Physics of Top

C.-P. Yuan Michigan State University

July 2, 2007 @ Chong Qing University

- Mass of Top Quark
- Single-Top Production
- General Analysis of Single-Top Production and Top Decay
- Top & Electroweak Symmetry Breaking
- Discriminate Models of Electroweak Symmetry Breaking
- Conclusion

March 2, 1995

q

q

We had champaign at the MSU High Energy physics conference room to celebrate the discovery of the Top Quark at FNAL Tevatron by CDF & D0 groups.

Recently,

 $m_t = 170.9 \pm 1.8 \text{ GeV}$

Lessons we learned from the History on the discovery of Top Quark

$t\overline{t}$ Pair Production

Challenge in measuring m_t from *bjj* invariant mass:

- Jet energy resolution (under-lying hadronic activity,...)
- not much better than 2-3 GeV in δm_t , i.e. $\delta m_t > \Gamma_t$

Need better measurement of m_t

From the invariant mass of (b e)

From the polarization of W

$$F(\cos\theta^*) \sim (1 - f_{\text{Long}}) \left(\frac{1 - \cos\theta^*}{2}\right)^2 + f_{\text{Long}} \left(\frac{\sin\theta^*}{\sqrt{2}}\right)^2$$
$$f_{\text{long}} = \frac{\Gamma(t \to bW_L)}{\Gamma(t \to bW_L) + \Gamma(t \to bW_T)} = \frac{m_t^2}{2m_W^2 + m_t^2}$$

$$\cos\theta^* = \frac{2m_{be}^2}{m_t^2 - m_W^2} - 1$$

Improve m_t measurement at ILC

Top production at threshold

→ From σ_{tt} , p_t^{peak} and A_{FB} δm_t (theory) ~ 100 MeV

• Top production at continuum

→ From direct reconstruction δm_t (theory) ~ 500 MeV

Note: AT ILC, $\delta m_t < \Gamma_t$.

Impact of a Precise m_t Measurement

Experimental

At Run 2, $\delta m_t \sim 2-3 \text{ GeV} \Rightarrow$ no longer the dominant error

Result of W Boson and Top Mass Measurements at Tevatron, by 2007

W Mass

Combining all six mass fits yields:

 M_w =80413±48 MeV (stat+syst), P(χ^2)=44%

New CDF result is the world's most precise single measurement

- World average increases: 80392 to 80398 MeV
- Uncertainty reduced ~15% (29 to 25 MeV)

Top Mass Best Tevatron Run II (preliminary, March 2007) All-Jets: CDF 171.1 ± 4.3 (943 pb⁻¹) Dilepton: CDF 164.5 ± 5.6 $(1030 \, pb^{-1})$ Dilepton: D0 172.5 ± 8.0 (1000 pb⁻¹) Lepton+Jets: CDF 170.9 ± 2.5 (940 pb⁻¹) Lepton+Jets: D0 170.5 ± 2.7 (900 pb⁻¹) Tevatron 170.9 ± 1.8 (Run I/Run II, March 2007) χ^2 /dof = 9.2/10 150 170 180 200 160 190 Top Quark Mass (GeV/c²)

New Tevatron average (3 weeks ago): Top mass now measured to 1.8 GeV http://tevewwg.fnal.gov/top

Summer 2006

Winter 2007

March 2007

Standard Model M_H

- Summer 2006 SM Higgs fit: (LEP EWWG)
 - M_H = 85⁺³⁹-28 GeV
 - M_H < 166 GeV (95% CL)
 - M_H < 199 GeV (95% CL) Including LEPII direct exclusion
- Updated preliminary SM Higgs fit: (With new CDF W Mass)
 - M_H = 80⁺³⁶-26 GeV (M. Grünewald, private communication)
 - M_H < 153 GeV (95% CL)
 - M_H < 189 GeV (95% CL) Including LEPII direct exclusion
- Updated preliminary SM Higgs fit: (With new Tevatron top mass)
 - M_H = 76⁺³³-24 GeV
 - M_H < 144 GeV (95% CL)
 - M_H < 182 GeV (95% CL) Including LEPII direct exclusion

Progress since 1995

Top quark Decay $(m_t > m_W)$

• If the SU(2) structure $\begin{pmatrix} t \\ b \end{pmatrix}_{I}$ of the Standard Model holds,

then $t \rightarrow bW^+$ always occurs at tree level in any model.

 $\operatorname{Br}(t \to bW) \sim 1$

• For a Standard Model t, the decay width $t \rightarrow b W^+$

$$\Gamma_t \sim 1.6 \text{ GeV} \left(\frac{m_t}{180}\right)^3$$

Studying Property of Bare quark, e.g., Spin of Top

Lifetime

$$\tau_{\text{decay}} = \frac{1}{\Gamma_t} \sim 4.4 \times 10^{-25} \left(\frac{m_t}{180}\right)^3 \text{ sec}$$

t decays before it feels non-perturbative strong interaction.

$$\left(\frac{1}{\Lambda_{\rm QCD}} \sim \frac{1}{0.2 \text{ GeV}} \sim 3.3 \times 10^{-24} \text{ sec}\right)$$

Decay Branching Ratio of Top quark

Measuring $Br(t \rightarrow bW)$

At tree level:

$$\frac{\mathrm{BR}(t \to Wb)}{\mathrm{BR}(t \to Wq)} = \frac{\left| V_{tb} \right|^2}{\left| V_{td} \right|^2 + \left| V_{ts} \right|^2 + \left| V_{tb} \right|^2}$$

$$V_{tb} >> V_{ts'} V_{td}$$

It does not offer a chance to measure the *magnitude* of the *W-t-b* coupling

Also,

the total decay width of top (Γ_t) cannot be accurately measured from the *bjj* invariant mass distribution.

What if ... ?

It is however possible that new physics

```
might not change the Br(t \rightarrow bW),
```

 $\left(\begin{array}{c} \text{e.g. no additional new light fields}\\ \text{with mass less than } m_t \end{array}\right)$

but will strongly modify the width of $\Gamma(t \rightarrow bW)$,

due to the interaction

is strongly modified.

Hence, the lifetime of top quark is different from SM's prediction.

Need to study the interaction of t - b - W.

 $P\overline{P} \rightarrow t X \text{ and } P\overline{P} \rightarrow \overline{t} X$ (single top production)

Single-top Productions

New Physics Ideas

(related to single-top production)

• New Resonances:

 $W', H^+, \pi^+, ...$

• FCNC:

 $tcZ, tuZ, tcg, tc\gamma, ...$

• FCC:

 $tsW^+, tdW^+, cbH^+, ...$

s- Versus t-channels

- s-channel Mode
 - Smaller rate
 - Extra b quark final state
 - $\sigma_s \alpha |V_{tb}|^2$ in SM
- Sensitive to resonances
 - Possibility of on-shell production.
 - Need final state b tag to discriminate from background: no FCNCs.

- t-channel Mode
 - Dominant rate
 - Forward jet in final state
 - $\sigma_t \alpha |V_{tb}|^2$ in SM
- Sensitive to FCNCs
 - New production modes.
 - t-channel exchange of heavy states always suppressed.

All Together

- The **s-channel** mode is sensitive to charged **resonances**.
- The **t-channel** mode is more sensitive to **FCNCs** and new interactions.
- The **t W** mode is a more direct measure of top's coupling to W and a down-type quark (down, strange, bottom).

From a theoretical point of view, they are sensitive to different New Physics.

From an experimental point of view, they have different signatures and different systematic errors.

σ_s - σ_t Plane

Recent Results of CDF and D0

March 9, 2009

- Single-top quark events were discovered at the FNAL Tevatron Run-2.
- The first direct measurement of *t-b-W* coupling
- Testing the weak interaction of top quark

$P\overline{P} \rightarrow t X \text{ and } P\overline{P} \rightarrow \overline{t} X$

(single top production)

The asymmetry in the production rate

$$A_t^{\text{CPX}} = \frac{\sigma(\ p\overline{p} \to t) - \sigma(\ p\overline{p} \to \overline{t})}{\sigma(\ p\overline{p} \to t) + \sigma(\ p\overline{p} \to \overline{t})}$$

can be used to measure CP-violation.

This observable is unique for $p\overline{p}$ collider. (Tevatron)

$$C: P \leftrightarrow \overline{P}$$
$$P: \vec{x} \leftrightarrow -\vec{x}$$

For 2 fb⁻¹,
$$\delta A_t^{
m CPX} \sim 20\%$$

A SM t (\overline{t}) is purely

left-handed (right-handed) polarized

in the single-top process.

Measuring both

$$\left\langle \vec{\sigma}_{\!t} \bullet \vec{p}_{b} \times \vec{p}_{l^{+}} \right\rangle \text{ and } \left\langle \vec{\sigma}_{\!\overline{t}} \bullet \vec{p}_{\overline{b}} \times \vec{p}_{l^{-}} \right\rangle$$

Probe CP-violation at the LHC

Spin correlation in $t\overline{t}$ events

In the $t \overline{t}$ center-of-mass frame

If $\sigma(t_L \overline{t}_L) \neq \sigma(t_R \overline{t}_R)$, then CP is violated.

s- and t-channel single top production and decay at NLO QCD

Phenomenology at Run-2 of Tevatron

Categorizing Single-top processes at NLO QCD

• We separate the single-top processes into smaller gauge invariant sets to organize our calculations.

includes soft + virtual and real emission corrections.

• Keeping track on each individual contribution is useful to compare event generators with exact NLO predictions.

Acceptance study

	s-channel			<i>t</i> -channel			Kinematics cuts:		
	σ [fb]		Accept. (%)		σ [fb]		Accept. (%)		
	LO	NLO	LO	NLO	LO	NLO	LO	NLO	$p_T^{\ell} \ge 15 \text{ GeV}$
(a)	22.7	32.3	73	64	65.6	64.0	66	61	$ \eta_{\ell} \leq \eta_{\ell}^{max}$
(b)	19.0	21.7	61	46	56.8	48.1	57	46	$\not\!$
(c)	14.7	21.4	47	45	31.1	34.0	31	32	$E_T^j \ge 15 \text{ GeV}$
(a) loose cuts: $\eta_{\ell}^{\max} = 2.5, \eta_{j}^{\max} = 3.0, \text{ and } R_{cut} = 0.5$ (b) loose cuts: $\eta_{\ell}^{\max} = 2.5, \eta_{i}^{\max} = 3.0, \text{ and } R_{cut} = 1.0$ $ \eta_{j} \leq \eta_{j}^{\max}$ $\Delta R_{\ell j} \geq R_{cut}$ $\Delta R_{ij} > R_{cut}$									
(c) tight cuts: $\eta_{\ell}^{\text{max}} = 1.0, \eta_{j}^{\text{max}} = 2.0, \text{ and } R_{cut} = 0.5$									
The acceptances are sensitive to kinematics cuts:									
\rightarrow Large R_{cut} reduces acceptances significantly because of $\Delta R_{\ell j}$.									
\rightarrow With tight cuts, LO and NLO acceptances are almost same.									
→ With loose cuts, LO and NLO acceptances are quite different.									
$\blacksquare NLO \neq LO \times K_{FAC}$									
	Maximizing the acceptance.								

Top quark reconstruction

• To study the kinematics and spin correlations, top quark needs to be reconstructed. $t = W^+ + b$

Tasks: (1) W boson reconstruction (determining p_z^{ν})

$$M_W^2 = (p_e + p_\nu)^2 \longrightarrow p_{z1}^\nu , \ p_{z2}^\nu$$

(2) Identifying *b*-jet (In the case of two *b*-jets in the final state,

b-jet needs to be separated from \overline{b} -jet.)

[•] Two algorithms (determining p_z^{ν} based on the scenario of *b* identification)

	best-jet algorithm	leading <i>b</i> -tagged jet algorithm
b	using top mass constrain to pick up correct <i>b</i> -jet from top quark decay	using leading <i>b</i> -tagged jet to pick up correct <i>b</i> -jet from top quark decay
$p_z^{ u}$	smaller $ p_z^{ u} $	using top mass constrain to pick up correct $~p_z^{ u}$
Eff.	~70%	LO: 92% NLO: 84%

b identification efficiency:

s-channel (two b-jets in final state)

- -True b jet -all events 3.5 --- best-jet is b jet --- Best jet 0.5 3 --- Leading jet --- leading jet is b jet 0.4 2.5 2 0.3 1.5 0.2 0.1 0.5 0L 0 0⊑__ 160 170 180 190 50 150 200 100 M(top) [GeV] b-jet E_T [GeV] Best-jet algorithm: 80% More evident Leading-jet algorithm: 55%
- Fraction of picking up correct b

Reconstructed top quark mass

The best-jet algorithm shows a higher efficiency than the leading-jet algorithm.

b identification efficiency:

t-channel (one or two b-jets in final state)

[•] Leading *b*-tagged jet corresponds to the *b* quark from top decay most of the time

Top quark polarization (*t*-channel) : spin bases

• Helicity basis:

tq(j)-frame

z: along the top quark direction of motion in the c.m. frame of system

tq-frame

- z: along the top quark direction of motion in the c.m. frame of top quark and the spectator
- Beamline basis:
 - z: along the incoming proton direction
- Spectator basis:
 - z: along the spectator direction of motion

Degree and fraction of top quark polarization

• Among top quark decay products, charged lepton is maximally correlated with top quark spin.

$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma(t \to b e \ell \nu)}{\mathrm{d}\cos\theta} = \frac{1}{2} \left(1 + \mathcal{D}\cos\theta\right)$$

degree of polarization:
$$\mathcal{D} = \frac{N_- - N_+}{N_- + N_+}$$

fraction of polarization: $\mathcal{F}_{\mp} = \frac{1 \pm \mathcal{D}}{2}$

		\mathcal{D}		\mathcal{F}		
		LO	NLO	LO	NLO	At the parton level,
$\underset{tq(j)}{Helicity}$	Parton level Recon. event	0.96 0.84	0.74 0.73	0.98 0.92	0.87 0.86	tq-frame have larger d.o.p. than tq(j)-frame.
$\underset{tq}{Helicity}$	Parton level Recon. event	0.96 0.84	0.94 0.75	0.98 0.92	0.97 0.88	After event reconstruction, tq-frame and tq(j)-frame
Spectator	Parton level Recon. event	-0.96 -0.85	-0.94 -0.77	0.98 0.93	0.98 0.89	have almost the same d.o.p.
Beamline	Parton level Recon. event	-0.34 -0.30	-0.38 -0.32	0.67 0.65	0.69 0.66	Helicity basis (tq-frame) give almost the same d.o.p.
						as the spectator basis.

Beamline basis gives the worst degree of polarization of top quark.

High order QCD corrections blur the spin correlation effect.

Connection to Higgs boson search at LHC: light forward jet

Rapidity distribution of the spectator jet at NLO

The $O(\alpha_s)$ corrections shift the spectator jet to more forward direction due to additional gluon radiation.

imposing harder cut on spectator jet's rapidity to suppress backgrounds

[•] The shift is small because the $O(\alpha_s)$ corrections are small.

Why so?

- LIGHT and HEAVY corrections have almost opposite behavior.
- LIGHT shifts the spectator jet to the forward direction while HEAVY shifts it to the central region.
- TDEC contribution does NOT change the distribution.

General Analysis of single-top production and *W*-helicity in top decay

- General Formulation of t-b-W couplings
- What have we known from indirect measurements?
- How to perform direct measurements at Tevatron & LHC?
- Distinguish different models of EWSB

(not necessary to be on-shell)

New physics effects can be summarized in effective Lagrangian:

$$\begin{aligned} \mathcal{L} &= \frac{g}{\sqrt{2}} W_{\mu}^{-} \bar{b} \gamma^{\mu} (f_{1}^{L} P_{L} + f_{1}^{R} P_{R}) t \\ &- \frac{g}{\sqrt{2} m_{W}} \partial_{\nu} W_{\mu}^{-} \bar{b} \sigma^{\mu\nu} (f_{2}^{L} P_{L} + f_{2}^{R} P_{R}) t \\ &+ \frac{g}{\sqrt{2} m_{W}} \bar{b} (f_{3}^{L} P_{L} + f_{3}^{R} P_{R}) \partial_{\mu} t W^{-\mu} \\ &+ \frac{g}{\sqrt{2} m_{W}} \bar{b} (f_{4}^{L} P_{L} + f_{4}^{R} P_{R}) t \partial_{\mu} W^{-\mu} + h.c. \end{aligned}$$

 \implies 8 different form factors

(for on-shell t and b)

• Gordon Identity \implies reduce from 8 to 6 form factors

$$\mathcal{L} \supset \gamma_{\mu}, \sigma_{\mu
u} q^{
u}, q_{\mu}$$

 q_{μ} term: not contribute for either on-shell or off-shell W boson.

is on-shell W boson in top decay

IFF off-shell W boson in single top production

$$q_\mu \propto (p_u + p_d)_\mu \sim 0$$

 \Rightarrow reduce from 6 to 4 form factors

The general t-b-W effective Lagrangian (dim-4 and dim-5 couplings)

$$\mathcal{L}_{tbW} = \frac{g}{\sqrt{2}} W^-_{\mu} \bar{b} \gamma^{\mu} (f_1^L P_L + f_1^R P_R) t$$
$$-\frac{g}{\sqrt{2}m_W} \partial_{\nu} W^-_{\mu} \bar{b} \sigma^{\mu\nu} (f_2^L P_L + f_2^R P_R) t + h.c$$

In the SM,

$$f_1^L = 1, \ f_1^R = f_2^L = f_2^R = 0.$$

The couplings may be sensitive to new physics.

Propose a most general analysis

Choose independent experimental observables to study the constraints of effective *w-t-b* couplings.

- Four independent variables in the effective Lagrangian
- Four experimental observables

$$\begin{cases} f_0 \\ f_- \end{cases} top decay \\ (f_0 + f_- + f_+ = 1) \\ \sigma_t \\ \sigma_s \end{cases} Single top production$$

How to perform direct measurements at Tevatron and LHC?

Measurement of W Helicity fractions in top decay

$$\frac{1}{\Gamma_t} \frac{d\Gamma_t}{d\cos\theta} = f_0 \frac{3}{4} \sin^2\theta + f_- \frac{3}{8} (1 - \cos\theta)^2 + f_+ \frac{3}{8} (1 + \cos\theta)^2$$

Theoretical prediction:

LO:

Beyond LO:

$$f_{0} = \frac{\Gamma_{0}}{\Gamma_{t}} = \frac{a_{t}^{2}}{a_{t}^{2} + 2} = 0.71 \qquad f_{0} = 0.701$$

$$f_{-} = \frac{\Gamma_{-}}{\Gamma_{t}} = \frac{2}{a_{t}^{2} + 2} = 0.29 \qquad f_{-} = 0.297$$

$$f_{+} = \frac{\Gamma_{+}}{\Gamma_{t}} = 0 \qquad f_{+} = 0.002$$

$$a_{t} = \frac{m_{t}}{m_{W}} = \frac{178.0}{80.4} \qquad O(\alpha_{s}^{2}), EW, F$$

 m_b, Γ_W

General analysis

How to combine f_0 and f_- (or f_+) measurements with the single top cross section measurements?

• Can σ_t be expressed as $\sigma_t \sim (\cdots) f_0 + (\cdots) f_- + (\cdots) f_+ + (\cdots)$ small

• Can σ_s be expressed as $\sigma_s \sim (\cdots) f_0 + (\cdots) f_- + (\cdots) f_+ + (\cdots)$ $u \longrightarrow W^*$ \overline{d} \overline{b} Coefficients v.s. top quark mass (or t' in new physics models)

Distinguish different model of EWSB

(assume $f_1^R \sim f_2^L \sim 0$ for small b_R contribution)

 f_2^R

0.05

0.1

0.15

-0.1

-0.05

Top and Electroweak Symmetry Breaking (in 4-dim)

Why New Physics in Top-Higgs System?

SM works perfectly at scale O(100)GeV. But, How does Electroweak Symmetry Break (EWSB)? Why are Fermion Masses so different?

Hint: Fermi-Scale (
$$v = 2^{-\frac{1}{4}} G_F^{-\frac{1}{2}}$$
) versus M_t and $M_{W, Z}$
 $M_t \approx \frac{v}{\sqrt{2}} \approx M_W + M_Z$ Common origin?

Why? 2 possible solutions:

- DEWSB: TopColor / Condensate / Seesaw Models
- SUSY: MSSM with Radiative EWSB and

Soft SUSY-breaking [& Horizontal $U(1)_{H}$]

Collider

signature!

New features:

Bottom: *t*-partner + Small m_b + Large- Y_b Charm: Large $C_R - t_R$ flavor-mixing Stop-Scharm: Large $\tilde{t} - \tilde{c}$ flavor-mixing ϕ^{\pm} : ϕ^0 -partner and Large $c - b - \phi^{\pm}$ coupling ϕ^0 : Large $c - t - \phi^0$ coupling

MSSM Squark Mass-terms and Trilinear A-terms:

$$\tilde{M}_{\tilde{u}}^{2} = \begin{pmatrix} M_{LL}^{2} & M_{LR}^{2} \\ M_{LR}^{2\dagger} & M_{RR}^{2} \end{pmatrix}$$
Where $A_{u}' = A \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & x \\ 0 & y & 1 \end{pmatrix}$

$$M_{LR}^2 = A_u \frac{v \sin \beta}{\sqrt{2}} - M_u \mu \cot \beta$$

$$Y_{a} = A \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & x \\ 0 & y & 1 \end{bmatrix}$$
 i

in 3- $ilde{q}$ families

If x = 0, then \tilde{c}_L decouples y = 0, then \tilde{c}_R decouples If $(x,y) \sim O(1)$, then large flavor mixing in $\tilde{t} - \tilde{c}$ sector

 $A_x = x \frac{Av\sin\beta}{\sqrt{2}}$

 $A_y = y \frac{Av\sin\beta}{\sqrt{2}}$

 $X_t = -\frac{Av\sin\beta}{\sqrt{2}} + \mu m_t \cot\beta$

• For $(\tilde{c}_L, \tilde{c}_R, \tilde{t}_L, \tilde{t}_R)$

$$M_{\tilde{u}} = \begin{pmatrix} \tilde{m}_{0}^{2} & 0 & 0 & A_{x} \\ 0 & \tilde{m}_{0}^{2} & A_{y} & 0 \\ 0 & A_{y} & \tilde{m}_{0}^{2} & -X_{t} \\ A_{x} & 0 & -X_{t} & \tilde{m}_{0}^{2} \end{pmatrix}$$

with $m_{\tilde{t}_1} < m_{\tilde{c}_1} < m_{\tilde{c}_2} < m_{\tilde{t}_2}$

Soft SUSY Breaking and $\tilde{t} - \tilde{c}$ Mixings

Charged Resonances in TopColor and Topflavor

• In TopColor model,

• In Topflavor model, $W' \rightarrow t\overline{b}$

Discriminating Models of Electroweak Symmetry Breaking

Testing the interaction of Top, Bottom and Higgs Boson

Little Higgs Models

• Cancellation of Λ^2 in top sector:

(approximate) global symmetry relates *T* with *t* (Little Higgs mechanism)

• To ensure ρ =1 at tree level, T-parity was introduced.

- a) Lightest T-odd particle A_{H} , dark matter candidate
- b) Need mass term for T_P Induce new Higgs coupling (non-decoupling effects!!!)

Little Higgs Models

Higgs couplings

Little Higgs Models

could dramatically modify Higgs discovery potential at LHC for $m_h \sim 100$ GeV

becomes dominant discovery channel

SM Higgs Production Channels

SM Higgs Discovery Potential

What if all gluon-gluon fusion processes are down by a factor of 2?

If Higgs boson exists

Discovering the Higgs boson and studying its interaction is essential to probe the electroweak symmetry breaking and the flavor symmetry breaking

Otherwise,

Studying interaction among longitudinal W and Z bosons in the TeV region and interaction of longitudinal W (Z) boson and heavy fermions (top and bottom)

What motivated my 1990 single-top paper

(with $m_t = 180 \text{ GeV}$)

What motivated my 1990 single-top paper

(with $m_t = 180 \text{ GeV}$)

New method to detect a heavy top quark at the Fermilab Tevatron

C.-P. Yuan

High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (Received 15 May 1989)

We present a new method to detect a heavy top quark with mass $\sim 180 \text{ GeV}$ at the upgraded Fermilab Tevatron ($\sqrt{S} = 2$ TeV and integrated luminosity 100 pb⁻¹) and the Superconducting Super Collider (SSC) via the W-gluon fusion process. We show that an almost perfect efficiency for the "kinematic b tagging" can be achieved due to the characteristic features of the transverse momentum P_T and rapidity Y distributions of the spectator quark which emitted the virtual W. Hence, we can reconstruct the invariant mass M^{evb} and see a sharp peak within a 5-GeV-wide bin of the M^{evb} distribution. We conclude that more than one year of running is needed to detect a 180-GeV top quark at the upgraded Tevatron via the W-gluon fusion process. Its detection becomes easier at the SSC due to a larger event rate.

The first paper in the literature to discuss the unique kinematics of the forward jet in the t-channel single-top event.

Higgsless Model (Extra-dimension Models)

 No elementary or composite Higgs boson to regulate unitarity violation in the TeV region for

 $WW, ZZ \rightarrow WW, ZZ$ and $WZ \rightarrow WZ$

• Need to study W W, Z Z \rightarrow t t , W Z \rightarrow t b scatterings in the TeV region

• Look for W' and Z', to delay unitarity breakdown

Summary

We need experimental Data to advance our knowledge.

Supplementary Slides

Smaller p_Z^{ν} vs. Top quark mass constrained p_Z^{ν} : (t-channel)

Leading jet :	worst
Leading <i>b</i> -tagged jet:	good
Best jet:	best

Best jet algorithm can pick up wrong jets to get correct top quark mass.

The overall height of the mass peak is higher than in the left figure indicating this method reconstruct *W* boson and *b*-jet correctly more often.

Top quark couplings to gauge bosons in the non-linear chiral Lagrangian framework (SU(2)×U(1) invariant)

$$\mathcal{L} = \overline{b}\gamma^{\mu}(\kappa_{1L}^{\dagger}P_L + \kappa_{2R}^{\dagger}P_R)t\Sigma_{\mu}^{-} + \partial_{\nu}\Sigma_{\mu}^{-}\overline{b}\sigma^{\mu\nu}(\kappa_{3L}^{\dagger}P_L + \kappa_{4R}^{\dagger}P_R)t$$
$$+\overline{b}(\kappa_{5L}^{\dagger}P_L + \kappa_{6R}^{\dagger}P_R)\partial_{\mu}t\Sigma^{-\mu} + \overline{b}(\kappa_{7L}^{\dagger}P_L + \kappa_{8R}^{\dagger}P_R)t\partial_{\mu}\Sigma^{-\mu} + h.c.$$

Here, κ_L , and κ_R are two arbitrary complex parameters,

$$\Sigma_{\mu}^{\pm} = \frac{1}{\sqrt{2}} (\Sigma_{\mu}^{1} \mp i \Sigma_{\mu}^{2}), \qquad \Sigma_{\mu}^{a} = -\frac{i}{2} Tr(\tau^{a} \Sigma^{\dagger} D_{\mu} \Sigma),$$
$$\begin{pmatrix} t \\ b \end{pmatrix}_{L} \equiv \Sigma F_{L} = \Sigma \begin{pmatrix} f_{1} \\ f_{2} \end{pmatrix}_{L}, \qquad t_{R} = f_{1R} \\ b_{R} = f_{2R} \cdot$$

[•] In the unitary gauge,

$$\Sigma^{\pm}_{\mu} \rightarrow -\frac{1}{2}gW^{\pm}_{\mu}, \ t_L \rightarrow f_{1L}, \ t_R \rightarrow f_{2R}, \ \text{etc.}$$

What do we know from indirect measurements?

May cancel with other contributions (originated from other light fields)

Assume no other new physics effect

What do we know from direct measurements?

Tevatron: $(2 fb^{-1}) \times (6 pb) \sim 10^4$ tt events

LHC: $(100 fb^{-1}) \times (8 \times 10^2 pb) \sim 10^8$ tt events

How to perform direct measurements at Tevatron and LHC?

Measurement of W helicity fractions in top decay

$$\frac{1}{\Gamma_t}\frac{d\Gamma_t}{d\cos\theta} = f_0\frac{3}{4}\sin^2\theta + f_-\frac{3}{8}(1-\cos\theta)^2 + f_+\frac{3}{8}(1+\cos\theta)^2$$

• Experimental measurements: (from $t\bar{t}$ pairs @ Tevatron)

D0:
$$f_0 = 0.56 \pm 0.32$$
, $f_- < 0.24$
hep-ex/0404040

CDF: $f_0 = 0.91 \pm 0.38$, $f_- < 0.18$

hep-ex/0411070

$$\implies \text{Expected} @ 2 \text{ fb}^{-1} \quad \frac{\Delta f_0}{f_0} \sim 10\%, \ f_+ < 0.05$$
Four observables in terms of four independent variables

$$f_{0} = \frac{a_{t}^{2} (1 + x_{0})}{a_{t}^{2} (1 + x_{0}) + 2(1 + x_{m} + x_{p})}$$

$$f_{-} = \frac{2(1 + x_{m})}{a_{t}^{2} (1 + x_{0}) + 2(1 + x_{m} + x_{p})}$$

$$f_{+} = \frac{2x_{p}}{a_{t}^{2} (1 + x_{0}) + 2(1 + x_{m} + x_{p})}$$

$$(f_{0} + f_{-} + f_{+} = 1)$$

$$x_{0} = \left(f_{1}^{L} + f_{2}^{R} / a_{t}^{2}\right)^{2} + \left(f_{1}^{R} + f_{2}^{L} / a_{t}^{2}\right)^{2} - 1$$

$$x_{m} = \left(f_{1}^{L} + f_{2}^{R} a_{t}^{2}\right)^{2} - 1$$

$$x_{p} = \left(f_{1}^{R} + f_{2}^{L} a_{t}^{2}\right)^{2} - 1$$
only depend
on $f_{2}^{L,R}$
on $f_{2}^{L,R}$
on $f_{1}^{L,R}$
on $f_{1}^{L,R}$.

$$\Delta \sigma_t = a_0 x_0 + a_m x_m + a_p x_p + a_5 x_5$$

$$\sim (\cdots) f_0 + (\cdots) f_- + (\cdots) f_+ + a_5 x_5$$

t-channel	a ₀	a_m	a_p	a_{5}
Tevatron	0.896	-0.069	-0.153	0.247
LHC (t)	165.2	-19.1	-34.2	62.5

$$\Delta \sigma \equiv \sigma - \sigma_{SM}$$
$$\Delta \sigma_s = b_0 x_0 + b_m x_m + b_p x_p + b_5 x_5$$
$$\sim (\cdots) f_0 + (\cdots) f_- + (\cdots) f_+ + a_5 x_5$$

s-channel	D ₀	b _m	D _p	D ₅
Tevatron	-0.081	0.352	0.352	0.230
LHC (t)	-1.41	5.67	5.67	6.34

CTEQ6L1

Distinguish different model of EWSB

An illustration with two couplings (to simplify discussion)

• Assume b_R couplings are small (for $m_b \sim 0$) $\implies f_1^R = f_2^R \sim 0 \implies f_+ \sim 0$ $2(1 + \varepsilon_L + a_L f_2^R)^2$ If $f_2^R \rightarrow 0$, then

$$f_{-} = \frac{(1 + c_{L} + f_{2}^{R} / a_{t})^{2}}{a_{t}^{2} \left(1 + c_{L} + f_{2}^{R} / a_{t}\right)^{2} + 2\left(1 + c_{L} + a_{t}f_{2}^{R}\right)^{2}} \qquad f_{-} = \frac{2}{a_{t}^{2} + 2} = f_{-}^{SM}$$

• The sign of $\Delta f_{\underline{}}$ depends on models $f_2^R \lneq 0 \Leftrightarrow \Delta f_{\underline{}} \lneq 0$

MSSM
$$\mathcal{E}_L = 0.01, \quad f_2^R = 0.005$$
 $f_0 \setminus f_- /$

 ε_L can be either positive or negative. SUSY-QCD and SUSY-EW corrections have opposite contributions.

TC2
$$\varepsilon_L = -0.01, \quad f_2^R = -0.005 \quad f_0 \nearrow f_- \searrow$$

typically, $\varepsilon_L < 0$

Little Higgs Models

The production cross section can be significantly suppressed

Little Higgs Models

$$R_{\sigma(X)} = \frac{\sigma^{\rm LH}(X)}{\sigma^{\rm SM}(X)} \qquad R_{\rm BR}(Y) = \frac{\rm BR^{\rm LH}(Y)}{\rm BR^{\rm SM}(Y)}$$

 $R_{\sigma(X)} \times R_{BR(Y)}$ for f = (600, 700, 1000) GeV

$m_h = 120 \text{ GeV}$	$R_{\mathrm{BR}(\gamma\gamma)}$	$R_{\mathrm{BR}(au au)}$	$R_{{ m BR}(bar b)}$	$R_{\mathrm{BR}(VV)}$
$R_{\sigma(gg)}$ (Case A)	0.57, 0.68, 0.84	0.56, 0.67, 0.83	_	0.55, 0.66, 0.83
(Case B)	0.81, 0.86, 0.93	0.51, 0.63, 0.81	—	0.78, 0.84, 0.92
$R_{\sigma(VV)}$ (Case A)	0.97, 0.98, 0.99	0.95, 0.96, 0.98	_	0.94, 0.96, 0.98
(Case B)	1.34, 1.22, 1.09	0.84, 0.89, 0.95	_	1.30, 1.19, 1.08
$R_{\sigma(t\bar{t}h)}$ (Case A)	—	0.87, 0.90, 0.95	0.87, 0.90, 0.95	_
(Case B)	—	0.77, 0.83, 0.92	0.77, 0.83, 0.92	—
$R_{\sigma(Vh)}$ (Case A)	0.97, 0.98, 0.99	—	0.95, 0.96, 0.98	—
(Case B)	1.34, 1.22, 1.09	—	0.84, 0.89, 0.95	—
$m_h = 200 \text{ GeV}$	$R_{\mathrm{BR}(\gamma\gamma)}$	$R_{\mathrm{BR}(\tau\tau)}$	$R_{{ m BR}(bar b)}$	$R_{\mathrm{BR}(VV)}$
$R_{\sigma(gg)}$ (Case A)	—	—	_	0.55, 0.67, 0.83
(Case B)	—	—	—	0.56, 0.67, 0.83
$R_{\sigma(VV)}$ (Case A)	—	—	_	0.90, 0.94, 0.97
(Case B)	—	—	—	0.90, 0.94, 0.97

- Higgs production via gluon fusion is suppressed.
- γγ, VV decay modes via weak boson fusion can be enhanced in small Higgs mass region in Case B.