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ABSTRACT

The mixing of a passive tracer by realistic time-dependent stratospheric flow (European Centre for Medium-
Range Weather Forecasts winds) on an isentropic surface (420 K) is studied. Simulations of the advection–
diffusion problem for an initially large-scale tracer field are carried out in the limit of weak diffusivity. Owing
to chaotic advection, tracer variance is cascaded to small scales, where it can be dissipated despite the weak
diffusivity. The tracer fluctuations are characterized in terms of their probability distribution function (PDF).
The PDFs are characterized by a Gaussian core and ‘‘fat tails,’’ which fall more slowly than a Gaussian, and
indicate anomalously high probability of extreme concentration fluctuations. Given the nonlinearity of many
chemical reactions of interest, the anomalous prevalence of extreme fluctuations could have a profound effect
on reactive tracers.

Zonal variations of tracer are homogenized globally leading to a unimodal PDF. Initially meridional variations
are strongly influenced by the presence of mixing barriers. Meridional gradients homogenize only within mixing
zones of limited latitudinal extent, bounded by permeable mixing barriers. The PDF becomes multimodal, with
distinct populations of air caused by blending of the concentration values within each mixing zone. The Tropics
is a zone of weak mixing, and serves as an important repository of stratospheric tracers, which are episodically
ejected into surf zones in the form of filaments bearing extreme concentration values.

The shapes of the PDFs are discussed in terms of theoretical methods developed in the context of highly
idealized mixing models. It is shown that such methods retain their utility when applied to realistic stratospheric
mixing. The role of the probability distribution of finite-time Lyapunov exponents for the underlying trajectory
problem is highlighted. The use of conditional averages of diffusion and dissipation is also illustrated. PDFs
yielded by the idealized advection–diffusion problem are found to resemble those appearing in a GCM simulation
of N2O.

The theoretical arguments and numerical results imply that under the assumption that the diffusivity is set so
that the dissipation scale is comparable to model resolution, the concentration PDF eventually reaches a universal
shape independent of model resolution after an initial transient stage. However, the width of the distribution,
or equivalently the variance of the tracer fluctuation, increases algebraically as model resolution is refined.

1. Introduction

Many problems of interest in the atmospheric sciences
critically involve mixing, and one of the central prob-
lems in mixing is the characterization of the fluctuations
of tracer concentrations. The past decade has seen a
renaissance of interest in the behavior of probability
distribution functions (PDFs) of advected scalar tracers
such as chemical concentration, temperature, or two-
dimensional vorticity. The tracer PDF, equivalent to the
histogram of tracer values, measures the chance of find-
ing a given tracer concentration value taken over a spa-
tial domain, over time at a single point, or (less com-
monly in practice) over an ensemble of realizations of
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the mixing process.1 In addition to the PDF of the tracer
itself, one can also study the PDF of tracer gradients,
or of tracer differences over finite time or space inter-
vals. Tracer PDFs have been used extensively to study
mixing in laboratory experiments (Castaing et al. 1989;
Jayesh and Warhaft 1991; Gollub et al. 1991), and the
theory of the shape of the PDFs of advected–diffused
passive tracers has become quite well developed for a
range of highly idealized situations (Sinai and Yakhot
1989; Pumir et al. 1991; Majda 1993; Shraiman and
Siggia 1994; Chertkov et al. 1995; Balkovsky and Foux-
on 1999). A survey of some of the key developments

1 In some literature, PDF is the abbreviation for probability density
function. The relation between the probability distribution function
and probability density function is P(a , u , b) 5 N p(u) du,b#a

where N is the total sample, and p(u) is the probability density func-
tion. More precise definitions of both can be found in many text
books on statistics or statistical fluid mechanics, for example, Lumley
(1970).
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in both experiments and theories can be found in Pier-
rehumbert (2000), Sreenivasan and Antonia (1997), and
Warhaft (2000). A comprehensive review by Majda and
Kramer (1999) covers additional aspects of the theo-
retical progress of the PDFs, particularly covering cases
of advection by random unidirectional shear, and action
of small-scale velocity fields on large-scale tracer fluc-
tuations (the ‘‘homogenization problem’’).

The new outlook on PDFs has the potential of being
useful in many problems of pressing atmospheric in-
terest. Stratospheric chemistry problems promise to be
particularly fruitful area of application. Many chemical
reactions of interest have reaction rates that are nonlin-
ear functions of the concentrations, with the result that
bulk reaction rates are sensitive to tracer fluctuations
and not just mean tracer values. A specific example of
how this might play out can be found in Edouard et al.
(1996), who found that ozone destruction rates can be
sensitive to resolution of small scales in the tracer field.
One would like to know, from a theoretical standpoint,
how ozone destruction in such problems scales with
resolution, and whether the resolution beyond which the
destruction rate converges is practically achievable. An
appreciation of the importance of mixing in determining
ozone destruction can be obtained from Tan et al.
(1998). Apart from applications to chemistry, study of
the tracer PDF may provide a means to assess the ag-
gregate importance of small-scale episodic dissipative
events, such as those due to gravity wave breaking, that
are difficult to observe directly. Some aspects of the use
of tracer patterns in the diagnosis of dissipation were
discussed in Haynes and Anglade (1997). Ultimately,
the use of PDF methods may provide a means to sys-
tematize and extend this approach.

Existing theory for the PDFs of an advected tracer
subject to small-scale diffusion has made significant
strides, but still rests on idealizations that prevent direct
application to realistic atmospheric flows. Such com-
plications include the existence of transport barriers, of
anisotropy, and of the nature of sources and sinks of
realistic chemical constituents. The aim of the present
work is to carry out simulations of the problem of ad-
vection–diffusion by realistic stratospheric winds on an
isentropic surface, and to see to what extent the behavior
of the PDF can be understood in terms of concepts
arising from more idealized theories. The stratospheric
case provides an ideal forum for such inquiries, as the
advecting flow field is very spatially smooth, and the
flow can be regarded as nearly two-dimensional over
the timescales of interest in the present work. As a first
step, in the following we restrict attention to a passive
tracer, investigate only the PDF of the tracer field itself,
and explore only the initial-value problem. Subsequent
papers will take up the PDF of tracer gradients, tracer
differences over finite separation distances, and the
equilibrium source/sink case.

There has already been a great deal of work on the
pure advection problem in the stratosphere (e.g., Pier-

rehumbert 1991; Waugh and Plumb 1994; Waugh et al.
1997) and troposphere (e.g., Pierrehumbert 1991, 1998;
Pierrehumbert and Yang 1993). This work has focused
on the implications of exponentially rapid generation of
small scale filaments, and of the fact that large-scale
winds can be used to reconstruct aspects of the tracer
field at scales far smaller than resolved in the wind field.
The work of Waugh and Plumb (1994) was particularly
important in demonstrating the occurrence of the pre-
dicted filaments in the real atmosphere. Without the in-
corporation of dissipation, it is difficult for this enter-
prise to proceed further. Because in the absence of dif-
fusion tracer gradients continue to amplify exponen-
tially for all time, which is unrealistic. The choice of
time intervals for pure advection is carried out currently
without much theoretical guidance [a recent study on
this issue can be found in Methven and Hoskins (1999)].
Dissipation, however, introduces an intrinsic memory
time into the process. Our goal in the present paper is
to go beyond the subject of chaotic advection, to the
subject of chaotic advection–diffusion.

The theoretical developments of potential use to us
are summarized in section 2. Our simulation method is
described in section 3. Following a discussion of the
statistics of the Lyapunov exponents in section 4, we
describe the fundamental character of the simulated
mixing in section 5. A recapitulation of the main points
is given in section 6.

2. Theoretical considerations

We shall be concerned with the evolution of a passive
tracer with concentration u, governed by the equation

]u
21 v · =u 5 k¹ u, (1)

]t

subject to the following restrictions: 1) The advecting
flow is two-dimensional and nondivergent. 2) The equa-
tion is solved on a spatially bounded domain, which is
taken to be a spherical surface in the calculations below.
3) The velocity field is spatially smooth, in the sense
that | =v | is finite everywhere. The velocity fields of
principal concern are time-dependent with a nonzero
correlation time, but are not generally temporally pe-
riodic. 4) We study the advection–diffusion problem in
the limit of large Peclet number, Pe 5 VL/k k 1, where
V and L are the characteristic scales of velocity and
eddy length, respectively, and k is diffusivity.

In the present work, we confine our attention to the
transient evolution of an initial concentration field as it
proceeds toward a well-mixed state. The properties of
(1) can be understood in terms of the properties of the
trajectory problem for the velocity v, that is, dr/dt 5
v. The quantity of key interest is the rate of separation
of neighboring trajectories. For the flows we shall con-
sider, nearby trajectories separate exponentially in time,
for either the forward or backward trajectory problem.
This property is generic to most time-dependent spa-
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FIG. 1. Backward-trajectory calculation from 30 Aug to 1 Jul. Three blobs of particles are initially released in three 108 3 108 areas on
30 Aug. Each particle blob consists of 100 3 100 particles. (a) Day 260 (1 Jul), (b) day 240, (c) day 220, (d) day 0.

tially smooth flows, particularly flows that are aperiodic
in time. The exponential rate of separation, evaluated
over a finite stretch of time T, is known as the finite-
time Lyapunov exponent (FTLE). The use of FTLEs in
characterizing mixing in atmospheric flows was dis-
cussed in Pierrehumbert (1991) and Pierrehumbert and
Yang (1993). A review of the role of the FTLEs in the
advection–diffusion problem can be found in Pierre-
humbert (2000). The FTLE varies from trajectory to
trajectory, so the separation rate for the whole flow is
not characterized by a single number, but rather by the
histogram (PDF) of the FTLEs over an ensemble of
trajectories.

The FTLEs for the back-trajectory problem enter the
problem for the PDF of u as follows. Suppose we want
to know the value of u at a given point r0 at time t after
the initial condition is imposed. Let the FTLE for the
back-trajectory problem emanating from r0 be l. Now
suppose that diffusion homogenizes the tracer over a
length rd. This dissipation scale is determined by bal-

ancing the strain rate against the outward diffusion,
yielding

1/2
k

r 5 , (2)d 1 2l

the so-called Batchelor dissipation scale (Batchelor
1959). Now, to determine the concentration near r0, we
draw a disk of diameter rd around r0, and ask where
the fluid arriving in this disk came from at time t 5 0.
The place the tracer came from is found by running the
back trajectory problem for a dense cloud of points
filling out the disk. Because of exponential separation
of trajectories, the disk maps back to a thin filament of
length rd exp(lt). The value of u(r0) is then the average
over this long filament of the initial values of u. An
example of a calculation of the source-air for realistic
stratospheric flow is shown in Fig. 1. If the characteristic
length scale of the initial tracer blob is L, then the av-
erage along the filament is the mean of M 5 (rd/L)
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exp(lt) independent random concentrations, and so by
the central limit theorem, the PDF of u should be Gauss-
ian, with a variance proportional to M21. This variance
goes to zero exponentially, as t becomes large, and the
decay rate is l.

Figure 1 also illustrates a property of backward tra-
jectories that will pervade all our subsequent discussion
of mixing by realistic stratospheric flow. Although the
filament is indeed exponentially long, the domain it tra-
verses is very anisotropic. It spreads out rapidly over
the entire zonal domain, on account of the strong zonal
jets. The meridional width of the domain sampled grows
much more slowly in time. The implications of this point
for undiffused pure advection were discussed in Pier-
rehumbert and Yang (1993). The net result is that me-
ridional tracer variations are sampled only over a limited
range of latitudes, which expands only slowly in time.
Viewed from the standpoint of the forward in time mix-
ing problem, meridional variations are mixed only over
a limited width mixing region. The mixing region grows
slowly in time, if at all.

The preceding argument only implies Gaussianity of
the PDF taken over those portions of the domain with
a given l. The tracer field consists of a tangle of in-
tertwined tracer filaments of various thickness and
lengths. Tracer filaments arising from large l are thin
in proportion to l21/2, are long in proportion to exp(lt)
and exhibit concentration fluctuations that are small in
proportion to exp(2lt). Neighbors of such filaments
will soon become overlapped (mixed) due to diffusion,
which yields homogenization. In contrast, filaments
arising from small l are short and thick, and have anom-
alously large concentration fluctuations against diffu-
sion. It is these filaments that dominate the large u tails
of the PDF taken over the whole domain. Since each
part of the tail of P(u) arises from a different Gaussian
distribution, the overall form of P(u) can be non-Gauss-
ian.

The rate of collapse of the Lyapunov PDF to a spike
is important, because it determines how the improba-
bility of low FTLEs plays out against the fact that parts
of the flow with anomalously low FTLEs have expo-
nentially weaker decay of the tracer fluctuations. A
quantitative discussion of this point can be found in
Pierrehumbert (2000) and Balkovsky and Fouxon
(1999). Typically, the large u tails are flatter than Gauss-
ian, generally either exponential or stretched exponen-
tial. A PDF which has tails flatter than Gaussian for
large values of its argument is referred to as having ‘‘fat
tails.’’ Fat tails are important, because they imply an
anomalously high probability of extreme events.

From the above picture we can gain some insight as
to how the concentration fluctuations depend on k,
which for any given advecting flow is equivalent to
varying rd. Since numerical simulations are generally
constructed with an explicit or numerical diffusivity that
assures that the dissipation scale is of the same order
of magnitude as the grid scale, varying rd is also equiv-

alent to varying model resolution. For the freely de-
caying case we pose the question as follows: For a given
large-scale initial condition u0 with zero mean, how does
the concentration standard deviation s(t) at a later time
t depend on rd? It is well established that, after a suf-
ficiently long time has passed, s decays exponentially
at a rate that is independent of rd and that is proportional
(though not equal) to the most probable FTLE (Pier-
rehumbert 1994, 2000; Antonsen et al. 1996). This ex-
ponential decay only sets in after sufficient time has
passed for the initial tracer variance to cascade down
to the dissipation scale. This time delay is the mix-down
time, t* (rd) 5 (a/l) ln(L/rd), where L is the initial tracer
scale and a is an order unity constant. Dissipation affects
the magnitude of tracer fluctuations primarily through
its effect on t*. At large times, the time series can be
approximated by

2bl[t 2 t (r )]ds(t, l, r ) 5 s e ,d 0 *
(3)

where b is an order unity constant, and l in this ex-
pression refers to the dominant FTLE. Substituting for
t* we then find that the ratio of tracer fluctuation am-
plitudes between simulations with resolution rd 5 r1 and
rd 5 r2 is

2ab
s(t, l, r ) r1 15 . (4)1 2s(t, l, r ) r2 2

In other words, the tracer fluctuation amplitude increas-
es like a power of the resolution, as resolution is refined.
The exponent is an order unity quantity that depends
only on the statistics of the advecting flow.

The effect of resolution on the shape of the PDF at
a fixed time proceeds from reasoning very similar to
that that led to (4). The PDF is a weighted average of
Gaussians with standard deviations s given by (3),
weighted according to the probably of the corresponding
FTLE l. Now, Eq. (4) tells us that changing the reso-
lution changes all the s going into this average by a
fixed proportion which is independent of l. Hence, at
times large enough for Eq. (4) to apply, resolution af-
fects the overall width of the PDF, but not its shape.
Additionally, because of the effect of resolution on mix-
down time, as resolution is increased one has to wait
longer and longer for the remote tails of the PDF to
converge to their asymptotic form. The farther out on
the tails one goes, the longer one has to wait.

Further insight into the tracer PDF can be obtained
from the PDF transport equation, which is the evolution
equation that the concentration PDF obeys. The deri-
vation of the PDF transport equation is summarized in
Pierrehumbert (2000). In the absence of tracer forcing,
it is

2] P 5 2k] [P(u)^¹ u& ] (5)t u u

25 2k] [P(u)^|=u | & ], (6)uu u

where ^. . .&u represents the conditional average of the
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indicated quantity over all parts of the domain where u
takes on the specified value. Equation (6) is a reversed-
time diffusion equation. If the conditional dissipation is
independent of u, then the equation admits a particular
solution which consists of a Gaussian PDF that collapses
onto a spike as time progresses. Non-Gaussian behavior
is associated with nonconstant conditional dissipation.
If the conditional dissipation increases with | u | , then
the tails of the PDF decay more slowly than a Gaussian.
Explicit formulas linking the tracer PDF to the condi-
tional dissipation in the case of exponentially decaying
tracer variance can be found in Eswaran and Pope
(1988) and Sinai and Yakhot (1989). For the reasons
discussed in Pierrehumbert (2000), the conditioned-dif-
fusion form of the PDF transport equation, Eq. (5), im-
poses no constraint on the shape of the tracer PDF in
the decaying case.

Ching and Kraichnan (1998) have derived a general
formula linking the PDF to the conditional dissipation
and conditional diffusion. They show that

u 2C ^¹ u&XP(u) 5 exp dX , (7)E2 21 2^|=u | & ^|=u | &u X0

where C is a normalization constant. Surprisingly, this
equation is purely kinematic; it is valid for any differ-
entiable field u, whether or not the field satisfies Eq.
(1). A closely related formula was derived earlier by
Nakamura (1996) as a step in the derivation of the mod-
ified Lagrangian mean mixing formulation. In the sim-
plest case, if tracer is dissipated in structures charac-
terized by a unique length scale, then simple scaling
shows that the conditional diffusion is linear in u and
that the conditional dissipation is independant of u. In
this case Eq. (7) implies that the PDF is Gaussian. If
the conditional diffusion remains linear in u, corre-
sponding to a constant mean decay rate, but fluctuations
cause the conditional dissipation to increase with u, then
fat tails result. This is precisely the situation we will
encounter in our atmospheric simulations.

In the above, we have established some tools that
have emerged from the theoretical literature on advec-
tion–diffusion. They are examination of PDFs of con-
centration, examination of the PDFs of finite-time Lya-
punov exponents, and examination of conditional dif-
fusion and dissipation. In subsequent sections we shall
bring these tools to bear on an analysis of a realistic
stratospheric mixing problem.

3. Data and simulation method

The advection–diffusion equation is solved on the
sphere using a high-resolution finite-volume (van Leer)
numerical scheme. A full description of the numerical
method can be found in van Leer (1977), Peyret and
Taylor (1983), and Putti et al. (1990). This numerical
method was first applied to atmospheric advection–dif-
fusion reaction by Edouard et al. (1996). The van Leer

class of numerical schemes is attractive for tracer prob-
lems, since it prevents the formation of spurious neg-
ative tracer values in the wake of sharp gradients, while
minimizing undesirable numerical smoothing. The sim-
ulations are run without explicit diffusion. The numer-
ical scheme has the effect of introducing diffusion just
sufficient to damp out variations at the scale of the res-
olution.

In the present study, the globe is covered by 327 680
equilateral triangles, projected onto the spherical surface
from an inscribed icosahedron. The resolution (distance
between the centroids of two neighboring triangles) is
about 30 km, and a time step of approximately 2.5 min
is sufficient to assure numerical stability. The triangular
grid has the advantage of covering the entire sphere with
nearly uniform resolution, so that numerical effort is not
wasted on excessive resolution at the poles. It also re-
moves the singularity at the poles, which most of the
atmospheric models with rectangular grids have to deal
with.

The winds used for driving tracer advection are de-
rived from the analysis of the European Centre for Me-
dium-Range Weather Forecasts (ECMWF) for the year
1992. Pressure-level winds are first vertically interpo-
lated to the 420 K isentropic surface, which is about 15
km high from the ground and above the tropopause
everywhere. The small divergent wind component is
removed, and the resulting projection on the nondi-
vergent wind is used to derive the streamfunction on
the (2.58 3 2.58) ECMWF grid. The streamfunctions
are then interpolated onto the vertices of each triangle.
Tracer concentrations are calculated at the centroids of
triangles.

4. Lyapunov exponent PDF

Since the behavior of the FTLE occupies such a cen-
tral role in the advection–diffusion problem, we first
present some typical results for the PDF of the FTLEs
for the stratospheric flows under consideration. The val-
ues were computed using the eigenvalue method used
in Pierrehumbert and Yang (1993), retaining only the
largest FTLE. The PDFs are computed over an ensemble
of forward trajectories initialized on a 18 latitude–lon-
gitude grid, with contribution weighted according to
area. Of particular interest is the rate at which the PDF
of the FTLEs collapses to a spike as time goes on.

Figure 2 shows the Lyapunov exponent PDFs for tra-
jectories started on 1 August, with the FTLE computed
at 10, 20, and 30 August. The first thing to note is that
the trajectory problem is indeed chaotic, in the sense
that neighboring trajectories separate exponentially,
with the exception of very rare trajectories that have
zero or near-zero FTLE. There are in fact a very few
trajectories (mostly in the Tropics) that have negative
FTLEs; this situation arises because the FTLEs were
computed using the full analyzed ECMWF wind rather
than the projection on the nondivergent component, and
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FIG. 2. The PDF of Lyapunov exponents. The 179 3 360 particles
are initially arranged on 18 latitude–longitude grid (89.58N to 89.58S
in latitude) on 1 Aug. The vertical axis is in logarithm. The PDF is
calculated based on area weighting: (a) day 10, (b) day 20, (c) day
30.

the actual wind has weak divergence and convergence.
These trajectories are of little consequence and become
increasingly rare at longer times. By day 30, all the
negative FTLEs have gone.

The most probable value of FTLEs is approximately
0.25 day21. This is a rather moderate value, smaller than
that in the troposphere (Pierrehumbert and Yang 1993).
If the dissipation scale were 100 km, for example, then
according to the argument in section 2 the concentra-
tions after 30 days of mixing are averages of samples
of the initial data taken along filaments of length 180
000 km, which is only long enough to wrap around the
globe about 5 times. Clearly, even apart from the limited
meridional extent of filaments seen in Fig. 1, this length

is not nearly enough to uniformly sample the initial
tracer field. From this, we conclude that for most parts
of the flow, 30 days is too short a time to put us very
deeply into the asymptotic well-mixed regime. For 60
days mixing, the corresponding sampling filament is
long enough to circle the earth more than 8700 times,
and each parcel in the final state arises from a mixture
of a more complete sampling of air from the initial
condition. The problem remains, as indicated in Fig. 1,
that the string of source air is meridionally confined,
and samples air only from a narrow latitude band. There
is no way of inferring this behavior from the FTLE
distribution. It is a property of trajectory separation ‘‘in
the large,’’ and is independent of the behavior of the
FTLEs, which only measure the rate of separation of
trajectories when they are close enough to each other
for the trajectory problem to be linearized about the
mean of the two trajectories.

The PDFs of Lyapunov exponent are Gaussian except
for the appearance of an exponential high-stretch tail on
the right-hand side, as seen in Fig. 2. Theory for ho-
mogeneous ergodic flows (Chertkov et al. 1995), with-
out jets or barriers, does not account for the strongly
non-Gaussian high-stretch tail. To identify the effects
of the Tropics and the polar night jet, we have recom-
puted the Lyapunov exponent PDF for a surf-zone re-
gion alone.2 These results are shown in Fig. 3. Compared
with the PDF in Fig. 2, the PDFs in the surf zones have
shorter exponential tails. In particular, the PDF in the
southern surf zone (Fig. 3b) shows very weak departure
from Gaussian. The low-stretch tail is still Gaussian, but
its width is now such that low values of the FTLEs are
far less probable than was the case for Fig. 2. Thus, the
lowest FTLEs are preferentially found in the Tropics,
while the largest ones are associated with the polar night
jet.

Figure 4 quantifies the rate at which the PDF of
FTLEs narrows with time. To measure the width, we fit
each curve in Fig. 2 with a Gaussian P(l) } exp[2(l
2 )2/2 ], and plot how 2sl depends on the length2l sl

of time over which the Lyapunov exponent is computed.
This curve can be approximately fitted by 2.55/ (dot-Ït
ted curve) after about 7 days. This is precisely the result
expected from an accumulation of the effects of random,
independent strain, as derived by Chertkov et al. (1995).
It is interesting that this behavior emerges despite the
effectively nonergodic behavior of atmospheric flow, as
manifest by the prominence of mixing barriers that con-
strain atmospheric transport. Evidently, trajectories do
not stick to barrier regions long enough to affect the
statistical convergence of the FTLE distribution as time

2 Surf zone generally means winter midlatitudes where planetary
waves break and lead to chaotic mixing (McIntyre and Palmer 1984).
In the present paper, we refer to the summer midlatitudes as the
summer ‘‘surf zone’’ since similar phenomena of wave breaking and
tracer mixing are observed also in summer midlatitudes.
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FIG. 3. The surf-zone PDFs of Lyapunov exponents on 30 Aug.
(a) Northern surf zone, 90 3 360 particles are initially arranged in
the band from 508 to 208N; (b) southern surf zone, same amount of
particles are arranged in the band from 208 to 508S.

FIG. 4. The width (2sl) of the PDF of Lyapunov exponents as a
function of time.

progresses, or to cause the low-stretch tail to deviate
from a Gaussian.

The general implication of the Lyapunov exponent
behavior found above is that the nature of the PDFs of
FTLEs for realistic flow is sufficiently in accord with
that assumed in simplified theory of the tracer PDF
[notably Chertkov et al. (1995)], that it presents no im-
pediment to the applicability of the idealized theories.
Significant non-Gaussian behavior is found only in the
high-stretch tail, but this is of little consequence for the
tracer PDF’s, as the long-term behavior of the tracer is
dominated by the low-stretch tail, which is Gaussian.
The dominance of variability by the low-stretch tail also
limits the importance of the rather broad spread of
FTLEs found in the 30–60-day range. Shortcomings of
the idealized theories have their roots elsewhere.

5. Characterization of basic mixing properties

Because of the presence of zonal jets, tracer mixing
in the zonal direction proceeds very differently from
mixing in the meridional direction. Apart from the dif-

fusive effects that are the focus of the present study, the
role of the jets is similar to that discussed for undiffused
tropospheric flow by Pierrehumbert and Yang (1993),
and gives the problem something of the flavor of shear-
dispersion. In order to separately characterize along-jet
and cross-jet mixing, we consider two classes of initial
conditions. In the first, the initial tracer field varies only
in the zonal direction, while in the second it varies only
with latitude. The former case will be referred to as
‘‘zonal mixing,’’ and the latter as ‘‘meridional mixing.’’

a. Zonal mixing

In Fig. 5 we show the evolution of the initial condition
u0 5 cos(2x), where x is longitude, for July–August
1992.

Already during the first 10 days, the tracer field has
developed a great deal of small-scale structure. Figure
5b exhibits the typical features of chaotic mixing. Mem-
ory of the initial condition has been largely lost. Some
tracer parcels are stretched into long and thin filaments,
as expected from the positive FTLEs. Some filaments
are folded into spiral structures. By day 20 (Fig. 5c),
the tracer field has been further homogenized. In most
parts of the Southern Hemisphere, the concentration ap-
proaches its mean value. Vortex structures can be seen
near the North Pole. Extreme concentrations still exist
in the form of unmixed filaments in the northern extra-
tropics and subtropics. Some trapped structures are
mainly located in the Tropics. Here, the trapped struc-
tures imply that some tracer blobs in the Tropics remain
unmixed and have little change of their shape though
they move along the mean tropical flow. These trapped
structures in the tropics are quite persistent and still can
be seen even after 60 days (Fig. 5d).

The tracer mixing proceeds differently in the North-
ern and Southern Hemispheres. In the Southern (winter)
Hemisphere the tracer is more homogeneous and more
zonally oriented. In contrast, the tracer field in the
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FIG. 5. Snapshots of zonal mixing. In order to clarify the small-scale structures, color scales are not same, but marked in color bars. (a)
Day 0 (1 Jul), initial condition u0 5 cos(2x); (b) day 20; (c) day 40; (d) day 60.

Northern (summer) Hemisphere is less well mixed, and
there are more trapped structures and large fluctuations.
The asymmetric mixing is due to the difference in plan-
etary wave activities and zonal shear strength. The win-
ter hemisphere westerly winds are stronger and allow
more wave propagation upward into the lower strato-
sphere from lower levels. The asymmetric mixing is also
consistent with the difference of FTLEs between the
two hemispheres shown in Fig. 3; that is, the FTLEs in
the Northern Hemisphere are on the average smaller
than those in the Southern Hemisphere.

The tropical trapped structures, with more negative
concentrations, are due to the tropical weak-mixing zone
where both wind shear and wave activity are quite weak.
This feature of tropical trapped structures was also
found by Pierrehumbert and Yang (1993) in particle
trajectory calculations in the troposphere. Note that our
result does not mean that the Tropics preferentially traps
low concentrations. The preferential appearance of low
concentrations in the Tropics is an artifact of the phase
of the initial condition. It so happens that the concen-
tration values which overlap the zonal locations of
weakest tropical mixing are low values. For example,
if the initial condition were sin(2x), rather than cos(2x),

one would see more trapped structures with positive
concentrations. Note that due to the lack of geostrophic
balance in the Tropics the analyzed tropical winds are
not so reliable as that in higher latitudes. But the weak-
mixing behavior, resulting from the winds, is roughly
reasonable.

In Fig. 6 we plot the decay of tracer fluctuation mo-
ments (order 1 to 5) over time corresponding to Fig. 5.
Note that the vertical axis is logarithmic. Let us first
look at the decay of the second-order moment, that is,
tracer variance. It displays all the classic features fa-
miliar from simpler models of advection–diffusion by
flows with dominantly positive Lyapunov exponents,
discussed in Pierrehumbert (1994, 2000) and Antonsen
et al. (1996). There is an initial brief period of no decay,
during which tracer variance is being cascaded down to
a scale sufficiently small for diffusion to be effective.
Thereafter the variance decays exponentially in time at
a rate that is on the order of the most probable Lyapunov
exponents. The emergence of an exponentially decaying
‘‘strange eigenmode’’ in chaotic advection–diffusion
was first predicted in Pierrehumbert (1994), and the phe-
nomenon has recently been experimentally confirmed
by Rothstein et al. (1999).
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FIG. 6. Decay of tracer moments with time in the case of zonal
mixing. FIG. 7. Decay rates of tracer moments as a function of moment

order.

Like the variance decay, all the other moments also
decay exponentially with time, that is,

n^ | u | & } exp(2G t),n (8)

where Gn is the decay rate of the nth moment of u. A
common assumption for the decaying case is that the
shape of the PDF is time invariant, once the abscissa is
rescaled according to the decaying tracer standard de-
viation (Sinai and Yakhot 1989; Yakhot et al. 1990). In
this case P(u, t) 5 f (u/su(t))/su(t), where su is the
standard deviation of u and f is some function. With
this self-similar form of P, the moment decay rates
would be characterized by Gn } n. Fig. 7 shows that
the increase of Gn is clearly slower than linear, however.
Thus, the assumption of a self-similar PDF is clearly
inappropriate over the timescales of present consider-
ation. The flattening of the Gn at large n in Fig. 7 in-
dicates that the probability of extreme concentration
fluctuations decays more slowly in time than would be
expected on the basis of a self-similar collapse of the
PDF.

The time evolution of the PDF, and its deviation from
Gaussianity, can be characterized by the flatness. The
flatness is

4^|u | &
F(t) 5 } exp[2(G 2 2G )t]. (9)4 22 2^|u | &

From Fig. 6, we can calculate the decay rates 2G2 ø
0.1 and G4 ø 0.07. From this we obtain the flatness

F(t) } exp(0.03t), (10)

which grows exponentially with time. This implies that
the tracer field becomes more and more intermittent with
time, in the sense that extreme events become progres-
sively more prominent. Recall that a Gaussian PDF has
flatness F 5 3. According to Eq. (10), non-Gaussian
tails will occur after about day 35 even if the initial
flatness is as small as unity, corresponding to an initial

PDF that has steeper tails tha a Gaussian. For the zonal
mixing case, at day 30, F 5 6.18. This is close to the
flatness of an exponential distribution, 6. Very long time
integrations with idealized flows have shown stretched
exponential tails, which are even more slowly decaying
than the exponential distribution (Pierrehumbert 2000).
The straightforward evolution toward a fixed, large flat-
ness at longer times is not found in our case. For the
zonal mixing case, the PDF over very long timescales
is of little practical interest. First, when the integrations
for the zonal mixing case are extended to 60 days or
beyond, the evolution becomes dominated by remaining
meridional gradients, and the evolution begins to re-
semble the meridional mixing case discussed below.
Second, cross-isentropic diabatic mixing becomes non-
negligible as the length of integration extends beyond
2 months.

The evolution of the PDF of tracer fluctuations is
shown in Fig. 8. The PDF of the initial distribution is
strongly peaked at the extreme concentration values
(Fig. 8a). This initial PDF corresponds to the initial
condition u0 5 cos(2x). Note that the horizontal axis
has been normalized by the root-mean-square (rms) of
tracer fluctuations where u9 5 u 2 ^u&, and 5u9 , u9rms rms

[^u92&]1/2. After 20 days (Fig. 8b), the mixing has blend-
ed positive and negative values and the peak has shifted
to u9/ 5 0, though the range of concentration valuesu9rms

is still broad. By day 40 (Fig. 8c), the PDF has taken
on a shape with a Gaussian core near u9/ 5 20.5u9rms

and two exponential tails. This shape does not change
very much after day 40. The Gaussian core corresponds
to the almost homogeneous part of the tracer field in
Fig. 5, mostly in midlatitudes, while the exponential
tails arise primarily from trajectories having low FTLEs,
such as the trapped structures in the Tropics. The nu-
merical results in Pierrehumbert (2000) indicate a
stretched exponential tail at long times, which is even
more slowly decaying than an exponential, indicating
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FIG. 8. The PDF of tracer fluctuations for the case of zonal mixing. The dotted line is a Gaussian fitting curve that indicates the Gaussian
core of the PDF on 30 Aug. The vertical axis is in logarithm, and the horizontal axis is normalized by the root-mean-square of tracer
fluctuations, u9/ The tracer PDFs are all calculated based on area weighting: (a) day 0 (1 Jul), (b) day 20, (c) day 40, (d) day 60.u9 .rms

that the precise form of the tail depends on the nature
of the flow and perhaps also the length of time the tracer
is allowed to decay, with purely exponential tails tend-
ing to occur at a fairly early stage in the decay process.

From the tracer patterns (Fig. 5), we have found that
tracer mixing proceeds differently in the Northern and
Southern Hemispheres. In order to distinguish the dif-
ference in terms of PDFs, we plot the PDFs for the
northern and southern surf zones (208–508N and 208–
508S, respectively) in Fig. 9. The obvious difference
between the two surf-zone PDFs is that the one in the
Northern Hemisphere (Fig. 9a) has a broader distribu-
tion than the one in the Southern Hemisphere (Fig. 9b).
This is consistent with what we saw in the mixing map
that shows more prevalent and stronger tracer fluctua-
tions in the Northern Hemisphere. The strong asym-
metry of the two PDFs, and bias toward negative fluc-
tuations, is associated with the preferentially, weakly
mixed tracers marked with predominantly negative trac-
er values (cf. the dark-blue areas in midlatitudes in Fig.
5d).

The difference of the surf-zone tracer PDFs is also
consistent with the Lyapunov exponent PDFs in surf
zones. We have discussed in section 4 that the tails of
a tracer PDF are determined by small FTLEs, that is,
the left tail of the FTLE PDF. From Fig. 3, we observe

that the left tail of the Lyapunov exponent PDF in the
northern surf zone (Fig. 3a) consists of much smaller
FTLEs compared with that in the southern surf zone
(Fig. 3b). This means that it is the small FTLEs that
lead to large tracer fluctuations and broad exponential
tails. Additionally, the fact that the Lyapunov exponent
distribution is narrower for the southern surf zone than
that for the northern surf zone is consistent with the
more prominent Gaussian core in the PDF of u in the
south. Thus, comparison of the surf-zone tracer PDFs
with the Lyapunov exponent PDFs further illustrates the
dependence of tracer statistics on Lyapunov exponent
statistics.

To examine the effect of resolution on the tracer fluc-
tuations, we have carried out a zonal mixing calculation
at reduced resolution. As expected from theory, the trac-
er standard deviation after 60 days is reduced, but the
shape of the PDF (not shown) is left unchanged. Spe-
cifically, in reducing the resolution from 30 to 120 km,
the rms tracer fluctuation after 60 days is reduced from
0.390 to 0.187, from which we can estimate the flow-
dependent exponent in (4). It appears that the rms tracer
fluctuation at a fixed time increases in inverse proportion
to the square root of the grid size.

Figure 10 shows the conditional diffusion (Fig. 10a)
and dissipation (Fig. 10b) on 30 August for the zonal
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FIG. 9. The surf-zone PDFs of tracer fluctuations on 30 Aug. The
PDFs are calculated in the same domains as in Fig. 3 and normalized
using the global (a) Northern surf zone, (b) southern surf zone.u9 .rms

FIG. 10. (a) Conditional diffusion, 30 Aug. (b) Conditional
dissipation, 30 Aug.

mixing case. The conditional diffusion is nearly linear
in u, and implies a constant mean decay rate of tracer
fluctuations. A linear conditional diffusion was also ob-
served in laboratory experiments (Pope and Ching
1993), the idealized decaying tracer simulations of Pier-
rehumbert (2000), and a variety of other idealized mix-
ing simulations by Ngan and Pierrehumbert (2000).

Also in common with idealized decaying tracer cases,
the conditional dissipation shows a flat minimum as u
→ 0 and increases monotonically with increasing mag-
nitude of the tracer fluctuation relative to its mean value.
Unlike the idealized cases in Pierrehumbert (2000), the
increase for the case shown is linear in fluctuation, rather
than quadratic. We do not yet have any explanation for
this difference. The range of variation of the conditional
dissipation is pronounced; it increases by a factor of 4
or more between its minimum value and its value at the
2 standard deviation tracer fluctuation. This implies sub-
stantial deviations from Gaussian behavior, with tails
that are considerably more probable than Gaussian.

We can quantify the implied deviation from Gaus-
sianity using the Ching–Kraichnan formula. Based on
Fig. 10, we assume

2 2^¹ u& 5 2 ku, ^ | =u | & 5 a 1 b | u | .u u (11)

Then, Eq. (7) can be evaluated analytically. In the limit
u → 0,

k
2P(u) } exp 2 u , (12)1 22a

which is Gaussian. As u becomes large,

C k1P(u) } exp 2 |u | , (13)1 2b|u | b

which is close to exponential. This suggests a crossover
solution matching the core and tails of P(u):

2C ku1P(u) } exp 2 |u | . (14)1 2a 1 b|u | 2a 1 b

The crossover from Gaussian to exponential behavior
occurs near | u | 5 2a/b. These results are consistent
with the PDF’s in Figs. 8c and 8d. In contrast, a qua-
dratic form of conditional dissipation as shown in Pier-
rehumbert (2000) yields the Sinai–Yakhot shape of trac-
er PDF with algebraic tails, which are even much flatter
than exponential.
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FIG. 11. Snapshots for meridional mixing: (a) day 0 (1 Jul), initial condition u0 5 cos(y); (b) day 20; (c) day 40; (d) day 60.

FIG. 12. Decay tracer moments with time in meridional mixing.
Note that in this case the vertical axis is linear.

b. Meridional mixing

In Fig. 11 we show the evolution of the initial tracer
field u0 5 cos(y), under advection by the flow of July–
August, 1992, where y indicates latitude. The essential

feature to note is that there is substantial mixing within
narrow latitude bands, but that the mixing is unable to
appreciably reduce the mean global gradient even after
60 days. The globe is carved up into a number of mixing
zones, separated by mixing barriers which in some cases
are rather permeable and in other cases are nearly ab-
solute. The mixing barriers between Tropics and extra-
tropics are rather permeable, as witness the erosion of
the red (tropical) band in Fig. 11. Likewise, there is
fairly good mixing throughout the Northern (summer)
Hemisphere extratropical to polar zone. In contrast, the
mixing barrier bounding the winter Antarctic polar vor-
tex is nearly perfect. There is a good deal of mixing
within the Antarctic polar vortex, but mixing across the
barrier, marked by light blue air located between 608
and 708S, is nearly absent. Because the global-scale me-
ridional gradient remains nearly intact, the global tracer
variance hardly decays at all (see Fig. 12).

The tropical region is a repository of relatively un-
mixed high tracer values, which intermittently eject fil-
aments into the surf zones. The effect of the Antarctic
polar mixing barrier is like a solid boundary, while the
effect of the tropical barriers is similar to the effect of
the bottom wall in the Rayleigh–Bénard convection ex-
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FIG. 13. The PDF of tracer fluctuations for meridional mixing. In this case, the initial condition is u0 5 y/90.0. Note that the horizontal
axis is not normalized: (a) day 0 (1 Jul), (b) day 20, (c) day 40, (d) day 60.

periment (Castaing et al. 1989), through which buoy-
ancy forcing from the bottom wall produces anomalous
temperature fluctuations.

The confinement of mixing to distinct meridionally
limited zones shows up also in the PDF of global tracer
concentrations. In order to distinguish Northern Hemi-
sphere from Southern Hemisphere mixing, we evaluated
the PDFs for the initial condition u0 5 y/90 (y is latitude
in degrees), in place of the symmetric initial condition
chosen previously in order to best highlight the tracer
pattern. The evolution of the global PDF is shown in
Fig. 13. Rather than collapsing onto a single peak, the
PDF is multimodal, with one peak corresponding to each
mixing zone. In fact, with the initial condition we have
chosen, the concentration value at which each peak oc-
curs marks the latitude of the center of the corresponding
mixing zone. A calculation of this sort therefore serves
as a quick and simple way to locate the major mixing
barriers of a flow. In this case, there are four mixing
zones: the northern polar extratropics (peak A), the trop-
ical weak-mixing zone (peak B), the southern surf zone
(peak C), and the Antarctic polar vortex (peak D). These
peaks are sandwiched by mixing barriers. After 60 days,
concentration values have become somewhat homoge-
nized within each mixing zone. Mixing between the

zones procedes much more slowly, if at all. Note that
peak B is at the positive side of u, rather than around
u 5 0. This is consistent with Fig. 11d, which shows
that the tropical weak-mixing zone is located at the
northern (summer) side of the equator.

In order to better characterize the PDFs within each
mixing zone, we subtracted off the slowly varying zonal
mean of the tracer field, and computed PDFs for the
tracer deviation within various latitude bands. The con-
centration fluctuations are normalized by the root-mean-
square average of the global tracer fluctuation field. Re-
sults on 30 August are shown in Fig. 14. Both the north-
ern and southern surf zone regions show a small Gauss-
ian core and pronounced exponential tails. Most part of
the PDF curve in the tropical region, on the other hand,
can be fit by Gaussian. The typical tracer fluctuation in
this region has roughly twice the magnitude as for the
southern surf zone, consistently with the weak mixing
in the deep Tropics. The broad Gaussian core in the
Tropics probably arises because the mixing here is still
at a fairly early stage in its development. The funda-
mental timescale is provided by the dominant Lyapunov
exponent, which is small in the Tropics. Experience with
simple models (Pierrehumbert 2000) indicates that ear-
ly-stage mixing rapidly yields a broad Gaussian core,
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FIG. 14. Regional PDFs for meridional mixing, 30 Aug. The normalized PDFs are calculated in different regions. (a) Northern surf zone
(508–208N), (b) Tropics (108N–108S), (c) southern surf zone (208–508S), (d) Antarctic (708–908S).

which gradually develops fatter tails as the ‘‘typical’’
regions decay rapidly and leave behind the more slowly
decaying and rarer extreme fluctuations. The PDF in the
Antarctic region appears noisy, owing to the small num-
ber of effective degrees of freedom in the polar region.
Insofar as a characteristic shape can be discerned, the
tails are even fatter than exponential, and there is some
suggestion of stretched-exponential behavior as in the
late stage decaying results in Pierrehumbert (2000).

The conditional diffusion and dissipation of the tracer
fluctuation field are shown for the northern and southern
surf zones in Figs. 15 and 16. In both cases, the con-
ditional diffusion is linear in the tracer fluctuation. The
linearity of the conditional diffusion indicates that the
tracer variability within each mixing region decays ex-
ponentially in the mean, even though the global total
tracer variance is not significantly decaying. The slope
of the conditional diffusion gives the local decay rate.
Hence, a comparison of the two figures indicates that
tracer fluctuations in the southern surf zone are decaying
at about a third of the rate of those in the northern surf
zone. As discussed before, the strong asymmetry in Fig.
15b is due nonhomogeneous and anisotropic mixing in
the Northern Hemisphere where large negative fluctu-
ations are preferentially found.

Given the linearity of the conditional diffusion, de-
viations from Gaussianity are entirely characterized by
the conditional dissipation. In both surf zones, the con-
ditional dissipation of tracer fluctuation increases line-
arly with the magnitude of the fluctuation, much as for
the zonal decay case. The results imply exponential tails,
as for the zonal case. Taken together, the conditional
statistics and the PDFs indicate that, viewed locally, the
processes governing the evolution of the deviation of
tracers from their zonal mean are essentially the same
as those appearing in the zonal mixing case.

The regionality of the mixing is a consequence of the
presence of mixing barriers. In order to test the ro-
bustness of these barriers, we have conducted a run in
which the winds are modified by artificially increasing
the amplitude of the deviation of the winds from the
zonal mean by a factor of 4, while keeping the zonal
mean wind fixed. This process increases the ability of
the winds to mix across jets. The same technique has
been used by Bowman and Hu (1997) to break mixing
barriers. Since the modified winds do not satisfy dy-
namical equations of motion, this experiment also serves
to test the importance of dynamical constraints on the
wind field, in determining the presence of barriers. The
global PDFs are shown in Fig. 17. It is seen that the
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FIG. 15. Conditional diffusion and dissipation in the northern surf
zone (508–208N). (a) Conditional diffusion, (b) conditional dissipa-
tion.

FIG. 16. Conditional diffusion and dissipation in the southern surf
zone (208–508S). (a) Conditional diffusion, (b) conditional dissipa-
tion.

FIG. 17. Tracer PDF for meridional mixing with modified winds
(y 3 4).

principal difference is that peak B merges into A, in-
dicating the breaking of the winter (evidently weak)
tropical mixing barrier. Peaks C and D survive, indi-
cating a robustness of the corresponding mixing barri-
ers. These barriers are evidently kinematic rather than
dynamical in origin; they may depend on the generic
streamline geometry, but they evidently do not rely on
the wind field satisfying fluid dynamical equations. The
broadening of the PDFs when mixing is enhanced is
precisely opposite to what one would expect in the ab-
sence of mixing barriers. Without mixing barriers, en-
hancing mixing would lead to narrower PDFs, since
enhanced mixing speeds homogenization. Homogeni-
zation is reflected in PDFs as a collapse onto a spike at
the unique concentration value corresponding to the ho-
mogenized state. In the meridional case, enhanced mix-
ing broadens the PDFs by enhancing the range of con-
centration values that can be blended within each mixing
zone.

Although the experiment we have described is freely
decaying, the preservation of the global meridional
gradient makes the behavior similar to a forced-equi-
librium case in which a mean gradient is maintained by
forcing. In our case, the meridional gradient may even-
tually disappear, but until it does, it provides a con-
tinuing source of tracer fluctuations, associated with rare

events that transport air over long meridional distances.
The situation is thus qualitatively similar to that of
stratospheric N2O, since the tropical N2O is kept high
by upward mixing of high N2O air from the troposphere,
while high-latitude N2O is kept low by advection of
photochemically cleansed low N2O air from aloft. One
might thus expect N2O to have similar PDFs to those
seen in our meridional mixing experiment, in view of
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FIG. 18. Regional PDFs of N2O in the SKYHI model. The PDFs were calculated in the same regions as that in Fig. 14. (a) Northern surf
zone, (b) Tropics, (c) southern surf zone, (d) Antarctic.

the fact that N2O is a long-lived tracer. In Fig. 18 we
show the regional PDFs of N2O on the 450 K isentropic
surface in an August simulation carried out with the
SKYHI stratospheric general circulation model [a de-
scription of the SKYHI model can be found in Hamilton
et al. (1995), and N2O mixing in the SKYHI model was
discussed in Nakamura (1996)]. As with the regional
PDFs in the decaying tracer case, we deal with the PDFs
of the deviation of N2O from its zonal mean, and nor-
malize by the global rms average of the fluctuation. The
PDFs were computed for the same regions as used in
the idealized mixing case analyzed in Fig. 14.

The tropical PDF is very narrow, owing to the uni-
formity of the source air. The weak fluctuations there
are well fit by a Gaussian distribution. Mixing of the
tropical air with polar low N2O air gives rise to a dis-
tribution of air with intermediate concentrations in the
surf zones. Both the northern (Fig. 18a) and southern
(Fig. 18c) midlatitude regions show a Gaussian core and
exponential tails, as in the corresponding tracer-decay
simulations shown in Figs. 14a and 14c, and the north-
ern N2O PDF even shows some signs of the same asym-
metry seen in the tracer decay case. However, the ide-

alized simulation does not capture the fact that the north-
ern N2O PDF is markedly narrower than the southern
one, nor does it reproduce the broad, flat tails seen in
the southern distribution at very extreme N2O values.
The N2O PDF in the Antarctic polar vortex is broad and
noisy, and bears little resemblance to the idealized tracer
results.

In section 2, we have argued that the PDF shape is
independent of diffusivity. The appearance of exponen-
tial tails of N2O fluctuations in the SKYHI model sup-
ports this argument, since the SKYHI model has much
lower resolution, 18 3 1.258 in latitude and longitude,
than that of our model.

6. Conclusions

We have shown that concepts arising from theoretical
study of highly idealized fluid mixing situations have
considerably utility in understanding the fluctuations of
a long-lived tracer mixed by realistic stratospheric flow.
A robust feature is the appearance of a Gaussian core
in the probability distribution of small tracer fluctua-
tions, with non-Gaussian ‘‘fat tails’’ of large fluctua-
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tions. The fat tails are a consequence of populations of
tracer that have experienced anomalously weak mixing,
but are independent of the large-scale initial tracer con-
dition. In the present case, the fat tails are generally
exponential. The fat tails imply that for nonlinear chem-
istry large tracer fluctuations are important because
these rare events have much higher probabilities than
random events governed by Gaussian tails.

There is a marked difference between mixing of zonal
variations of tracer and mixing of meridional variations.
Zonal variations decay exponentially, giving rise to un-
imodal concentration PDFs. This is so because there are
no barriers to zonal mixing.

Within the 2-month period, meridional variations do
not homogenize globally. Rather, they homogenize
within distinct mixing zones bounded by mixing barriers
of varying permeability. This gives rise to a multimodal
PDF, with one peak for each distinct mixing region. The
computation of PDFs evolving from an initially merid-
ional tracer gradient provides a convenient means for
locating mixing barriers, and characterizing their per-
meability. Within each mixing zone, the character of the
mixing is similar to the zonal mixing case, once one
takes into account the limited range of concentration
values that are being mixed. PDFs of stratospheric N2O
in the SKYHI general circulation model bear a strong
resemblance to the PDFs appearing in our meridional
mixing calculation, indicating that the N2O are governed
by advection–diffusion, and can be understood on the
basis of generic properties of the advection–diffusion
problem with underlying chaotic trajectories.

The probability distribution of finite-time FTLEs of
the trajectory problem associated with the wind field
provides a useful characterization of the key mixing
properties, even though we are dealing with advection–
diffusion rather pure advection. It is the low-stretch tail
of the PDF of FTLEs that determines the rate at which
tracer fluctuations decay and the prevalence of anom-
alously weak mixing giving rise to fat tails of the con-
centration PDF. The narrower the PDF of FTLEs, the
more dominant is the Gaussian core of the concentration
PDF. We emphasize that fat tails in the concentration
PDF do not rely on non-Gaussian behavior of the FTLE
PDF.

We have also demonstrated the utility of diagnosing
the mixing in terms of the averages of diffusion and
dissipation, conditioned on tracer concentration values.
In both the meridional and zonal mixing cases, the con-
ditional diffusion is linear in tracer value, indicating a
mean exponential decay of local tracer fluctuations. The
conditional dissipation is an average of a positive-def-
inite quantity, and contains important information about
the fluctuations in tracer decay rate. It is the conditional
dissipation that characterizes the non-Gaussian behavior
of the concentration PDF. In present case, the condi-
tional dissipation is linear in the absolute value of con-
centration fluctuation, after a two-month model run; this
leads to exponential tails in the concentration PDF.

Our results provide some insight as to the way in
which diffusivity (a proxy for model resolution) affects
the concentration PDF. For a large-scale initial condi-
tion, the time for the tracer to begin dissipating increases
logarithmically with the inverse of the diffusivity, that
is, increases logarithmically with increasing model res-
olution. After this initial transient adjustment time, the
theoretical arguments and simulation results suggest that
the PDF for the decaying tracer attains a resolution-
independent asymptotic shape, though its overall width
is resolution-dependent. Theory indicates that the root-
mean-square tracer fluctuation at a fixed time should
increase inversely with an order-unity power of the grid
size. The expected increase was confirmed numerically
for decay of zonal fluctuations, and the simulations sug-
gest a square root power law. The resolution effect arises
simply from the increase in mix-down time with reso-
lution, which increases the delay before exponential de-
cay sets in. The long-term exponential decay rate is not
itself affected by resolution.

The resolution dependence for a tracer field main-
tained by sources and sinks may differ considerably
from that of the freely decaying case we have studied.
This is particularly likely when the sources and sinks
of tracer are separated by a partial transport barrier, in
which case the tracer variance is largely determined by
the rate of leakage of tracer across the barrier. We sus-
pect that the behavior of leakage through the polar vor-
tex edge may account for much of the strong resolution
effects on maximum Arctic active chlorine concentra-
tion, seen in Edouard et al. (1996). Active chlorine is
also a rather short-lived tracer compared to character-
istic mixing times, and so it could well be affected by
resolution-dependent transient effects. These possibili-
ties will be explored in future work, involving tracers
maintained by sources and sinks, and ultimately tracers
with finite lifetimes.

The use of PDFs provides a powerful diagnostic tool,
a basis for comparing general circulation models with
data, and a way for diagnosing the portion of errors that
are due to errors in modeled circulations (via compar-
isons of the Lyapunov PDFs). Our results indicate that
the PDFs in the decaying case contain little information
about the nature of the small-scale dissipation, but that
they do reflect information about the configuration of
mixing regions, their permeability, and the Lagrangian
mean strain rate of the advecting flow. Ultimately, the
PDF methods may prove useful in developing param-
eterizations of the effect of subgrid tracer fluctuations
on chemical reactions.
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