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ABSTRACT

The probability distribution function (PDF) of a passive tracer, forced by a “mean gradient”, is stud-
ied. First, we take two theoretical approaches, the Lagrangian and the conditional closure formalisms, to
study the PDFs of such an externally forced passive tracer. Then, we carry out numerical simulations
for an idealized random flow on a sphere and for European Center for Medium-Range Weather Forecasts
(ECMWF) stratospheric winds to test whether the mean-gradient model can be applied to studying strato-
spheric tracer mixing in midlatitude surf zones, in which a weak and poleward zonal-mean gradient is
maintained by tracer leakage through polar and tropical mixing barriers, and whether the PDFs of tracer
fluctuations in midlatitudes are consistent with the theoretical predictions. The numerical simulations show
that when diffusive dissipation is balanced by the mean-gradient forcing, the PDF in the random flow and
the Southern-Hemisphere PDFs in ECMWF winds show time-invariant exponential tails, consistent with
theoretical predictions. In the Northern Hemisphere, the PDFs exhibit non-Gaussian tails. However, the
PDF tails are not consistent with theoretical expectations. The long-term behavior of the PDF tails of the
forced tracer is compared to that of a decaying tracer. It is found that the PDF tails of the decaying tracer
are time-dependent, and evolve toward flatter than exponential.
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1. Introduction

Tracer mixing is one of the important problems in
atmospheric sciences, and one of the central problems
in tracer mixing is to charaterize small-scale fluctu-
ations of tracer concentrations. In the past decade,
probability distribution functions (PDFs) of tracer
fluctuations have been used extensively in turbulence
research, such as laboratory experiments (Castaing et
al., 1989; Jayesh and Warhaft, 1992; Gollub et al.,
1991; Warhaft, 2000) and theoretical works (Sinai and
Yakhot, 1989; Pumir, 1994; Majda, 1993; Shraiman
and Siggia, 1994; Chertkov et al., 1995; Sreenivasan
and Antonia, 1997; Balkovsky and Fouxon, 1999; Ma-
jda and Kramer, 1999; Pierrehumbert, 2000; Shraiman
and Siggia, 2000). These experimental and theoretical
studies have shown that small-scale tracer fluctuations
have a Gaussian core and non-Gaussian tails in either
turbulent or chaotic flows. The non-Gaussian tails in-
dicate that tracer fluctuations with large concentration
values are not random events and thus can not be ne-

glected. This has important implications for nonlin-
ear atmospheric chemistry, because nonlinear chem-
ical reactions have reaction rates that are sensitive
to large fluctuations of chemical species and not just
mean chemical concentrations. A typical example is
the nonlinear stratospheric ozone chemistry, in which
ozone destruction rates are sensitive to large fluctua-
tions of chlorine products (Edouard et al., 1996). An
appreciation of the importance of mixing in determin-
ing ozone destruction can be obtained from Tan et al.
(1998).

Hu and Pierrehumbert (2001, 2002) introduced and
extended the ideas of tracer PDFs arising from ideal-
ized models to tracer mixing in realistic atmospheric
flows. Although atmospheric flow is complex with the
presence of transport barriers, anisotropy, and various
sources and sinks, and is distinct from turbulent flows
in laboratory experiments or idealized flows used in
theoretical works, yet Hu and Pierrehumbert (2001)
found close similarity in the PDF shape between a
freely decaying tracer and those frequently reported
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from experiments and theoretical works, i.e., the PDF
has a Gaussian core and “fat tails”. Here, “freely
decaying” means that there is no external forcing or
damping, and the tracer freely decays due to diffu-
sive dissipation. For example, the moments of tracer
concentration fluctuations, 〈|θ|n〉, decay exponentially
with time, i.e., 〈|θ|n〉 ∝ exp(−Γnt) (Here, Γn is the
decaying rate). The term of “fat tails” indicates that
large tracer fluctuations have higher probability than
normally distributed random events.

However, the real situation in the atmosphere is
that most tracers are not subject to freely decaying.
Instead, the variances of many long-lived (passive)
tracers are maintained by various sources against dif-
fusive dissipation. For example, tracers, such as N2O,
CH4, and Chlorofluoro carbins (CFCs), have sources
at the ground and sinks in the upper stratosphere.
Their mixing ratios decrease with height in the strato-
sphere. Upwelling in the tropics slowly transports
tracer-rich air from the troposphere, while downward
motion in polar regions transports tracer-poor air from
aloft. Therefore, for the kinematics of a tropospheric-
source tracer on isentropic surfaces, the tropics and
polar regions act as the source and sink, respectively,
whereas the mid-latitude surf zones, bounded by trop-
ical and polar mixing barriers, constitute the mixing
vessels. As a result of the interaction of the source-sink
and mixing, in a statistically steady state a weak zonal-
mean poleward gradient of the tracer is maintained
inside the mid-latitude surf zones, and the small-scale
structures of the tracer fluctuate over this zonal-mean
background gradient. As we shall show in the next
section, the maintenance of the mean gradient pro-
vides us with a short-hand tool for studying the PDF
of tracer fluctuations without directly dealing with the
boundary conditions in determining how the tracer is
injected into the surf zones. The purpose of the present
paper is to study the PDF of a passive tracer that is
driven by the lower stratospheric flow in the presence
of such a “mean-gradient forcing”.

The concept of such a “mean-gradient forcing” has
been commonly applied to turbulence research in lab-
oratory experiments. In Rayleigh-Benard convection
experiments (Castaing et al., 1989), it is assumed that
a mean vertical temperature gradient is maintained
by the temperature difference between the top and
bottom walls, and that temperature fluctuations pro-
duced by buoyancy forcing from the bottom wall are
assumed to be generated from the mean background
temperature gradient. In wind tunnel experiments
(Gollub et al., 1991; Jayesh and Warhaft, 1992), it
is assumed that a mean temperature gradient is main-
tained by a fixed temperature difference between two
boundaries. In these experiments, the PDF of tem-

perature fluctuations, deviating from the background
mean temperature, is characterized by a Gaussian core
and exponential tails. Theoretical studies (Yakhot et
al., 1990; Shraiman and Siggia, 1994) and numerical
simulations (Holzer and Siggia, 1994; Pumir, 1994) are
also based on the concept of the mean-gradient forc-
ing. In Hu and Pierrehumbert (2001), it was pointed
out that mixing barriers in the subtropical and sub-
polar stratosphere help maintain high and low tracer
concentrations in the tropics and the polar regions,
respectively, and that tracer mixing in midlatitudes is
like the case with an external mean-gradient forcing.

In the present paper, we study the PDFs of a N2O-
like passive tracer inside the mid-latitude surf zones,
by artificially forcing the tracer in the tropics and po-
lar regions. We shall start from theoretical consider-
ations, with two different approaches: the Lagrangian
and the conditional closure formalisms. In the former,
the advection-diffusion problem is studied by evaluat-
ing the trajectory history of Lagrangian particles, and
the PDF of tracer fluctuations is derived from the PDF
of Lyapunov exponents. In the latter, tracer PDFs are
solved from the PDF transport equation that is deter-
mined by averaging diffusive dissipation and forcing
conditioned on tracer concentrations. Then, in sec-
tion 3 we test the theoretical predictions by carrying
out numerical simulations with an idealized random
flow on a sphere and realistic stratospheric winds on
the 420 K isentropic surface from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF).
Details of the numerical scheme and data source can
be found in Hu and Pierrehumbert (2001). In section
3.3, we compare the long-term behavior of the PDF of
a freely decaying tracer with that of the forced tracer.
Conclusions are presented in section 4.

2. Theoretical considerations

2.1 The Lagrangian formalism

The governing equation for tracer advection and
diffusion is

∂Θ
∂t

+ v · ∇Θ = κ∇2Θ , (1)

where Θ indicates the concentration or mixing ratio of
a passive tracer, v is velocity and satisfies the incom-
pressible condition ∇ · v = 0, and κ is diffusivity. In
the theoretical discussion here, κ indicates the molec-
ular diffusivity. In the numerical simulations, κ indi-
cates the numerical diffusivity, and its value depends
on the numerical resolution. Because diffusion is the
only process that dissipates the passive tracer, dissi-
pation is also called diffusive dissipation in the present
paper.



NO. 2 HU 3

We are generally interested in the advection-
diffusion problem with two more restrictions: the large
Peclet number limit, i.e., Pe = (V L)/κ À 1, and spa-
tially smooth flow, that is, the velocity gradient ma-
trix has finite eigenvalues or |v(x + r) − v(x)| ∝ r,
where V and L are the characteristic scales of velocity
and eddy length, respectively, and k is the horizontal
wavenumber. Here, the condition of large Peclet num-
ber requires that the advective effect dominates the
diffusive effect. The condition of spatially smooth flow
is used to guarantee the Lyapunov exponent, which
will be used below, to be defined. As pointed out
by Pierrehumbert (2000), if this condition is not sat-
isfied, there exist singularities for velocity gradients
|∇v|, i.e., strains of the flow or the eigenvalues of |∇v|
can be infinite, i.e., s(t) → ±∞. Recall that Lyapunov
exponents are defined by the time integral of strains,
λ = 1

T

∫ T

0
s(t)dt (Pierrehumbert and Yang, 1993). A

non-smooth flow would lead to undefined Lyapunov
exponents over small spatial scales.

Consider a constant mean-gradient −G =
∂Θ̄(y)/∂y in the meridional direction and 0 < G ¿
|∇θ| (e.g., zonal mean tracer concentration Θ̄(y) de-
creases with y, and local tracer gradients, ∇θ, are not
swamped by the mean gradient G). Tracer fluctua-
tions deviating from the zonal mean Θ̄(y) can be de-
fined by the relation

Θ(x, y, t) = −Gy + θ(x, y, t) . (2)

Note that Θ = −Gy is a steady-state solution for
Eq.(1), as the meridional component of v is zero. Sub-
stituting Eq. (2) into Eq. (1), we obtain the advection-
diffusion equation for tracer fluctuations θ(x, y, t)

∂θ

∂t
+ v · ∇θ = κ∇2θ + Gv . (3)

The term Gv acts as a forcing for tracer fluctuation
θ(x, y, t). This forcing means that tracer fluctuations
are generated by the meridional component of velocity,
v, which moves tracer parcels from one latitude to an-
other. In the steady state, the variance of tracer fluc-
tuations, θ2, is maintained by the balance between θ
production (Gv) and diffusion (κ∇2θ) and is bounded
by G2L2. Here, “·” indicates space or ensemble av-
erage of a quantity, to be distinguished from 〈·〉θ for
conditional averages.

Under the condition of large Peclet number limit,
the forced tracer field experiences two stages: (1) ad-
vection (stretching and folding) and (2) a steady state
with a balance between forcing and diffusive dissipa-
tion. The two stages are separated by the dissipation
time

t∗ =
1
λ

ln
(

L

rd

)
, (4)

where λ is Lyapunov exponent, and

rd =
√

κ

λ
(5)

is the diffusive scale.
When t < t∗, the advective effect dominates, and

the diffusive effect can be neglected. For initial condi-
tion θ(x, y, 0) = 0 or Θ(x, y, 0) = −Gy, tracer fluctua-
tions grow with time under forcing Gv, i.e., θ = Gδy,
where δy is a small displacement in the meridional di-
rection. Because tracer parcels are driven by random
forward and back motions, their net motions in the
meridional direction are diffusion-like and quite slow,
i.e., δy ∝ t

1
2 , rather than δy ∝ t. Thus, the growth

of tracer fluctuations is θ(t) ∝ t
1
2 . Being driven by

random motions, the probability distribution function
for the meridional displacement of tracer parcels, δy,
is Gaussian. Since θ ∝ δy, the PDF of tracer fluctua-
tions at t 6 t∗ should also be Gaussian, i.e.,

P (θ, t) =
1√
2πct

exp
(
− θ2

2ct

)
, (6)

where ct = θ2(t) denotes the tracer variance [Result
(6) is the solution of equation ∂P (θ,t)

∂t = c∂2P (θ,t)
∂θ2 ].

Discussion on this can be found in many text books
on random walk and Brownian motion, for example,
Kadanoff (2000) or Pope (2000). Equation (6) yields
a non-stationary distribution. As time progresses, the
PDF becomes wider and wider and shifts toward high
fluctuations. In the case without diffusion, large tracer
fluctuations arise from random motions persistently
against the mean gradient. However, one shall find
below that when diffusion takes place, large tracer fluc-
tuations are not primarily caused by such random mo-
tions.

As t > t∗, the diffusive effect takes place and
tends to dissipate tracer fluctuations. In this stage,
the growth of the tracer value is still t

1
2 as be-

fore, while diffusive dissipation is proportional to
exp(−λt+) [see discussion in Hu and Pierrehumbert
(2001, 2002)], where t+ = t − t∗. The value of
the tracer parcel involves with time in the way of
θ(t) = θ(t∗)t∗

1
2
+ exp(−λt+). Since the decay of the

tracer parcel is exponential, which is much faster than
the growth, the value of the tracer will rapidly dis-
sipate away after t = t∗, i.e., θ(t) ≈ θ(t∗) exp(−λt+).
Thus, t∗ is the “life time” of the tracer parcel, at which
the concentration value of the tracer parcel reaches its
maximum value. At the statistical steady state for the
whole tracer field, if all tracer parcels were determined
by a single time t∗, the PDF for t > t∗, P (θ, t), would
still be Gaussian, with variances θ2 ∝ t∗, no matter
how long the trajectories are integrated. However,
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the fact is that each tracer parcel occupies a differ-
ent t∗, which is determined by λ through Eq. (4), and
thus has a different value. For example, for two tracer
parcels with the same initial concentration value, the
one with a smaller Lyapunov exponent has a longer
“life time”. In order to obtain the PDF of tracer fluc-
tuations in the statistical steady state, the probability
of t∗ for all tracer parcels, Pt(t∗), needs to be taken
into account. This can be realized by averaging (6)
over the probability of t∗, as follows,

P (θ) ∝
∫ ∞

0

Pt(t∗)
1√
t∗

exp
(
− θ2

2ct∗

)
dt∗ . (7)

Pt(t∗) can be obtained from the PDF of Lyapunov ex-
ponent. Chertkov et al. (1995) showed that Pλ(λ, t)
has the Gaussian form, i.e.,

Pλ(λ, t) ∝ t
1
2 exp[−σλ(λ− λ̄)2t] , (8)

where λ̄ is the mean Lyapunov exponents, and σλ mea-
sures the variance of Lyapunov exponents. Using Eq.
(4) in Eq. (8) and substituting the result into Eq. (7),
we have

P (θ) ∝
∫ ∞

0

exp

{
− 1

t∗

[
σλ

(
ln(

L

rd
)
)2

+
θ2

2c

]
−

2σλ ln
(

L

rd

)
λ̄− σλλ̄2t∗

}
dt∗ . (9)

The integral in Eq. (9) can be approximated using the
method of steepest decent at the saddle point

t∗c =
1
λ̄

√[
ln

(
L

rd

)]2

+
θ2

2σλc
. (10)

For small θ, i.e.,

θ√
2σλc

¿ ln
(

L

rd

)
,

Eq. (10) approximates

t∗c1 ≈
1
λ̄

ln(
L

rd
) .

Substitution of t∗c1 back into Eq. (9) yields a Gaussian
core

P (θ) ∝ exp


−

1

2c ln
(

L

rd

) λ̄θ2


 . (11)

For large θ, i.e,

|θ|√
2σλc

À ln
(

L

rd

)
,

Eq. (10) approximates

t∗c2 ≈
|θ|

λ̄
√

2σλc
.

Substitution of t∗c2 into (9) yields exponential tails

P (θ) ∝ exp

[
−

(
2σλ

c

) 1
2

λ̄|θ|
]

. (12)

The exponential distribution of large tracer fluctu-
ations can also be interpreted in an alternative way.
Applying Eq. (4) to Eq. (8), one can directly obtain

Pt(t∗) ∝ exp(−σλλ̄2t∗) (13)

for large t∗, since from Eq. (8) it is required that λ ¿ λ̄
for an anomalously large t∗. Substitution of this rela-
tion into Eq. (7) yields the same result as Eq. (12).
Eq. (13) indicates that the probability of these long
“life times” has an exponential distribution. In other
words, large tracer fluctuations have an exponential
probability distribution.

Several points deserve further discussion to illus-
trate the physical essence of the results in Eq. (11)
and Eq. (12). First, large tracer fluctuations result
from small Lyapunov exponents that lead to anoma-
lously slow diffusive mixing. This can be illustrated as
follows. Since t∗c2 > t∗c1 and

t∗c1 ≈
1
λ̄

ln
(

L

rd

)
,

the corresponding optimal Lyapunov exponent

λc2 =
1

t∗c2
ln

(
L

rd

)

must be less than λ̄. Thus, the exponential tails of
P (θ) or large tracer fluctuations arise from small Lya-
punov exponents or the left tail of Pλ(λ). By con-
trast, large Lyapunov exponents, i.e., these close to
and larger than the mean Lyapunov exponent, λ̄, [the
core part and the right tail of Pλ(λ)], lead to small θ
and give rise of the Gaussian core of P (θ).

Second, from Eq. (12), it is clear that the exponen-
tial tails are not a function of time. This is different
from the PDFs in the freely decaying case (Hu and
Pierrehumbert, 2001), in which the tails becomes flat-
ter and with time.

Third, large tracer fluctuations are not primarily
caused by persistent motions against the mean back-
ground gradient. Instead, large fluctuations are asso-
ciated with these tracer parcels, which have small Lya-
punov exponents and move along typical trajectories.
This is because the growth of tracer values from ran-
dom motions, t

1
2 , is much slower than the exponential
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decay, exp(−λt), after the diffusive effect takes place.
In addition, since these persistent motions against the
mean gradient are random events, large tracer fluc-
tuations generated by these random motions have a
Gaussian distribution, not an exponential one.

Finally, it is important to point out that in the
above derivations we have assumed that the driving
flow has δ-time correlation. This assumption allows
us to use the relation between t∗ and rd, i.e., Eq. (4),
and the PDF of Lyapunov exponents for obtaining
the statistics of tracer fluctuations. If the flow has
a finite-time correlation, t∗ and rd depend on the sta-
tistical properties of the strains that a tracer parcel
experienced, and Eq. (4) may not be valid. This is
physically addressed in Hu and Pierrehumbert (2001).
Considering that the stratospheric flow has a realistic
time interval of correlation, we will numerically test
to what extent tracer PDFs in the stratosphere are
consistent with the theories.

2.2 The conditional closure formalism

In this approach, the starting point is the steady
state at which tracer mixing is balanced between ex-
ternal forcing and diffusive dissipation, regardless of
detailed processes of tracer mixing from large to small
scales. The PDF of tracer fluctuations is solved from
the PDF transport equation that is derived from the
governing advection-diffusion equation.

For general consideration, we derive the PDF
transport equation with an implicit external forcing
F which is independent of θ. We shall bring the spe-
cific form, Gv in Eq. (3), back to replace F when we
are ready to solve the equation. With forcing F , Eq.
(3) is rewritten as

∂θ

∂t
+ v · ∇θ = κ∇2θ + F . (14)

There are many ways to derive the PDF transport
equation of motion in the presence of forcing (see
Yakhot et al., 1990; Ching and Kraichnan, 1998;
Pierrehumbert, 2000). In this study, we derive the
PDF equation from the area-tracer relationship. This
method was developed by Nakamura (1996) for quanti-
fying effective diffusivity in two-dimensional flows and
has proved to be very useful for diagnosing tracer mix-
ing and mixing barriers in the stratosphere (Allen et
al., 1999; Haynes and Shuckburgh, 2000). By follow-
ing Nakamura (1996), an area bounded by a contour
of θ is defined as

Aθ(θ, t) ≡
∫∫

θmin6θ∗6θ

dxdy (15)

where θ∗ is a descriptor of tracer contours. Aθ(θ, t) in-
dicates the area between contours θmin and θ at time t.

In the area coordinate, the PDF of tracer θ is defined
as

P (θ, t) ≡ ∂Aθ

∂θ
, (16)

since the probability of sampling a value between θ
and θ + δθ is the fraction of the area bounded by the
two contours θ∗ = θ and θ∗ = θ + δθ. The average
of any quantity “·” over the area enclosed by two in-
finitesimally adjacent θ-contours is defined as

〈·〉θ ≡ ∂

∂Aθ

∫∫

θmin6θ∗6θ

(·)dxdy . (17)

This θ-area-averaged 〈·〉θ is called a conditional quan-
tity, since it is an average conditioned on θ (In practice,
to obtain meaningful statistics, a sufficiently large δθ
is necessary for sampling enough independent realiza-
tions for area averages). With these, we can derive
the PDF transport equation following the method of
Nakamura (1996). The equation is

∂

∂t
P (θ, t) = − ∂2

∂θ2
[〈κ(∇θ)2〉θP ]− ∂

∂θ
〈F 〉θP . (18)

In this equation, 〈κ|∇θ|2〉θ is the conditional dissipa-
tion, and 〈F 〉θ is the conditional forcing. Both are
conditioned on θ. For convenience, the former is indi-
cated by 〈D〉θ.

When external forcing is balanced by diffusive dis-
sipation, the tracer field reaches a steady state. The
PDF equation then becomes,

∂2

∂θ2
[〈D〉θP ] +

∂

∂θ
[〈F 〉θP ] = 0 . (19)

Integrating Eq. (19) twice, we obtain a general solu-
tion for the tracer PDF

P (θ) =
C

〈D〉θ exp

(
−

∫ θ

θmin

〈F 〉θ
〈D〉θ dθ∗

)
, (20)

where C is a normalization constant. Note that we
have assumed the integral constant of the first integral
equals zero. It is equivalent to ∂Aθ/∂t = 0, meaning
that not only the PDF but also the areas enclosed
by any θ-contours are steady. Eq. (20) simply states
that the tracer PDF is determined by conditional dis-
sipation and forcing. If the two conditional variables
are known, solution (20) can be evaluated explicitly.
The general solution of the PDF for a forced tracer is
similar to the Ching-Kraichnan formula for a decaying
tracer [see Eq. (7) in Hu and Pierrehumbert (2001)],
except that the conditional diffusion in their formula
is replaced by conditional forcing with a negative sign.
We shall see that what makes the PDF of a forced
tracer different from that of a decaying tracer is the
difference in the conditional dissipation between the
two cases.
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For conditional forcing, using the specific forcing
F = Gv, we have

〈F 〉θ = G〈v〉θ . (21)

Thus, the problem of the conditional forcing is reduced
to that of conditional velocity 〈v〉θ. In a steady state,
multiplying (3) by θ and taking spatial average yield

κ(∇θ)2 = Gvθ . (22)

Since the left-hand side is always positive, for N2O-like
tracers, G > 0, vθ > 0 in the Northern Hemisphere,
and G < 0, vθ < 0 in the southern hemisphere. In
other words, the mean tracer flux is always toward
the poles. This means that in the northern (southern)
hemispherethe averaged velocity over the area where
θ > 0 is positive (negative), while over the area where
θ < 0, it is negative (positive). Assuming symmetry in
the tracer statistics between positive and negative θ,
we can expect an odd-symmetry, 〈v〉θ = −〈v〉−θ. Such
a relationship can also be directly deduced from Eq.
(20). Assume that P (θ) and 〈D〉θ are both symmetric
about θ = 0. 〈F 〉θ must be anti-symmetric with re-
spect to θ = 0, i.e., 〈v〉θ = −〈v〉−θ, and local Taylor
expansion of 〈v〉θ at θ → 0 yields a linear relationship
between 〈v〉θ and θ

〈v〉θ = qθ , (23)

where q is constant (In the next section, we will show
that this local linear relationship is actually valid for
an appreciable range of θ). Then, we have

〈F 〉θ = Gqθ = Kθ , (24)

where K = Gq.
Conditional dissipation 〈D〉θ = 〈κ(∇θ)2〉θ must be

a positive even function of gradients since it is the con-
ditional average of squared tracer gradients. We can
use the first two orders of an even function of θ,

〈D〉θ = a + b|θ| , (25)

〈D〉θ = a + bθ2 , (26)

where a and b are both constants, as test functions
for the conditional dissipation. We will see in numeri-
cal simulations below that slope b can be different for
θ > 0 and θ < 0.

Having known 〈F 〉θ and 〈D〉θ, we are able to ob-
tain an explicit steady-state PDF solution. For small
|θ|, i.e, |θ| ¿ a/b, substituting 〈D〉θ ≈ a and Eq. (24)
to Eq. (20), we have

P (θ) ∝ exp
(
−K

2a
θ2

)
. (27)

For |θ| À a/b, substitution of Eq. (24) and Eq. (25)
into Eq. (20) yields

P (θ) ∝ (a + b|θ|)Ka
b2
−1 exp

(
−K

b
|θ|

)
. (28)

Since the exponential term in Eq. (28) is the domi-
nant part, the PDF has exponential tails. |θ| = a/b
is the cross-over point between the Gaussian core and
exponential tails. Ratio K

b is the fall-off rate of the
PDF. If we choose relation Eq. (26) for conditional
dissipation, for θ2 ¿ a/b, we have a Gaussian core,
same as Eq. (27). For θ2 À a/b, the solution is

P (θ) ∝ 1

(a + bθ2)1+
K
2b

, (29)

which is the same as Sinai and Yakhot’s solution for a
decaying tracer (Sinai and Yakhot, 1989), except that
here K is the slope of condition forcing, instead of the
slope of conditional diffusion. This PDF has algebraic
tails which are flatter than exponential.

The parabolic relationship for conditional dissipa-
tion was first suggested by Eswarson and Pope (1988)
based on their numerical simulations for a decaying
tracer in a turbulent flow. Sinai and Yakhot (1989)
used this parabolic relationship and obtained solution
(29). This parabolic shape of conditional dissipation
was also observed for a decaying passive tracer in a
lattice model (Pierrehumbert, 2000). Interestingly, the
parabolic relation was never observed in a wind tunnel
or Rayleigh-Benard convection experiments (Jayesh
and Warhaft, 1992; Ching, 1996). Instead, these ex-
periments all reported a linear relation. It is presum-

−6 −4 −2 0 2 4 6
−6

−4

−2

0

L
o
g
P

θ

Fig. 1. Comparison of PDFs from Eqs. (28) and (29).
The solid-curve is for Eq. (28), and the dashed-dotted-
curve is for Eq. (29), with a = 1.0, b = 0.8, and K = 5.0.
The dashed-curve is also for Eq. (28), with different pa-
rameters a = 1.0, b = 2.0, and K = 5.0 the dotted-curve
is a Gaussian distribution.
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Fig. 2. (a) Snapshot of an artificially forced passive tracer driven by
an idealized random flow on a sphere at day 40, and (b) zonal-mean
profile of tracer concentration corresponding to the snapshot.

ably because these experiments present the case with
forcing. Based on both laboratory experiments and
the most recent numerical results, it appears that
the parabolic approximation for conditional dissipa-
tion only represents the asymptotic behavior for a
decaying tracer at sufficiently long times. By con-
trast, Eq. (25) is an approximation for a forced tracer
in which conditional dissipation does not change any
more once the steady state is reached. In Hu and Pier-
rehumbert (2001), we also found a linear relation for
a decaying tracer in the case of zonal mixing in a two-
month simulation with stratospheric winds. Later, we
will show that for longer-time simulations the condi-
tional dissipation in our decaying case evolves from
linear to parabolic.

To distinguish the PDF shapes between solutions
(28) and (29), we plot the solutions in Fig. 1. The dot-
ted curve is a Gaussian distribution for comparison.

The solid curve represents solution (28), which shows
a small Gaussian-like core and exponential tails. The
dashed-dotted curve is for solution (29). It shows con-
cave tails, flatter than exponential. The dashed curve
is also for solution (28), however, with a greater slope
for conditional dissipation. In this case, the exponen-
tial tails are more dominant, while the Gaussian core
is not evident. The numerical results below show that
solution (29) is for a decaying tracer, not adequate for
the case with forcing.

3. Numerical results

3.1 Tracer PDF in an idealized random flow

To test the theoretical predictions, we first carry
out a numerical simulation in which a forced passive
tracer is driven by a large-scale random flow on a
sphere. The streamfunction of the random flow is con-
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Fig. 3. PDF and conditional quantities for a forced pas-
sive tracer in the random flow. (a) Conditional velocity,
(b) conditional dissipation, and (c) PDF of tracer fluc-
tuations. The vertical axis in (c) is in logarithm, and
the horizontal axis is normalized by the root-mean-square
(rms) of the tracer fluctuations.

structed using spherical harmonics, i.e.,

ψ(Λ, φ, t) =
N∑

n=0

n∑
m=−n

ψm,n(t)Ym,n(Λ, φ) , (30)

where ψ, ψm,n(t),Λ, φ, and Ym,n indicate streamfunc-
tion, spectrum amplitude, longitude, latitude, and
spherical harmonic, respectively. To make the flow
random, we add a random zonal phase δΛ(t) ∈ [0, 2π]
to amplitude ψm,n(t)

ψm,n(t) = BeiδΛ(t) , (31)

where B = 6R, and R is the earth’s radius. The
random phase is updated each 6 hours. Since we are
concerned with tracer mixing in a large-scale random
flow, we pick the first few modes of spherical harmon-
ics, n = 0, . . . , 6, and m = −6, . . . , 6, using triangular
truncation. Note that this random flow is unrealistic.
There are no jets or barriers to mixing, though mixing
across the equator is relatively weak.

A passive tracer is initially arranged on the sphere
with Θ0 = − sin(φ). Subsequently, tracer concentra-
tion values inside the polar regions are fixed, with 1.0
for 80◦–90◦S and −1.0 for 80◦–90◦N. Note that the
tracer is forced in such a way to test whether the mean-
gradient model works and whether the PDF of the
forced tracer is consistent with the theoretical predic-
tions. In the simulation with ECMWF winds below,
the tracer is forced in a more realistic way. Figure 2a
shows a snapshot of the tracer field in the random flow
(t=40 days). The snapshot shows that tracer filaments
are stretched out from polar regions into lower lati-
tudes, where the filaments cascade into smaller scales
and will eventually disappear due to diffusive dissipa-
tion. New filaments are generated as the old ones are
dissipated away. The repeated injection of the polar
tracer maintains tracer variances in the mixing zone.
Figure 2b shows the zonal-mean profile of the tracer
field in the snapshot. The weak slope between 70◦S
and 70◦N indicates the existence of the mean north-
ward meridional gradient.

Figure 3a shows the scatter of conditional velocity
between 60◦S and 60◦N corresponding to the snapshot.
The plot clearly shows a linear relationship between
the conditional velocity and normalized tracer fluctu-
ations θ/θrms, consistent with the proposed relation of
Eq. (24). The linear approximation of the conditional
velocity appears to be valid only within the range of
−2.0 < θ/θrms < 2.0. Beyond this range, the con-
ditional velocity tends to be saturated. This behavior
could be related to some tracer filaments near the forc-
ing boundaries, where motions of tracer parcels may
not be random. These filaments have anomalously
large concentration values, but are rare and unimpor-
tant. Figure 3b shows the scatter of the conditional
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Fig. 4. Snapshot of a forced tracer driven by ECMWF winds, Septem-
ber 10, 1992. (a) Mixing map and (b)zonal-mean profile of tracer con-
centration.

dissipation, which increases approximately linearly
with |θ|. This suggests that the relation in Eq. (25)
is more representative of conditional dissipation than
that in Eq. (26). The linear relation of the conditional
dissipation is valid over the range of −2.5 < θ/θrms <
2.5. Large fluctuations at the ends of the scatter plot
are associated with filaments near the forcing bound-
aries. Figure 3c shows the PDF of tracer fluctuations
at day 40. The solid curve is the PDF of tracer fluctua-
tions, and the dotted-curve is a Gaussian fitting-curve
for comparison. The plot clearly shows a small Gaus-
sian core and exponential tails. The PDF is consistent
with solution (28), but appears not to agree with the
algebraic solution in Eq. (29).

3.2 Tracer PDFs in ECMWF winds

In this section, we test whether the above theoreti-
cal predictions can be applied to understanding passive
tracer mixing in the stratospheric midlatitudes. In the
following simulation, a passive tracer, with initial con-
dition of Θ0 = cos(φ), is driven by ECMWF winds

on the 420 K isentropic surface. The simulation starts
from 1 July 1992. To set the forcing, we keep tracer
concentration fixed inside the tropical “reservoir” zone
which is a zonal band between 5◦S and 10◦N. Tracer
concentrations inside both polar regions, 60◦–90◦S and
60◦–90◦N, are also fixed. It is noted that the effect of
the artificial forcing does not take place until about
day 40. Before that, the initial condition dominates.

Figure 4a shows the tracer field at day 70. In the
Southern Hemisphere, the midlatitudes are filled with
tracer filaments that are stretched out from both the
tropics and the polar region. Because of the strong
westerly jet stream in the Southern Hemisphere, these
tracer filaments are nearly zonally oriented. In the
Northern Hemisphere, tracer filaments stretched out
from the tropics to midlatitudes are also evident. How-
ever, the leakage from the tropics is much weaker in
the Southern Hemisphere, indicating the existence of a
mixing barrier in the Northern-Hemisphere subtropics.
Because of the relatively weak leakage, tracer filaments
in the northern midlatitudes are not so dominant as
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Fig. 5. PDFs of tracer fluctuations in the Southern Hemisphere. The PDFs are calculated over 60◦–5◦S.

that in the southern midlatitudes, implying different
tracer statistics between the two hemispheres. Fig-
ure 4b illustrates the profile of zonal-mean tracer con-
centration (Θ). The profile is qualitatively similar to
the zonal-mean profiles of tropospheric-source gases
such as N2O (Nakamura et al., 1999). In the Northern
Hemisphere, a zone with sharp meridional gradients
between 10◦N and 20◦N is indicative of the subtrop-
ical mixing barrier. A zone with a relatively weak
meridional gradient between 20◦N to 60◦N is the mix-
ing region of high-concentration tracer from the trop-
ics with low-concentration from high latitudes. In the
Southern Hemisphere, there is no such a zone with
sharp meridional gradients in the subtropics, suggest-
ing the lack of a strong mixing barrier between the
tropics and southern midlatitudes. The mean gradi-
ent in the Southern Hemisphere is not exactly linear
with latitude. However, as shown below, this seems
not to affect the properties of conditional forcing very

much. In the following, the PDFs, conditional dis-
sipations, and conditional forcing are calculated over
60◦–5◦S and 20◦–60◦N for the Southern and North-
ern Hemispheres, respectively. The zonal-mean tracer
concentration, Θ, is removed for these calculations.

Figure 5 shows the PDFs in the Southern Hemi-
sphere. At day 40, the PDF exhibits concave behavior,
indicating that the PDF tails are flatter than exponen-
tial. At day 50, the PDF shows exponential tails. By
day 60, the PDF again shows concave behavior. It ap-
pears that during this period the PDF tails vacillate
between exponential and flatter than exponential pre-
sumably because tracer mixing in the Southern Hemi-
sphere during this period has not reached a steady
state yet. As mentioned before, the artificial forcing
becomes effective around day 40. It takes time to reach
the balance between forcing and dissipation. At day
70, 80, and 90, the PDFs all show exponential tails,
consistent with Eq. (28). Note that because the leak-
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Fig. 6. Conditional dissipation and conditional velocity in the Southern Hemisphere. The plots
on the left side are for conditional dissipation, and the plots on the right side are for conditional
velocity.

age of tracer from both the polar and tropical regions
are not continuous, but intermittent due to occasional
planetary wavebreaking, the PDF shapes are not ex-
actly time-invariant. In particular, the remote tails
vary from day 70 to day 80 and 90. Thus, one may
consider the balance between forcing and dissipation
as a quasi-steady state.

Figure 6 shows scatter plots of conditional dissipa-
tion and conditional velocity in the Southern Hemi-
sphere. At day 70, the scatter plot of conditional
dissipation shows a compact linear relation for both
branches, with large fluctuations for θ/θrms > 2.5.
The scatter plot of conditional velocity at day 70 also
shows a linear relation for θ/θrms > −2.5. Note that in
the Southern Hemisphere, positive tracer fluctuations
are carried southward by poleward (negative) winds,
i.e., vθ < 0. For consistency with the Northern Hemi-

sphere, the sign of the conditional velocity in Figs. 6b,
d, and f is reversed. At day 80 and 90, conditional ve-
locity and the left branch of conditional dissipation are
also linear functions of θ, while the right branch of con-
ditional dissipation exhibits slightly nonlinear behav-
ior. In general, the scatter plots of conditional velocity
and dissipation show reasonable consistency with Eqs.
(24) and (25), respectively. Especially, the expected
linear relation for conditional forcing in Eq. (24),
which is based on local Taylor expansion at θ → 0,
seems to be valid over a much wider range. According
to Eq. (20), these linear conditional quantities yield
exponential PDFs, consistent with the PDFs in Figs.
5e and f.

While the conditional velocity is nearly symmetric
at these days, the conditional dissipation is not. The
slopes of the left branches (θ < 0) are generally steeper
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Fig. 7. PDFs of tracer fluctuations in the Northern Hemisphere. The PDFs are calculated over 20◦–60◦N.

than that of the right branches (θ > 0). Since K/b is
the fall-off rate of PDF tails, a smaller b of the right
branch of conditional dissipation should have lead to
a steeper right PDF tail. Indeed, at day 80 and 90
the PDFs exhibit skewness, with the right tail falling
faster. At day 70, the skewness is not so profound as
it was at day 80 and 90.

The scatter plots of conditional dissipation and ve-
locity show either an inconsistency with the linear ap-
proximation or with anomalously large fluctuations be-
yond the range of −2.5 < θ/θrms < 2.5. The anoma-
lously large fluctuations of the conditional quantities
correspond to the PDF skirts in Fig. 5. For example,
at day 90 the sharp increase in conditional velocity
and the rapid decrease in conditional dissipation for
θ/θrms < −2.0 lead to a positive and extremely large
K/b, which gives rise of the skirt at the left tail of
the tracer PDF. Since the anomalous behavior in con-
ditional velocity and dissipation corresponds to large

tracer fluctuations and velocities, but small tracer gra-
dients, it is presumable that the anomalous behavior
is associated with tracer filaments newly stretched out
from the tropics or the polar region due to anoma-
lously large meridional motions. Because these tracer
filaments have not become sufficiently thin, tracer gra-
dients and corresponding conditional dissipation are
anomalously small. This suggests that the linear ap-
proximation for both conditional dissipation and ve-
locity is valid only for a limited range. As shown be-
low, the range is even narrower in the Northern Hemi-
sphere. The phenomenon of PDF skirts are also ob-
served in turbulence experiments as sampling is close
to lateral boundaries (Lane et al., 1993).

The PDFs in the Northern Hemisphere are differ-
ent from those in the Southern Hemisphere. Figure
7 shows the time variation of PDFs in the Northern
Hemisphere. At day 40, the PDF shape is very irreg-
ular, i.e., neither Gaussian nor exponential. At days
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Fig. 8. Conditional dissipation and conditional velocity in the Northern Hemisphere. The plots
on the left side are for conditional dissipation, and the plots on the right side are for conditional
velocity.

50 and 60, the PDFs are probably close to Gaussian.
The PDF at day 70 appears to have a broad Gaussian
core, with the left tail close to exponential distribution.
By days 80 and 90, the PDFs show short exponential
tails, with deep and sharp-cut skirts. Scatter plots of
conditional dissipation and velocity in the Northern-
Hemisphere at days 70, 80, and 90 are shown in Fig. 8.
On the one hand, the conditional quantities show com-
pact linear relations, like that in the Southern Hemi-
sphere. The linear approximations are valid in a nar-
rower range than in the Southern Hemisphere, roughly
within−1.5 < θ/θrms < 1.5 for conditional dissipation.
On the other hand, the conditional quantities in the
Northern Hemisphere have much shallower slopes than
in the Southern Hemisphere. The weaker conditional
dissipation is due to the weaker zonal-mean tracer gra-
dient in the northern surf zone, and the weaker con-
ditional velocity reflects the coincidence of relatively

weak meridional velocity or wave activity in the North-
ern (summer) Hemisphere. For Northern Hemisphere,
the fall-off rate is K/b ≈ 0.5, while for Southern Hemi-
sphere, it is K/b ≈ 1.25 at day 80. Thus, the PDF tails
fall much faster in the Southern Hemisphere than in
the Northern Hemisphere.

The differences in PDFs between the two hemi-
spheres can also be interpreted in terms of finite time
Lyapunov exponents (FTLEs). As discussed in sec-
tion 2.1, the tails of the tracer PDFs are determined
by small Lyapunov exponents. In Figs. 3a and b of
Hu and Pierrehumbert (2001), it was shown that the
left tail of the FTLE PDF consists of much smaller
FTLEs in the Northern Hemisphere than in the South-
ern Hemisphere. These small FTLEs lead to large
tracer fluctuations (relative to the θrms in the northern
surf zone). Thus, the weaker fall-off rate of the tracer
PDF tails in the Northern Hemisphere is consistent
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Fig. 9. Time variation of PDFs for a decaying tracer.
The PDFs are calculated over the globe.

with the corresponding FTLE PDFs, suggesting the
dependence of tracer statistics on Lyapunov exponent
statistics. The slower fall-off rate in the Northern
Hemisphere is also consistent with solutions (11) and
(12), in which a smaller λ̄ leads to a slower fall-off rate
of PDF tails, assuming that other variables are the
same. From Figure 3a and b of Hu and Pierrehum-
bert (2001), one can find that the mean FTLE, λ̄, is
smaller in the Northern Hemisphere than in the South-
ern Hemisphere (about 2.5 d−1 vs. 3.0 d−1). In addi-
tion, the PDFs in Northern Hemisphere does not seem
to be very consistent with the theoretical expectation.
The deviation is presumably because strains in the
Northern Hemisphere in these months have too long
correlation times. It is known that in these months

wave activity in the Northern Hemisphere is relatively
weak, which leads to relatively slowly varying strains.
The correlation time of the Northern Hemisphere flow
may be too long to fit the condition of δ-time or short
finite-time correlation for theoretical results in Eqs.
(11) and (12). This may be the essential difference of
tracer PDFs between the two hemispheres.

3.3 Long-term behavior of a decaying tracer

In Hu and Pierrehumbert (2001), we noted that for
a freely decaying passive tracer, the PDF tails vary
with time, and that after sufficiently long time the
PDF tails will become flatter than exponential. We
mentioned that the two-month (July–August) simula-
tion might not have been long enough to illustrate such
a time-dependent behavior. Here, to demonstrate the
time-dependent behavior of the PDF tails over a longer
period and to compare it with that of the forced tracer,
we extend the two-month run of the zonal-mixing case
in Hu and Pierrehumbert (2001) to three months.

The time variation of PDF shapes in the first two
months has been discussed in Hu and Pierrehumbert
(2001) (see their Fig. 8), in which the PDF tails at
days 40 and 60 are close to exponential. Here, Fig. 9
shows the PDFs by days 70, 80, and 90. One can see
that at day 70 the PDF tails still exhibit exponential
behavior. By day 80, the left tail becomes concave,
flatter than exponential. By day 90, the concave be-
havior of the left tail becomes more pronounced. These
are consistent with the prediction that the PDF tails
of a decaying tracer become flatter and flatter with
time. The “little peak” on the right tail at day 90 is
due to the existence of mixing barriers. In Hu and
Pierrehumbert (2001), we pointed out that the zonal
mixing case would eventually become similar to the
meridional-mixing case because mixing barriers sepa-
rate the globe into several regions, such as midlatitude
surf zones, the tropics, and polar regions, which have
very different mixing properties. When large-scale
tracer variations in the zonal direction are smoothed
out in these regions, tracer variations in the meridional
direction between these zones become dominant, and
the unimodal PDF evolves into a multimodal PDF,
with each peak indicating a mixing zone just like that
in Fig. 13 in Hu and Pierrehumbert (2001).

A question is what causes the difference in the long-
term behavior of the PDF tails between the forcing
and decaying cases. Recall that the PDF of a decay-
ing tracer is determined by conditional dissipation and
diffusion [see Eq. (7) in Hu and Pierrehumbert (2001)].
The time variation of the PDFs in Fig. 9 should be re-
flected in time variations of the conditional quantities.
Figure 10 shows scatter plots of the conditional quan-
tities. At day 70, the conditional dissipation exhibits
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a linear relationship. At day 80, the scatter plot of the
conditional dissipation exhibits a parabolic shape. By
day 90, the parabolic shape becomes more dominant.
The variation of the conditional dissipation from lin-
ear to parabolic means that as time progresses tracer
gradients conditioned on large tracer fluctuations be-
come much larger than those conditioned on smaller
tracer fluctuations.

The scatter plots of the conditional diffusion
demonstrate a linear relationship with θ (Figs. 10b,
d, and f). While the conditional dissipation varies
with time, the nearly linear relationship of the condi-
tional diffusion seems to remain unchanged with time,
though the slope of the linear approximation changes.
This is particularly true at days 70 and 80. At day 90,
the conditional diffusion for θ > 0 appears not to be
linear with θ. This is actually consistent with the little
peak at the right PDF tail at θ/θrms ≈ 2.5. Since the
linear property of conditional diffusion is time invari-
ant, the time variation of the PDF tails from exponen-
tial to flatter than exponential arises from the changes
in conditional dissipation. According to Eq. (7) in Hu
and Pierrehumbert (2001), at day 70 the linear condi-
tional dissipation, together with the linear conditional
diffusion, yields a PDF with exponential tails, and at
days 80 and 90, the parabolic conditional dissipation
and the linear conditional diffusion lead to an alge-
braic PDF. Thus, the difference in the long-term be-
havior of PDF tails between the forcing and decaying
cases arises from the difference in conditional dissipa-
tions. In the decaying case, the conditional dissipation
evolves from linear to parabolic with time. It leads to
time-dependent PDFs with tails becoming flatter and
flatter.

4. Discussion and conclusions

To study the mixing of a N2O-like passive tracer in
lower stratospheric surf zones, we proposed a concept
model with a “mean gradient” forcing based on the
fact that a weak zonal-mean tracer gradient is steadily
maintained inside midlatitudes, with the tropics and
polar regions acting as a source reservoir and sink, re-
spectively. Within this mean gradient model, tracers
fluctuations due to chaotic mixing by planetary-wave
breaking can be regarded as being generated from the
background mean gradient.

Based on the mean-gradient model, we have taken
two theoretical approaches to physically interpret the
PDFs of tracer fluctuations. In the Lagrangian for-
malism, the tracer PDF is obtained from the PDF of
Lyapunov exponents. We emphasize that the exponen-
tial tails of large tracer fluctuations are not primarily
caused by motions unusually persistently against the

mean gradient. Instead, these large tracer fluctuations
arise from small Lyapunov exponents with which the
relevant tracer parcels experience anomalously slow
stretching and slow diffusive dissipation. This is be-
cause the concentration values of large tracer fluctu-
ations are determined by their “life times” which are
associated with small Lyapunov exponents and have
exponential distribution. By contrast, large fluctu-
ations due to unusually persistently motions against
the mean gradient are random events. The key in
the Lagrangian formalism is to evaluate the stretch-
ing history that tracer parcels experienced along their
journey. The stretching history is characterized by the
Lyapunov exponents.

In the conditional closure formalism, the general
PDF solution is determined by two conditional quanti-
ties: the conditional velocity and dissipation. The con-
ditional velocity characterizes tracer forcing, that is,
how tracer fluctuations are generated from the mean
background gradient by motions against the mean gra-
dient. As long as the mean gradient is maintained, the
conditional velocity remains a linear function of tracer
fluctuations. The conditional dissipation characterizes
the relationship between the dissipation field (tracer
gradients) and tracer fluctuations. For the forced
tracer, the conditional dissipation is a time-invariant
linear function of the absolute values of tracer fluctu-
ations. The linear properties of the two conditional
quantities yield a unique PDF, with a Gaussian core
and exponential tails. As discussed in section 2.2, the
statistical properties of conditional dissipation and ve-
locity are largely empirical. So far, there is no appro-
priate theory for interpreting these statistical proper-
ties. Pierrehumbert (2000) touched this issue and pro-
vided some speculation on conditional dissipation, but
did not give an exact answer of how 〈D〉θ depends on
θ. It appears that the properties of these conditional
quantities require further studies.

The two classes of approaches provide us with dif-
ferent views on the advection-diffusion problem for a
forced passive tracer. The first approach focuses on
mixing processes (advection and diffusion) of tracer
parcels along their Lagrangian trajectories. It presents
us with an unambiguous physical picture and interpre-
tation of how and why large tracer fluctuations display
exponential distributions. The second approach di-
rectly deals with a well mixed tracer field at the steady
state and pursues statistical relationship of conditional
forcing and dissipation with tracer fluctuations, while
paying little attention to the mixing history of indi-
vidual tracer parcels. The two approaches seem to
complement each other.

The theoretical predictions are first tested with a
forced tracer driven by an idealized random flow on a
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Fig. 10. Conditional dissipation and conditional diffusion for the decaying tracer. The plots on the left
side are for conditional dissipation, and the plots on the right side are for conditional diffusion.

sphere. In the mixing zone, a zonal-mean tracer gra-
dient is maintained by forcing, i.e., tracer filaments
stretched out from both poles. The results show that
conditional velocity is a linear function of tracer fluc-
tuations, and that the conditional dissipation is a
positive-definite linear function of tracer fluctuations.
There is little evidence showing a parabolic relation
for conditional dissipation. The PDFs of tracer fluc-
tuations exhibit a Gaussian core and exponential tails.

Our main interest is whether the theoretical pre-
dictions arising from highly idealized flows are appli-
cable to understanding tracer mixing in the strato-
spheric midlatitudes. The simulation results using
ECMWF winds are not completely consistent with the
theoretical predictions due to realistic complexity. In
the Southern Hemisphere, the conditional dissipation
demonstrates a time-invariant, positive-definite linear

relation with tracer fluctuations, the conditional veloc-
ity is a linear function of tracer fluctuations, and the
PDFs exhibit exponential tails. These are fairly con-
sistent with theoretical expectations. In the Northern
Hemisphere, the conditional dissipation and velocity
also demonstrate linear relations with tracer fluctua-
tions. However, they are much weaker than that in
the Southern Hemisphere. The PDFs show short ex-
ponential tails bounded by deep and sharp-cut skirts.
The deviation of the Northern-Hemisphere PDFs from
theoretical expectation is presumably because of too
slowly varying strains due to relatively weak wave ac-
tivity in the Northern Hemisphere in these months.
This suggests a limitation of the theories when applied
to realistic flows.

We have further more compared the long-term be-
havior of the PDFs between the forcing and decaying
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cases. The difference between the two cases is that the
PDF tails of the decaying tracer vary with time and be-
come flatter than exponential after two months, while
the PDF tails of the forced tracer remain exponential.
Since the linear property of both the conditional ve-
locity in the forcing case and the conditional diffusion
in the decaying case is time-invariant, the difference
in the PDFs lies in the differences in conditional dissi-
pation. For the forced tracer, the conditional dissipa-
tion remains linear when the steady state is reached.
By contrast, for the decaying tracer the conditional
dissipation evolves from linear to parabolic after two
months. It is the time-dependent conditional dissipa-
tion in the decaying case that leads to the change in
the PDF tails from exponential to algebraic.
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