itself ) that the general form in Eq. (10) can
be inferred. For example, if the instantaneous strain s(t)
were very slowly varying, then the filament is in in-
stantaneous strain–diffusive equilbrium, with r(t) 5

. In consequence, Pr(r) would be determined byÏk/s
the shape of the PDF of the instantaneous strain. If the
instantaneous strain had a Gaussian-tailed PDF, then Eq.
(10) would be replaced by

4r*
P (r) } exp 2 , (11)r 1 2[ ]r

which proceeds from substituting s 5 k/r2 into the
Gaussian and then looking out onto the high-stretch
(small r) tail. Alternately, if the strain has uniform prob-
ability for 2sm , s , sm and zero probability other
wise, then Pr has a sharp cutoff at r 5 , andÏk/sm

therefore the tail of the gradient PDF Pg has exactly the
same form as the tail of the concentration fluctuation
PDF Pdu.

Suppose that Pr(r) } exp[2(r*/r)b] and Pdu(du) }
exp[2(du/su)a] on the low-probability tails of the dis-
tributions. Then by applying the steepest descent meth-
od to (9), it is found that the large g tail of the gradient
PDF is given by

gg
P (g) } exp 2b , (12)g 1 2[ ]g*

where g* 5 su/r* is the typical gradient and

a/(a1b) b/(a1b)
ab b a

g 5 , b 5 1 . (13)1 2 1 2a 1 b a b

It follows from (13) that g , a. In other words, the
gradient PDF always has fatter tails than the PDF of
tracer fluctuations. This effect has been seen in the ide-
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FIG. 1. PDFs for a sum of two random-phase sine waves, with and
without contamination by red noise. The power spectrum of the noise
is k22z. See Eq. (14) for details.

alized mixing simulations in Pierrehumbert (2000). The
tails of the gradient PDF become fatter as b → 0, since
creation of very thin filaments by transient large strains
becomes very probable in that limit. If the tracer PDF
has typical exponential tails, and further, if the strain
experienced by the filaments is rapidly fluctuating, then
a 5 1 and b 5 2, whence g 5 2/3. If the strain is
slowly varying and has a Gaussian distribution, then
instead we have b 5 4 and g 5 4/5. In the so-called
soft turbulence regime the concentration fluctuation it-
self is Gaussian (Castaing et al. 1989). In this case, a
5 2 and so the short-correlated strain yields exponential
tails (g 5 1) of the gradient PDF. This behavior has
been observed in the experiments of Thoroddsen and
Van Atta (1992). Relations similar to (13) were also
obtained by Bronski and McLaughlin (1999) and Bron-
ski and McLaughlin (2000) in a very different approach.

The uncertainties concerning the long-term validity
of the derivation given in Balkovsky and Fouxon (1999)
revolve around the time evolution of the shape of the
concentration PDF, and specifically the question of
whether the shape ultimately becomes time invariant in
the decaying case. If the concentration PDF (i.e., a) is
known at any given time, then the corresponding gra-
dient PDF can be inferred from the above arguments.
If a becomes time independent, then the gradient PDF
also attains a time-independent shape, though generally
fatter-tailed than the concentration PDF.

c. A null hypothesis: Gradient PDFs for simple noise
processes

Does a stretched exponential gradient PDF necessar-
ily imply a dynamical process of the sort discussed
above? As a test of a null hypothesis, we address in this
section the question of whether stretched exponential
behavior can emerge from simple unstructured noise
processes.

Consider the family of 1D gradient fields

`

2zg(x) 5 k A sin[k(x 2 f )], (14)O j j
k51

where the fj are random phases and the Aj are random
amplitudes uniformly distributed on the interval [0, 1].
The PDF for an ensemble of realizations is shown in
Fig. 1 for various z. The case z 5 `, equivalent to
retaining only the first term in 14, shows a cusped be-
havior near the peak, which could be mistaken for a
stretched exponential if one did not notice that the skirts
do not extend very far out before being terminated by
sharp shoulders. The best fit stretched exponential ex-
cluding the shoulders has g 5 0.38. The cusp has noth-
ing to do with the arguments presented in the preceding
section, and arises simply from the smoothness of the
sin function near its peak. In fact, for an arbitrary func-
tion f (x) with behavior f 5 a 2 x2 near a maximum,

the contribution to the PDF from the vicinity of the
maximum is P } 1./ , yielding a cusp.Ïa 2 f

The case z 5 3 is still strongly dominated by the first
few modes, and the PDF is virtually identical to z 5
`. As z decreases more modes come into play, and in
accordance with the central limit theorem, the PDF be-
comes more Gaussian. The best fit stretched exponential
has g 5 1.06 for z 5 2 and g 5 1.92 for z 5 1.

For z 5 1 the corresponding tracer field of which g
is the gradient has a k24 power spectrum. This still rep-
resents a very smooth tracer field—much smoother than
the k21 Batchelor spectrum proceeding from large-scale
random advection, or the k25/3 spectrum proceeding
from advection by Kolmogorov turbulence, or even the
k22 spectrum arising from a random arrangement of sep-
arated step discontinuities. A k24 spectrum corresponds
to a tracer field that is continuous, but has randomly
arranged slope discontinuities. Bacmeister et al. (1996)
found that stratospheric N2O had a k25/3 power spectrum
down to the smallest observable scales (somewhat be-
low a kilometer). This corresponds to a gradient field
with z 5 21/6 in the notation of Eq. (14). We have
directly verified that the PDF appears Gaussian, as for
the z 5 1 case, when 100 or more terms are included
in the series. Thus, a random-phase noise field with the
same power spectrum as the observed tracer field would
yield a Gaussian gradient PDF. In contrast, the observed
N2O gradient PDF is stretched exponential (Hu 2000),
indicating that the actual gradient field is much more
structured than colored noise with the same spectrum.

We conclude that extensive stretched exponential
tails—rather than just a cusped appearance near the
peak—require that the tracer field result from a rather
special sort of mixing process. The tails of the gradient
PDF provide information about the dissipation scale and



1 OCTOBER 2002 2835H U A N D P I E R R E H U M B E R T

the PDF of short-term strain. To extract this information,
one also needs information about the form of the PDF
of concentration fluctuations. The latter information can
come either from observations or theory.

3. Simulation results

As in Part I, we study two classes of initial tracer
conditions: ‘‘zonal’’ and ‘‘meridional’’ mixing. The ini-
tial conditions for the two cases are u0 5 cos(2x) and
u0 5 cos(y), where x is longitude and y is latitude. In
each case, we show the PDFs of zonal gradients (ux 5
]u/]x), meridional gradients (uy 5 ]u/]y), and total gra-
dients ( | =u | 5 ). Simulations are carried out2 2Ïu 1 ux y

using wind data from the same months as in Part I,
July–August 1992. All the PDFs are calculated after a
2 month run (on 30 August). For the control runs, there
is no explicit diffusion in the model, except for nu-
merical diffusion.

a. Gradient PDFs in zonal mixing

Before we study the PDF of gradients, let us first look
at the gradient fields. The plots in Fig. 2 show the maps
of ux, uy, and | =u | for zonal mixing. The gradient field
bears the clear imprint of the mean zonal jet structure,
and of the degree of disturbance of the jets by planetary
waves. The interplay of jets and waves results in the
substantial interhemispheric asymmetry evident in the
figures.

In the northern surf zone (roughly from the equator
to 458N) the tropical easterlies and midlatitude west-
erlies result in a series of high-gradient regions con-
centrated on filaments angled about 208–308 to the lat-
itude circles. These filaments are largely associated with
wave breaking events in the surf zone. Some high-gra-
dient filaments extend into the arctic regions, though
they are more contorted there. This results from sub-
stantial lower stratospheric planetary wave activity in
the Northern Hemisphere. High-gradient filaments also
extend somewhat south of the equator, into the southern
surf zone. The filaments are highly contorted there, be-
cause there is little mean shear to organize the pattern.
South of 458S, the gradients are weak and concentrated
on zonally oriented streaks. This pattern arises from the
strong and unperturbed Antarctic winter vortex. The
long zonal filaments near the South Pole mark the polar
mixing barrier surrounding the Antarctic polar vortex.

The field of meridional gradient uy (Fig. 2b) has much
larger fluctuations than that of the zonal gradient field
ux (Fig. 2a). This is because zonal wind shear always
tends to smooth out zonal tracer variations and to orient
tracer structures zonally. As a result, the total gradient
field | =u | (Fig. 2c) has a similar pattern to the merid-
ional gradient field.

We have examined the time evolution of moments of
the gradient field. During the first 8 days, the moments
grow; this is the stage during which the strain is cas-

cading tracer variance down to the dissipation scale,
before which there is little diffusive dissipation. Fol-
lowing the transient stage, all moments we were able
to reliably compute decay according to the law

n^ | =u | & 5 A exp(2G t),n n (15)

where Gn indicates the decay rate. Figure 3 shows the
behavior of Gn as a function of n. Comparing to Fig. 7
of Part I, we find that the decay rates for the gradient
field are nearly the same as those for the tracer field
itself. This behavior is consistent with the predictions
of Balkovsky and Fouxon (1999). The reasoning behind
this result is simple. Because there is no correlation
between dissipation scale r and the tracer fluctuation du,
and because the PDF of r attains an equilibrium shape,
the dissipation rate of a gradient fluctuation is deter-
mined only by the magnitude of the concentration fluc-
tuation in the corresponding filament. There is no ten-
dency, say, for large amplitude fluctuations to have sys-
tematically smaller dissipation scales. Although the Gn

are the same for the tracer decay and gradient decay,
the prefactors An need not be the same; indeed they are
generally different, since gradient PDFs typically have
fatter tails (more stretched exponential) than the ex-
ponential tails of tracer PDFs. For the reasons discussed
in Part I, the flattening of the Gn curve implies that the
gradient and the concentration PDFs are not self-similar
in time, but rather evolve toward progressively fatter
tails as time goes on. This evolution is peculiar to the
decaying case, and has no counterpart in equilibrium
problems where the tracer variance is maintained by a
source. There are reasons to suspect that the evolution
of the shape represents a transient stage, which ulti-
mately gives way to strange eigenmode behavior in
which the shape stops evolving [cf. the numerical results
in Pierrehumbert (2000)]. Fereday et al. (2002) have
provided a clear counterexample to the prediction of
Balkovsky and Fouxon (1999), and have discussed the
processes governing the long-term self-similar decay of
the tracer fluctuations. It is not yet know what factors
determine the length of time for which the behavior in
Balkovsky and Fouxon (1999) applies.

Figure 4 shows the PDFs of ux, uy, and | =u | [denoted
by grad(u) in the figure] for zonal mixing, respectively.
The vertical axis is logarithmic, and the gradients are
all normalized by their respective rms. The PDFs of ux

(Fig. 4a) and uy (Fig. 4b) all show concave shapes with
sharp cuspy peaks. The PDF of total gradient | =u | can
be well fitted by a stretched exponential curve, with a
stretching parameter g ø 0.56 (Fig. 4c). The fitting
curve (dotted line) is almost overlapped by the PDF
curve (solid line). Note that the stretched exponential
curve does not fit the peak of the PDF, where the PDF
shows a Gaussian-like core for small gradients. The
width of this range is about 0.0–0.3.

Note that the stretched exponential tails extend to out
to nine standard deviations, yielding a decay in prob-
ability of four orders of magnitude. The very extensive
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FIG. 3. Decay rate Gn as a function of moment order n.

←

FIG. 2. Gradient maps for zonal mixing after day 60 (30 August 1992): (a) zonal gradient (ux), (b) meridional gradient (uy), and (c) total
gradient ( | =u | ).

scaling range proves that a wide range of strains have
acted to produce a diverse population of anomalously
thin filaments. The behavior captured by the PDF is very
different from the sort arising from gradients of smooth
noise processes, exemplified by Fig. 1. The extensive
scaling range seen in Fig. 4 is typical of all the simulated
gradient PDFs we shall encounter, so we shall not call
attention to it in every instance.

In order to distinguish the stretched exponential PDF
from lognormal distributions, the curves in Fig. 4c are
replotted, together with a lognormal fitting curve, in Fig.
5 in a log–log form. Neither curve fits the PDF near
the peak. The lognormal curve fits the PDF only in the
range 0.1 $ | =u | / | =u | r ms # 1.1, which is near to the
Gaussian-like core. For large gradients, the lognormal
curve largely deviates from the PDF, while the stretched
exponential curve fits the PDF tail very well.

Figure 6 shows the PDFs of ux separately for both
hemispheres. They quantify the hemispheric differences
that are evident to the eye in the gradient maps, Fig. 2.
The PDF in the Northern Hemisphere (Fig. 6a) has
broader tails than that in the Southern Hemisphere (Fig.
6b). The PDFs of uy in Fig. 7 show even more significant
differences between the two hemispheres. The Southern
Hemisphere PDF has shoulders reminiscent of those in
Fig. 1, indicative of a sharp cutoff at high strains, and
perhaps also of long-correlated strain behavior. The PDF
also exhibits some skewness, which is not accounted
for by any of the theoretical considerations discussed
above. Since the initial condition is symmetric between
positive and negative values of the concentration fluc-
tuation, the skewness is an artifact of the particular
choice of phase of the initial condition relative to the
location of trapping regions in the Tropics. Reversing
the sign of the initial condition, for example, would
reverse the sense of the skewness. We therefore do not
think that much general significance can be attached to
the skewness appearing in the zonal mixing case.

The interhemispheric asymmetry provides an inter-
esting case study regarding the manner in which fluc-
tuations in long-term strain (the Lyapunov exponents)
enter into the creation of anomalously large gradients.
The Southern Hemisphere gradients are generally weak,
though one might have expected large gradients there
because the generally larger Lyapunov exponents (see
Part I) should create small scales. This does not happen
because the large long-term strain in fact leads to a
strengthened exponential decay of tracer fluctuation, so
that du is smaller in the Southern Hemisphere than in
the Northern Hemisphere. The large gradients appear in
the northern surf zone, which is not an area of partic-
ularly large Lyapunov exponents. They appear there be-
cause filaments with large du are frequently swept into

the strongly sheared jet in the surf zone, where they
experience short-term strain fluctuations that quickly
amplify the gradient.

In Part I, we showed that the PDF of the tracer con-
centration is nearly exponential (a ø 1) at the later
stages of the evolution. From (13), the computed value
g ø 0.56 implies a strain parameter b ø 1.27. This is
considerably less than the value corresponding to d-
correlated strain, but since the stratospheric flow evolves
slowly in time, there is no good reason to expect the
strain to have short correlation time. What is interesting
is that the indicated value of b indicates a higher prob-
ability of very thin filaments than would be obtained
from d-correlated strain. Such behavior could be ob-
tained from persistent strain, but only if the PDF of the
instantaneous strain itself were very fat-tailed; Gaussian
persistent strain yields b 5 4. Further insight is gained
by examining the gradient PDFs in the two hemispheres
separately. In the Northern Hemisphere, the tracer con-
centration PDF (see Fig. 9a in Part I) has a stretching
parameter a ø 0.9. Combining it with g ø 0.56 (Fig.
4a) yields b ø 1.5. In the Southern Hemisphere, using
a ø 1.2 (see the right tail in Fig. 9b of Part I) and g
ø 0.85 (the combination of Figs. 6b and 7b) gives b
ø 3.6. The Northern Hemisphere behavior is thus sim-
ilar to that revealed by the global PDF (whose behavior
is dominated by the large Northern Hemisphere gradi-
ents). The Southern Hemisphere, in contrast, is more
compatible with persistent, Gaussian-distributed strain.

b. Gradient PDFs in meridional mixing

The gradient fields for the case of meridional mixing
are shown in Fig. 8. Large gradients mainly occur in
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FIG. 4. Gradient PDFs for zonal mixing after day 60 (30 August
1992): (a) P(ux), (b) P(uy), and (c) P( | =u | ). The dotted line in (c)
is a stretched exponential fitting curve with stretching parameter g
ø 0.56.

the Northern Hemisphere. The lack of large gradients
in the Tropics is because the initial condition cos(y)
remains less mixed. As in the zonal mixing case, in the
Northern Hemisphere gradient filaments also show
southwest–northeast orientation, while the filaments are
zonally oriented in the Southern Hemisphere. Again, a
long gradient filament near the South Pole marks the
polar mixing barrier. In Part I, it was found that, owing
to mixing barriers, the moments of the concentration
fluctuation decay little with time. Consistently with this
result, we find that the gradient moments for meridional
mixing also show little decay (figure not shown). Be-
cause of the persistent global background gradient, the

meridional mixing case is expected to behave qualita-
tively like a case in which the background tracer gra-
dient is maintained by sources and sinks.

Figure 9 shows the gradient PDFs in meridional mix-
ing. These PDFs are similar to that in zonal mixing,
with dominant stretched exponential tails. The PDF of
total gradients ( | =u | ) can be fitted by a stretched ex-
ponential curve, with a stretching parameter g ø 0.55
(Fig. 9c). The Gaussian-like core and the blowup of the
fit near the PDF peak can also be seen.

Figure 10 shows the PDFs of ux in the Northern and
Southern Hemispheres, and the corresponding results
for uy are shown in Fig. 11. The PDF in the Northern
Hemisphere is much broader than that in the Southern
Hemisphere, largely because the tracer fluctuations are
weaker in the Southern Hemisphere. This hemispheric
asymmetry is even more pronounced than was the case
for zonal mixing, presumably because the weak South-
ern Hemisphere planetary waves are inefficient at cre-
ating tracer fluctuations from the background meridional
gradient. A striking feature is the pronounced skewness
in the PDF of uy, which primarily arises in the Northern
Hemisphere. Large negative gradients are considerably
more probable than large positive gradients. Evidently,
as tongues of tropical air bearing high tracer values are
extruded into the northern surf zone, their poleward
flanks experience systematically greater strain than the
equatorward flanks.

It is interesting to compare the gradient PDFs in me-
ridional mixing with that of N2O in the SKYHI model
with horizontal resolution of 18 3 1.258 in latitude–
longitude grids, since N2O has a background profile that
is generally high in the tropical source region and low
in the polar regions which are flushed by N2O-depleted
upper stratospheric air. Because the diabatic sinking that
accomplishes this flushing has a pronounced seasonal
cycle, N2O will exhibit some features that are not pre-
sent in the simpler meridional mixing experiment.
Nonetheless, some points of similarity between the N2O
and the meridional mixing PDFs can be seen. The data
used here are from 30 August 1983 (model time). Figure
12 shows the gradient PDFs of N2O on the 450-K is-
entropic surface, which is slightly higher than that in
our simulations, 420 K. Comparison of this figure with
Fig. 9 shows several similarities, with an almost sym-
metric PDF of [N2O]x, and skew PDF of [N2O]y. In the
tails the stretching parameter for the PDF of total gra-
dients is about 0.56. Differences are also obvious. First,
the PDF of [N2O]y shows more pronounced skewness
than that in our simulations. Second, the PDFs of N2O
gradients in the SKYHI model show larger Gaussian-
like cores and shorter tails. Further, the N2O gradient
PDFs show sharp shoulders terminating the tails. This
is symptomatic of limited resolution in the model, which
truncates the scales (and perhaps also the strains), which
would give rise to the higher gradients.
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FIG. 5. Comparison of a stretched exponential fit (dotted line) with a lognormal fit (dashed
line). The PDF curve is same as that in Fig. 4c, but in log–log plot.

FIG. 6. PDFs of ux in zonal mixing: (a) Northern Hemisphere and
(b) Southern Hemisphere.

FIG. 7. PDFs of uy in zonal mixing: (a) Northern Hemisphere and
(b) Southern Hemisphere.
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FIG. 9. Gradient PDFs for meridional mixing after day 60 (30
August 1992): (a) P(ux), (b) P(uy), and (c) P( | =u | ). The dotted line
in (c) is a stretched exponential fitting curve with stretching parameter
g ø 0.55.

←

FIG. 8. Gradient maps for meridional mixing after day 60 (30 August 1992): (a) zonal gradient (ux), (b) meridional gradient (uy), and (c)
total gradient ( | =u | ).

c. Diffusivity effect on the PDF of gradients

In section 2 it was shown that the parameters of the
stretched exponential tail of the gradient PDF are in-
dependent of the magnitude of the diffusivity. We test
this issue by adding an explicit diffusion term to the
model, and inquire as to whether there are other aspects
of the shape of the PDF that do depend on the magnitude
of the diffusivity.

Figure 13 shows the PDFs of zonal gradients P(ux)
in the case of zonal mixing with different diffusivities:
k 5 1.0 3 105, 2.0 3 105, and 3.0 3 105 m2 s21. As
diffusivity increases, skirts occur at the ends of the PDF
curves, and the valid range of the stretched exponential
fitting curve becomes shorter. The same behavior is also
found for the PDF of meridional gradients (figure not
shown). The steep shoulders that terminate the stretched
exponential range resemble those encountered for very
smooth functions in Fig. 1. The cutoff point can be
determined by

Smaxg 5 u , (16)max rms! k

because the width of tracer filaments cannot be less than
r 5 , where Smax is the maximum short-termÏk/Smax

accumulated strain of the advecting flow. Thus, the the-
oretical prediction of the stretched exponential PDF is
valid only for the range g , gmax. A larger diffusivity
k leads to a greater scale r and consequently a smaller
gmax. In other words, larger diffusivity cuts off more of
the stretched exponential tails. This is also why the
PDFs of N2O in the SKYHI model have short stretched
exponential tails. Overall, change of diffusivity leads to
a change of the range of stretched exponential distri-
bution, but does not change the stretched exponential
property.

Note that the appearance of shoulders in the gradient
PDF signals the existence of a maximum strain Smax. If
the strain were in fact unbounded, then changing the
diffusivity would change the width of the distribution
through changing g* in Eq. (12), but it would not change
the shape of the distribution. The reason is that infre-
quent large strains would still create arbitrarily small r,
so there would be no sharp gradient cutoff. Shoulders
were not seen in our weakly diffused calculation (e.g.,
Fig. 4) because gmax was so large that its probability of
occurence was small and the shoulders were lost in sta-
tistical noise. With larger diffusivity, the cutoff has
moved to scales where it can be resolved.

The preceding discussion underscores that, via the
PDF, one can detect the influence of diffusivity on the
tracer field even if one does not actually detect the min-
imum scale present in the tracer field. This is a con-

sequence of the broad range of strain, leading to a broad
range of dissipation scales. The stretched exponential
PDF, and its exponent, directly reflect the action of dis-
sipation. It is not necessary to see the shoulders of the
PDF in order to draw useful inferences about the nature
of the dissipation.

It is also interesting that the introduction of explicit
¹2 diffusivity, which swamps the numerical diffusivity
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FIG. 10. PDFs of ux in meridional mixing: (a) Northern
Hemisphere and (b) Southern Hemisphere.

FIG. 11. PDFs of uy in meridional mixing: (a) Northern
Hemisphere and (b) Southern Hemisphere.

of the Van Leer scheme, does not change the shape of
the PDF, apart from the introduction of shoulders at the
cutoff. Since the shape of the PDF is, as we have argued
above, somewhat sensitive to the scale selectivity of the
dissipation, through its effect on Pr, one needs to be
concerned about whether the simulated gradient results
are sensitive to unphysical aspects of the numerical dif-
fusivity. The implicit diffusivity of the Van Leer scheme
is evidently close enough to Newtonian diffusivity at
small scales that this issue is not too serious.

4. Discussion and conclusions

We have argued that advection–diffusion by a broad
class of lower stratospheric flows should produce a
stretched exponential probability distribution function
(PDF) of tracer gradients. This results from a joint effect
of dissipation and short-term strain fluctuations; the gra-
dient PDF is not simply the lognormal distribution ex-
pected in the undiffused case, with tails truncated by
diffusion. The deviation occurs because dissipation af-
fects the statistics of the dissipation length in a rather
subtle way. One cannot get the right answer by doing
inviscid straining and bringing in diffusion afterward,
as the actions of diffusion and straining do not commute.
Our statistical work thus goes beyond the treatment in
Haynes and Anglade (1997), who to some extent relied

on undiffused strain statistics to estimate the fluctuation
of scales.

Simulations show that the theoretical expectations are
borne out even for realistic stratospheric advection. We
have discussed simulations only for the case of a de-
caying tracer, but the theoretical arguments relating the
gradient PDF to the tracer PDF are independent of
whether the tracer is decaying or maintained. The tracer
PDF has different long-term behavior in the decaying
versus maintained case, but the gradient PDF is gen-
erally expected to be fatter-tailed than the tracer PDF
itself. Moreover, in the case of mixing of an initially
meridional large-scale gradient, the background gradi-
ent decays little over the course of the integration, and
so the evolution is very similar to what one would obtain
if the large-scale gradient were maintained by a source–
sink distribution. For both meridional and zonal mixing,
we find that the gradient PDF is stretched exponential,
with stretching parameters of g ø 0.56. The theoretical
expectation for g depends on the shape of the PDF of
short-term strain. This quantity is very problem depen-
dent, and we have shown that it varies considerably
between the Northern (summer) and Southern (winter)
Hemispheres. The short-term strain PDF can be diag-
nosed for a given flow, but unless the instantaneous
strain has very short time correlations, there is essen-
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FIG. 12. Gradient PDF of N2O in the SKYHI model (30 August
1983): (a) P([N2O]x), (b) P([N2O]y), and (c) P( | =[N2O] | ). The dotted
line in (c) is a stretched exponential fitting curve with stretching
parameter g ø 0.56.

FIG. 13. P(ux) in zonal mixing with different diffusivity: (a) k 5
1.0 3 105 m2 s21, (b) k 5 2.0 3 105 m2 s21, and (c) k 5 3.0 3 105

m2 s21. The dotted lines are stretched exponential fitting curves with
the same stretching parameter g ø 0.56 and different b.

tially no theoretical guidance as to what PDF one should
expect.

Regarding regional patterns, we found also that the
largest gradient fluctuations are not found in the regions
of largest Lyapunov exponents, because the large long-
term strain leads to rapid dissipation and small values
of tracer fluctuations there. Rather, the largest gradients
appear where the tropical pool of large undamped tracer
fluctuations are processed in the high-strain region of
the surf zones.

The gradient PDF is sensitive to the presence of dis-
sipation, and its width is determined by the mean dis-
sipation scale r*. However, one should not expect the

power spectrum to show a sharp rolloff at r*, since
there is not in fact a unique dissipation scale. Rather,
there is a range of dissipation scales corresponding to
the fluctuation of short-term strains (Antonsen et al.
1996; Yuan et al. 2000). This is why observed tracer
PDFs (Hu 2000; Sparling and Bacmeister 2001) show
the stretched exponential form characteristic of dissi-
pation, despite the fact that power spectra show no short-
wave rolloff (Strahan and Mahlman 1994; Bacmeister
et al. 1996). We have shown that the appearance of a
stretched exponential in the gradient PDF over two or
more orders of magnitude of decay of probability is
highly significant. It cannot be obtained by generic ran-



2844 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

dom processes. For example, a random-phase Fourier
series with the same k25/3 power spectrum as the ob-
served N2O field yields a Gaussian gradient PDF rather
than stretched exponentials. Thus, the gradient PDF tru-
ly contains information about the tracer variability struc-
ture that is not present in the power spectrum alone.

The gradient PDF is a good object for observational
analysis and model data comparison. Extensive
stretched exponential tails are evidence of the action of
dissipation, and are even sensitive to the scale selectivity
of the dissipation. For example, Newtonian ¹2 diffusion
yields a different stretching exponent than ¹4 hyper-
diffusion, because ¹4 would produce a Pr that decays
more rapidly at small r than is the case for ¹2, all other
things being equal. A transition between the first and
second law at intermediate scales would show up in the
gradient PDF as a kink in the tail at intermediate gra-
dients. The appearance of a sharp cutoff or ‘‘shoulders’’
in the PDF at large gradients is indicative of a combi-
nation of large dissipation and a sharp cutoff of the high-
stretch tail of the strain PDF. Shoulders can also appear
if the diffusion law becomes extremely scale selective
at small scales. At present, the inferences concerning
the role of the dissipation law are rather speculative,
and the suggested behavior remains to be verified by
appropriate simulations.

The skewness we have found in the meridional gra-
dients in the presence of a mean meridional gradient is
not accounted for by any of the homogeneous isotropic
theories. This skewness is physically important, as it
implies a preferred direction of diffusive transport rel-
ative to the mean background gradient. Theoretical in-
quiries as to the nature of the skewness would be a
fruitful avenue for future work.

In addition, our simulations have been purely two-
dimensional, balancing two-dimensional strain on an is-
entropic surface against horizontal diffusion. In the spir-
it of Haynes and Anglade (1997), the all-important ver-
tical diffusion effects are reflected in our results through
an effective (and greatly enhanced) horizontal diffusiv-
ity. However, since the effective horizontal diffusivity
is sensitive to the statistics of the vertical shear in the
advecting flow, a comprehensive treatment of gradient
statistics should take into account the observed fluctu-
ations in vertical shear. Haynes and Anglade (1997)
evaluate the vertical-scale cascade statistics in a purely
nondiffused model, but we expect that the mutual effects
of diffusion and strain would produce significantly dif-
ferent statistics of the vertical gradients, just as we have
shown to be the case for horizontal gradients. Since only
the local vertical shear is of interest, there are possi-
bilities for carrying out such a calculation without re-
sorting to fully three-dimensional simulations. This ap-
proach will be pursued in future work.
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