

FILES

C.-P. Yuan
Michigan State University

- > Introduction
- ➤ Mass of Top Quark, prior to its discovery
- > Top & Electroweak Symmetry Breaking
- ➤ Properties of Top
- Discriminate Models of Electroweak Symmetry Breaking
- ➤ Conclusion

C.-P. Yuan Michigan State University

- Introduction
- Mass of Top Quark, prior to its discovery
- Top & Electroweak Symmetry Breaking
- Properties of Top
- Discriminate Models of Electroweak Symmetry Breaking
- Conclusion

People have long asked,

"What is the world made of?"
and

"What holds it together?"

Elementary Particle Physics or High Energy Physics

Studying Fundamental Interactions (Forces) in Nature

Leptons

Don't feel the strong force

"Muon neutrino"

"Tau neutrino"

- Integer or Zero charge
- Flavours:

 $v_u < 0.19 \text{ MeV}$

 $\nu_{\tau} < 18.2 \text{ MeV}$

(1962)

(2000)

Quarks

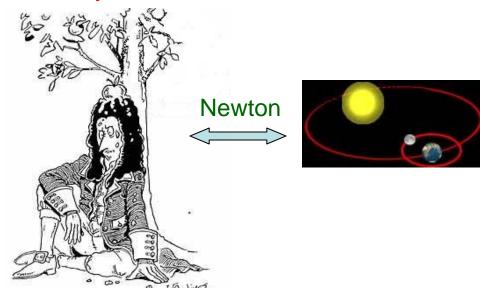
- Feel the strong force
- Fractionally charged

$$Q = \begin{cases} \frac{2}{3} \\ -\frac{1}{3} \end{cases} \times \text{ Proton charge}$$

- Constituents of neutron and proton (udd) (uud)
 - (u) "up" "down"

• First Evidence:

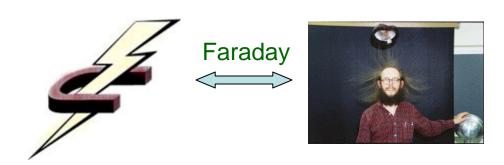
Stanford Linear Accelerator Center (Giant Electron Microscope)


Flavors:

u "up"
d "down"
s "strange"
c "charmed"
b "bottom"
t "top"

(1974) (1977) "Beauty" (1995) "Truth" @ Fermilab (Tevatron)

1 Gravity

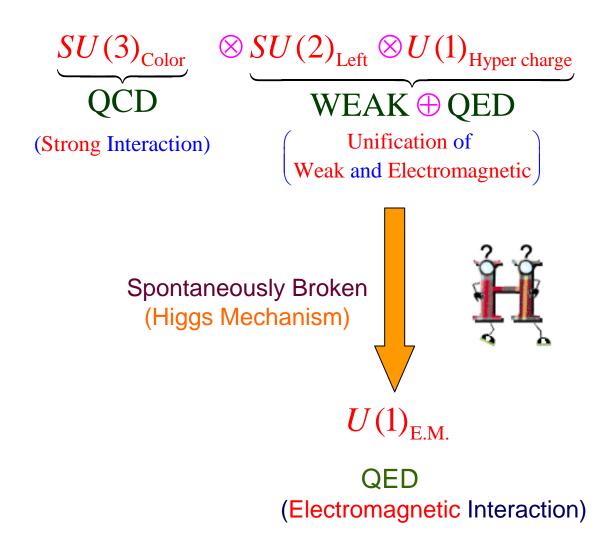

3 Weak Interaction

Beta (radioactive) decay

Sun is shining

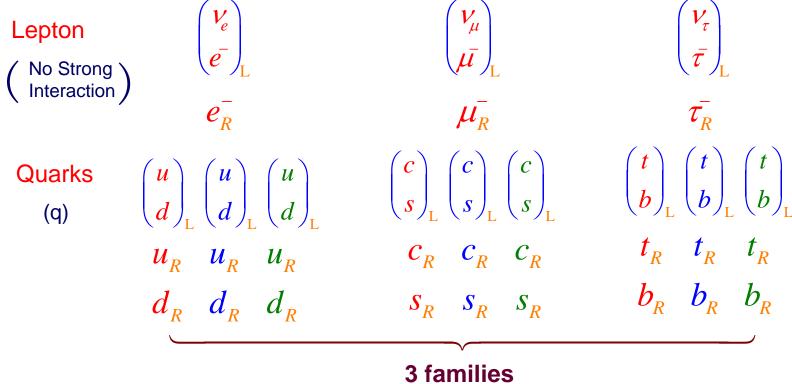
Time scales: $10^{-12} \sim 10^3$ sec

2 Electromagnetism


4 Strong Interaction

Hold nuclei together

Time scales: 10⁻²³ sec


The Standard Model of Particle Physics

Gauge Symmetry (Gravity is not included)

The Standard Model of Particle Physics

- Matter fields (make up all visible matter in the universe)
 - Fermions (Spin 1/2)


```
Scalar (Spin 0)
    Higgs Boson (Not yet found!)
   (From Higgs Mechanism —— Spontaneous Symmetry Breaking)
```

The Standard Model of Particle Physics

- Interactions (mediated by interchanging Gauge Bosons, spin-1 force carrier)
 - 1) Electromagnetic Interaction (QED)

Photon (massless)

2) Strong Interaction (QCD)

Gluon (massless) (1979)

3) Weak Interaction

$$W^+, W^-$$
 and Z Gauge Bosons (1983)

(massive
$$M_W = 80.42 \text{ GeV}$$

 $M_Z = 91.187 \text{ GeV}$ 1 GeV = 10^9 eV)

In SM, the Mass of W-boson, either W^{\pm} or Z , arises from the Higgs Mechanism

(Without it, Gauge Bosons have to be massless from gauge principle.)

Higgs Mechanism in the SM

Two outstanding mysteries in the Electroweak theory:

The cause of Electroweak Symmetry Breaking

$$(M_W = 80 \text{ GeV}, M_Z = 91 \text{ GeV})$$

The origin of Flavor Symmetry Breaking

(Quarks and Leptons have diverse masses.)

Both Symmetry Breaking are accommodated by including a fundamental weak doublet of scalar (Higgs) boson:

$$\Phi = \begin{pmatrix} v + H + i \, \phi^0 \\ \hline \sqrt{2} \\ i \, \phi^- \end{pmatrix}$$

To generate M_{W} and M_{Z} $L_{\Phi} = (D_{\mu}\Phi)^{+}(D^{\mu}\Phi) - \lambda \left(\Phi^{+}\Phi - \frac{v^{2}}{2}\right)^{2}$ $v \quad v$ $W^{+} \qquad W^{-} \qquad M_{W} = \frac{1}{2}gv$

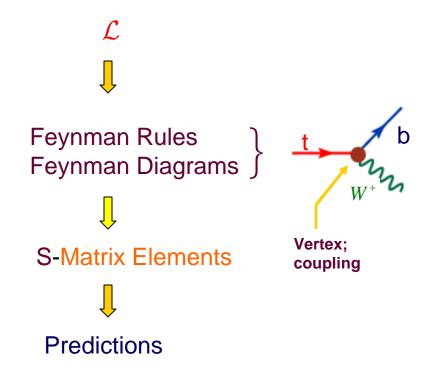
To generate
$$m_f$$

$$y_f \overline{F}_L \Phi f_R + \cdots$$

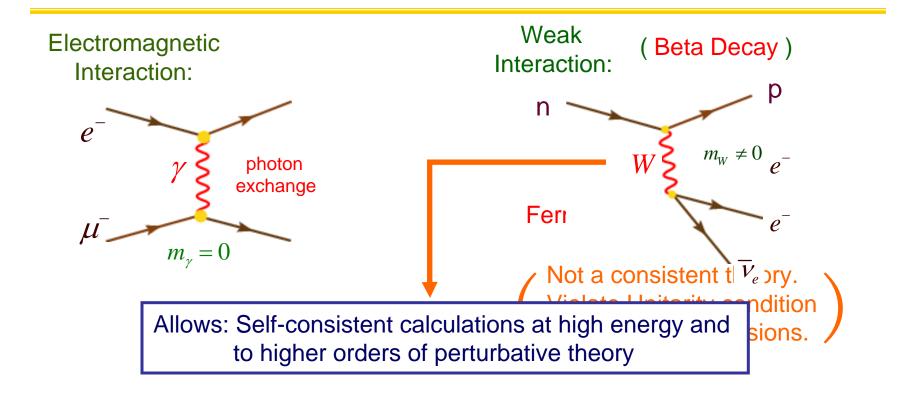
$$v \\ \downarrow f \\ y_f$$

$$\longrightarrow m_f = y_f \frac{v}{\sqrt{2}}$$

How does SM predict ...?


In Quantum Mechanics

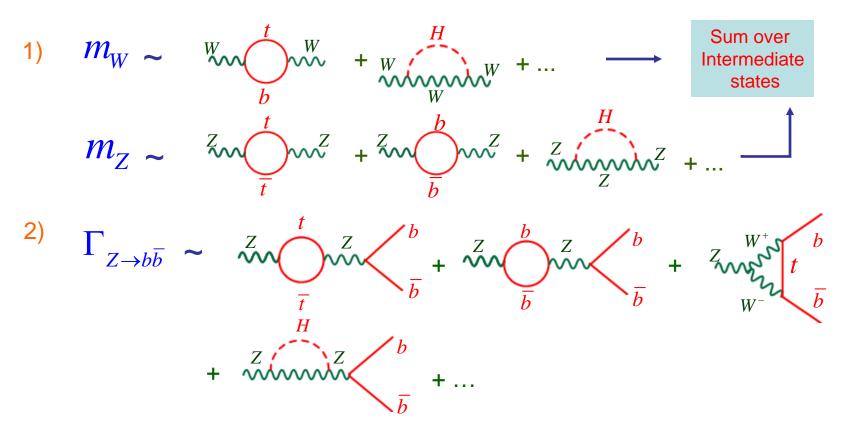
Schrodinger Equation:


$$i\frac{\partial \Psi}{\partial t} = H\Psi$$

- 1. Figure out what H is.
- 2. Insert H in S.E.
- 3. Calculate Predictions

◆ In Relativistic Quantum Field Theory
 SM gives the Interaction Lagrangian £

Electro-weak Unification

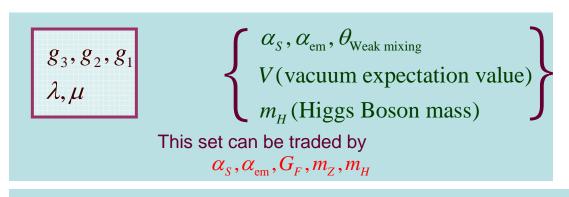

Prices to pay:

1) W^{\pm} must exist	1983
2) Simplest version requires also massive Z^{0}	1983
New weak charge preserving interactions	1973

$$\Longrightarrow SU(2)\times U(1)$$

Some Examples of Loop Corrections

(Radiative corrections)



3) $B_d - \overline{B}_d$ mixing

$$B^0$$
 \overline{b}
 W^+
 $\overline{u}, \overline{c}, \overline{t}$
 \overline{b}
 \overline{B}^0

Free Parameters in Standard Model

$$SU(3)_{\text{color}} \times SU(2)_{\text{Left}} \times U(1)_{\text{Hypercharge}}$$

- (3) Lepton masses (e, μ, τ) m_{ν} 's=0
- (6) Quark masses (u,d,s,c,b,t)

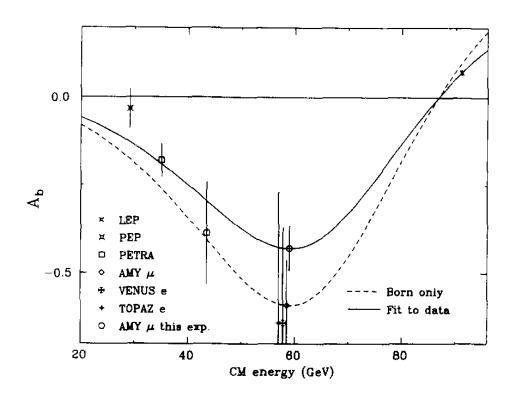
Mixing of quark weak eigenstates and mass eigenstates

3 angles and 1 phase CP violation

(1) Strong CP phase

Total of 19 free parameters.

So far, all experimental data agree with the prediction of SM.

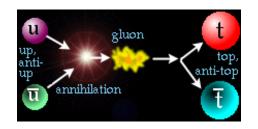

To include neutrino masses (suggested by Neutrino Oscillation data) in the SM

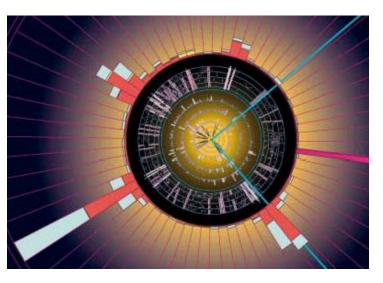
- For Dirac Neutrinos
 - Add 3 masses and 3 mixing angles with 1 CP violation phase

- For Majorana Neutrinos
- Add 3 masses and 3 mixing angles with 3 CP violation phase

Top Exists

(induced from data before 1990)


Forward-Backward Asymmetry of bottom quark (A_b) in $e^+e^- \rightarrow b\bar{b}$


confirmed weak isospin of b

$$T_3 = -\frac{1}{2}$$

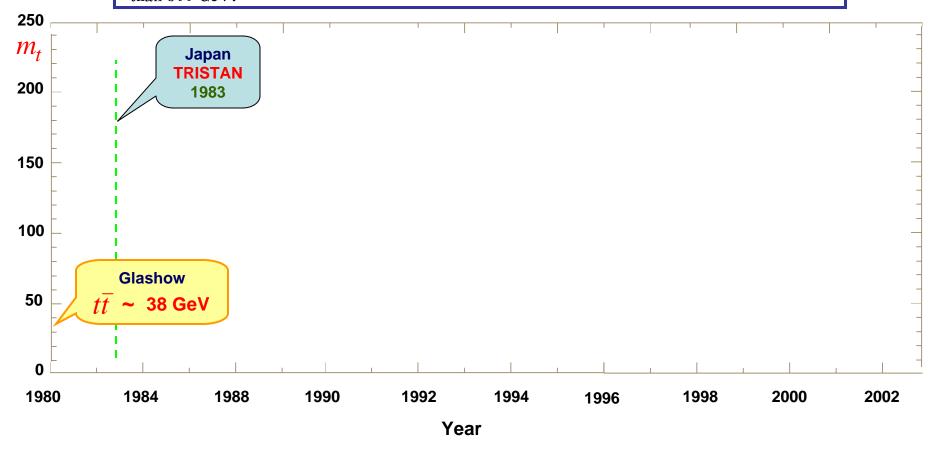
$$T_3 = \frac{1}{2} \text{ state must exist,}$$
which is called
$$TOP.$$

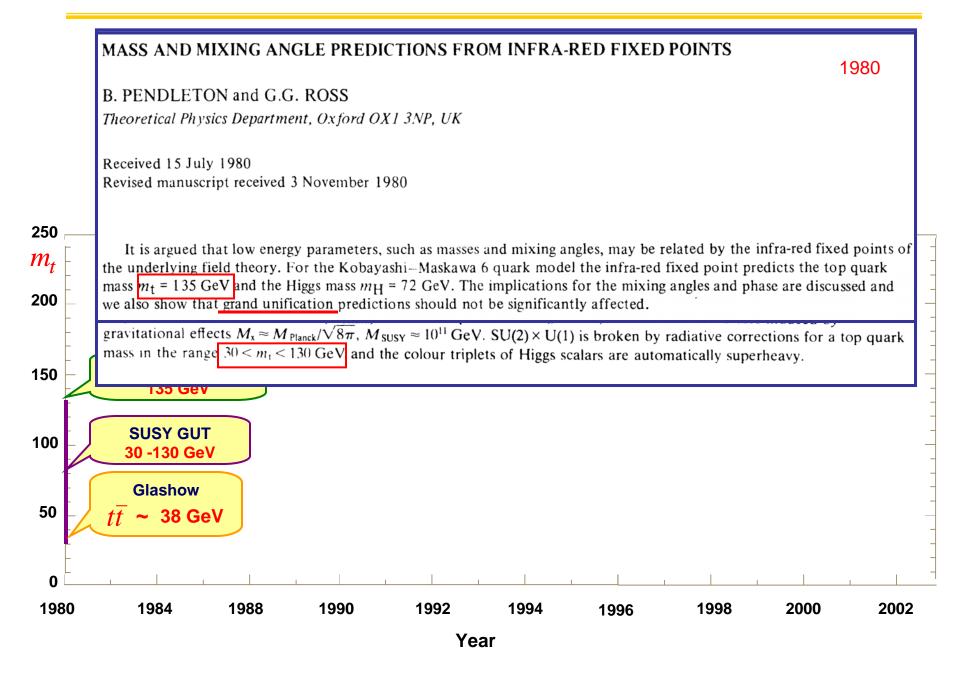
March 2, 1995

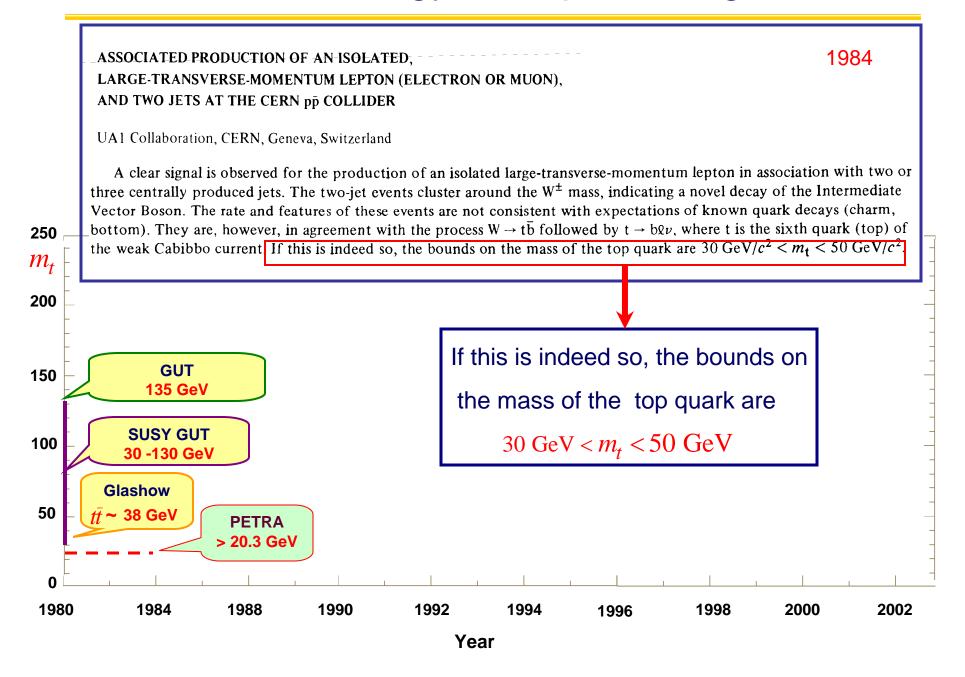
We had champaign at the MSU High Energy physics conference room to celebrate the discovery of the Top Quark at FNAL Tevatron by CDF & D0 groups.

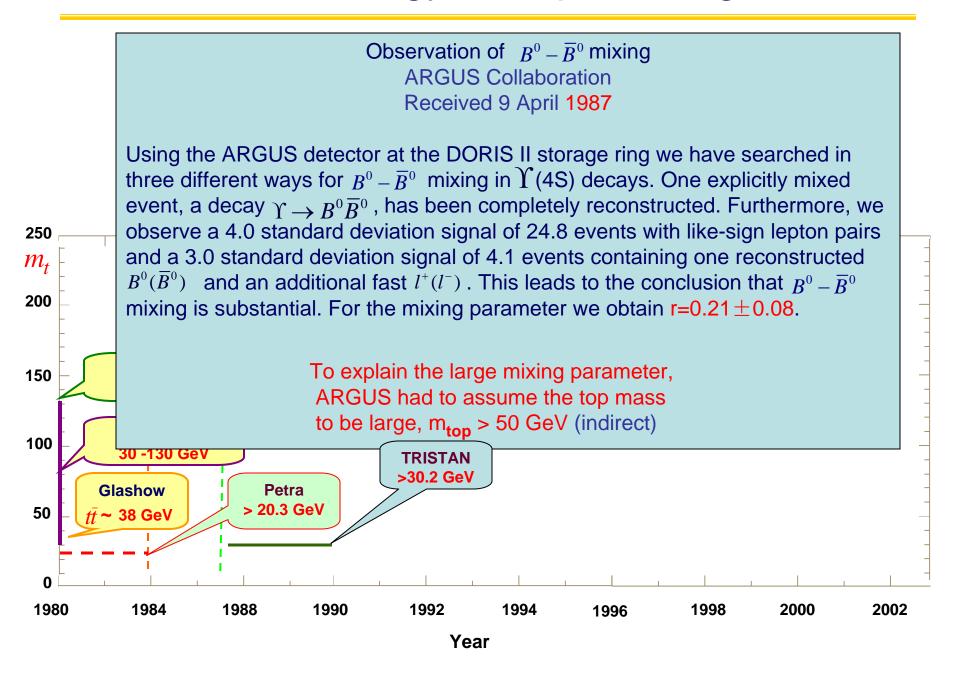
Recently,

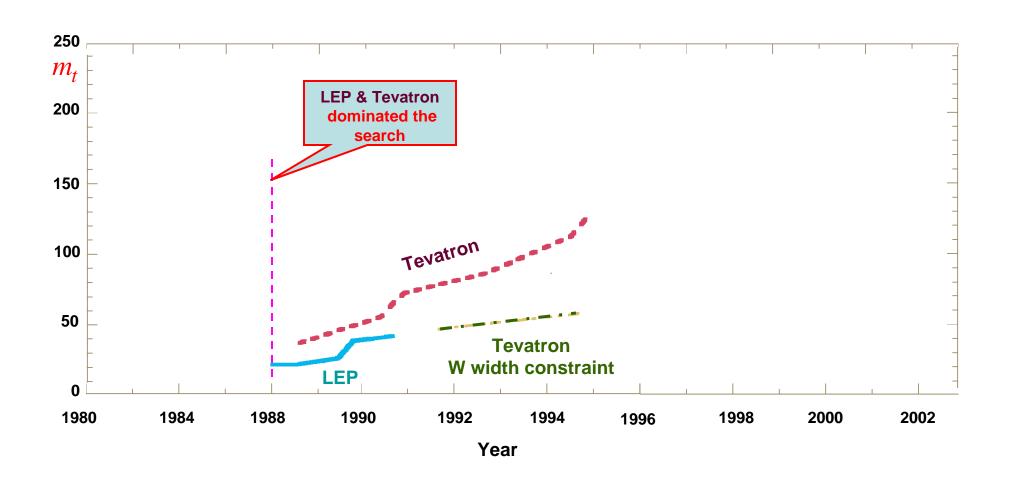
 $m_t = 170.9 \pm 1.8 \text{ GeV}$


Where is the Top Quark?


1980

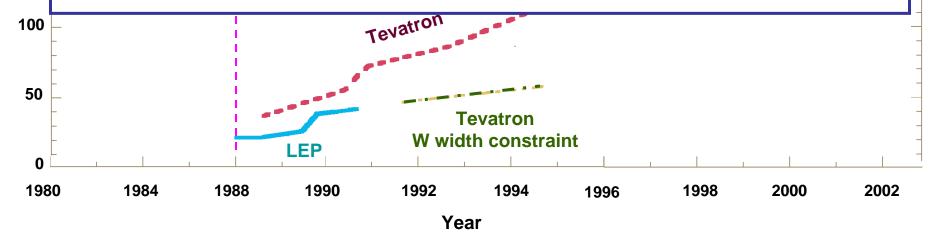

Sheldon L. Glashow^(a)


Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 17 October 1980)


Arguments are presented suggesting that the top-quark analog of the J/ψ should lie at 38 ± 2 GeV. Should there exist a fourth $Q=\frac{2}{3}$ quark h, the first $\overline{h}h$ state must be heavier than 300 GeV.

New method to detect a heavy top quark at the Fermilab Tevatron

C.-P. Yuan


High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 (Received 15 May 1989)

250

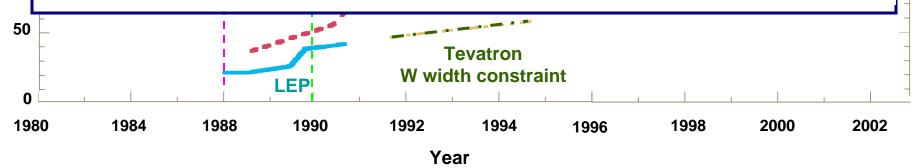
 m_{t}

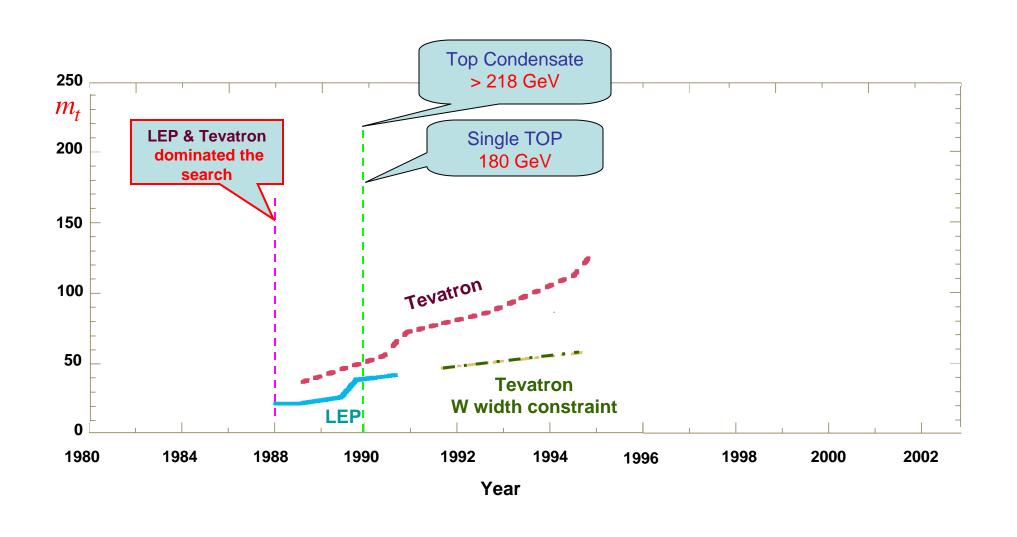
200

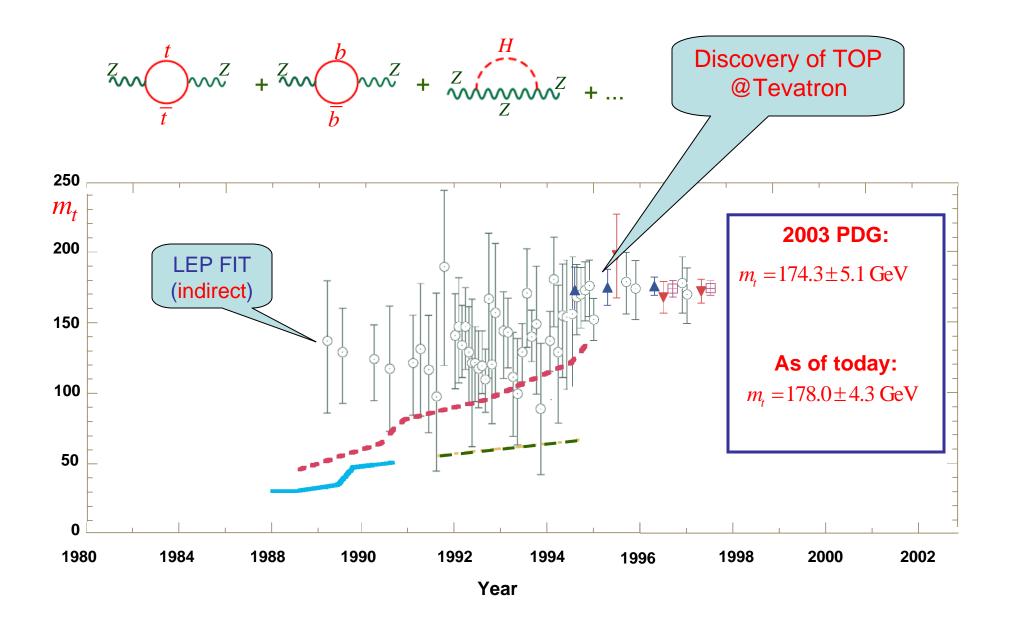
We present a new method to detect a heavy top quark with mass \sim 180 GeV at the upgraded Fermilab Tevatron ($\sqrt{S} = 2$ TeV and integrated luminosity 100 pb⁻¹) and the Superconducting Super Collider (SSC) via the W-gluon fusion process. We show that an almost perfect efficiency for the "kinematic b tagging" can be achieved due to the characteristic features of the transverse momentum P_T and rapidity Y distributions of the spectator quark which emitted the virtual W. Hence, we can reconstruct the invariant mass M^{evb} and see a sharp peak within a 5-GeV-wide bin of the M^{evb} distribution. We conclude that more than one year of running is needed to detect a 180-GeV top 150 quark at the upgraded Tevatron via the W-gluon fusion process. Its detection becomes easier at the SSC due to a larger event rate.

Minimal dynamical symmetry breaking of the standard model

William A. Bardeen, Christopher T. Hill, and Manfred Lindner Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510 (Received 21 July 1989; revised manuscript received 2 November 1989)

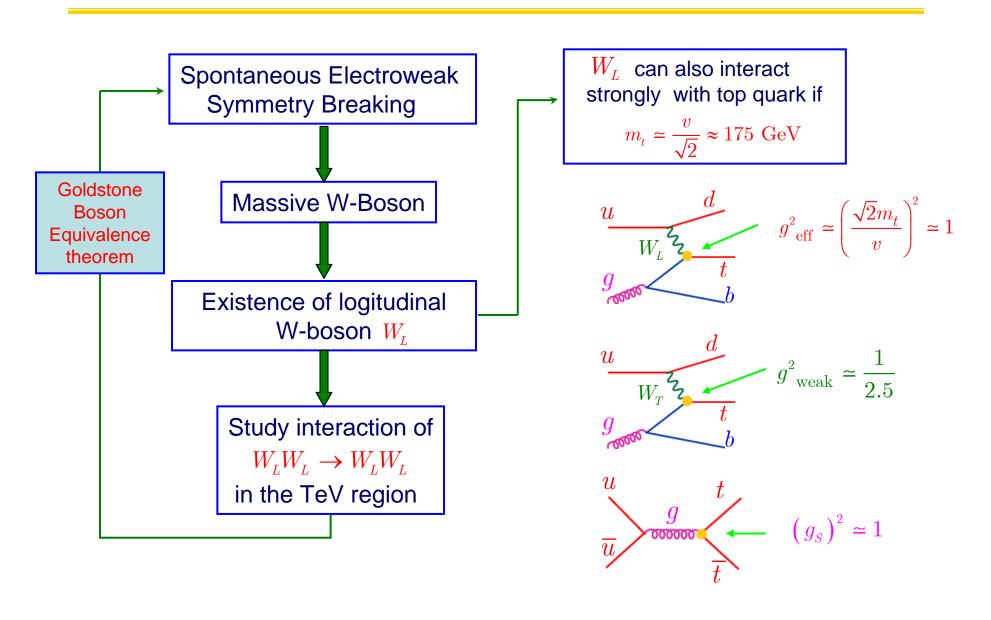

We formulate the dynamical symmetry breaking of the standard model by a top-quark condensate in analogy with BCS theory. The low-energy effective Lagrangian is the usual standard model with supplemental relationships connecting masses of the top quark, W boson, and Higgs boson which now appears as a \overline{t} t bound state. Precise predictions for m_t and m_H are obtained by abstracting the compositeness condition for the Higgs boson to boundary conditions on the renormalization-group equations for the full standard model at high energy.


250


 m_t

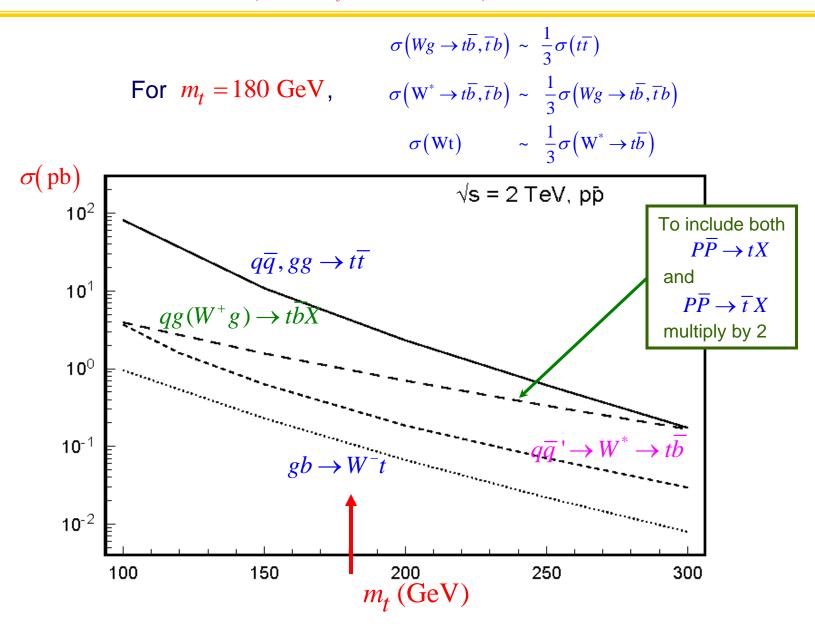
200

<u> </u>			_								·	
Λ (GeV)	1019	1017	1015	10 ¹³	1011	10 ¹⁰	10 ⁹	10 ⁸	10 ⁷	10 ⁶	10 ⁵	10 ⁴
m, phys (GeV)	218	223	229	237	248	255	264	277	293	318	360	455
Pert.	± 2	± 3	± 3	± 3	±5	±6	±7	±9	±12	±16	±25	±45
$m_H^{\rm phys}$ (GeV)	239	246	256	268	285	296	310	329	354	391	455	605
Pert.	±3	±3	±4	±5	±8	±9	±11	±15	±21	±32	±56	±142
	m _i ^{phys} (GeV) Pert. m _H ^{phys} (GeV)	m_H^{phys} (GeV) 218 Pert. ± 2 m_H^{phys} (GeV) 239	m_t^{phys} (GeV) 218 223 Pert. ± 2 ± 3 m_H^{phys} (GeV) 239 246	m_i^{phys} (GeV) 218 223 229 Pert. ± 2 ± 3 ± 3 m_i^{phys} (GeV) 239 246 256	Λ (GeV) 10^{19} 10^{17} 10^{15} 10^{13} m_H^{phys} (GeV) 218 223 229 237 Pert. ± 2 ± 3 ± 3 ± 3 m_H^{phys} (GeV) 239 246 256 268	Λ (GeV) 10^{19} 10^{17} 10^{15} 10^{13} 10^{11} m_s^{phys} (GeV) 218 223 229 237 248 Pert. ± 2 ± 3 ± 3 ± 5 m_H^{phys} (GeV) 239 246 256 268 285	Λ (GeV) 10^{19} 10^{17} 10^{15} 10^{13} 10^{11} 10^{10} m_e^{phys} (GeV) 218 223 229 237 248 255 Pert. ± 2 ± 3 ± 3 ± 3 ± 5 ± 6 m_H^{phys} (GeV) 239 246 256 268 285 296	Λ (GeV) 10^{19} 10^{17} 10^{15} 10^{13} 10^{11} 10^{10} 10^{9} m_s^{phys} (GeV) 218 223 229 237 248 255 264 Pert. ± 2 ± 3 ± 3 ± 3 ± 5 ± 6 ± 7 m_H^{phys} (GeV) 239 246 256 268 285 296 310	Λ (GeV) 10^{19} 10^{17} 10^{15} 10^{13} 10^{11} 10^{10} 10^9 10^8 m_r^{phys} (GeV) 218 223 229 237 248 255 264 277 Pert. ± 2 ± 3 ± 3 ± 5 ± 6 ± 7 ± 9 m_H^{phys} (GeV) 239 246 256 268 285 296 310 329	Λ (GeV) 10^{19} 10^{17} 10^{15} 10^{13} 10^{11} 10^{10} 10^{9} 10^{8} 10^{7} m_r^{phys} (GeV) 218 223 229 237 248 255 264 277 293 Pert. ± 2 ± 3 ± 3 ± 3 ± 5 ± 6 ± 7 ± 9 ± 12 m_r^{phys} (GeV) 239 246 256 268 285 296 310 329 354	Λ (GeV) 10^{19} 10^{17} 10^{15} 10^{13} 10^{11} 10^{10} 10^{9} 10^{8} 10^{7} 10^{6} m_{μ}^{phys} (GeV) 218 223 229 237 248 255 264 277 293 318 Pert. ± 2 ± 3 ± 3 ± 3 ± 5 ± 6 ± 7 ± 9 ± 12 ± 16 m_{H}^{phys} (GeV) 239 246 256 268 285 296 310 329 354 391	Λ (GeV) 10^{19} 10^{17} 10^{15} 10^{13} 10^{11} 10^{10} 10^{9} 10^{8} 10^{7} 10^{6} 10^{5} m_{ν}^{phys} (GeV) 218 223 229 237 248 255 264 277 293 318 360 Pert. ± 2 ± 3 ± 3 ± 3 ± 5 ± 6 ± 7 ± 9 ± 12 ± 16 ± 25 m_{ν}^{phys} (GeV) 239 246 256 268 285 296 310 329 354 391 455

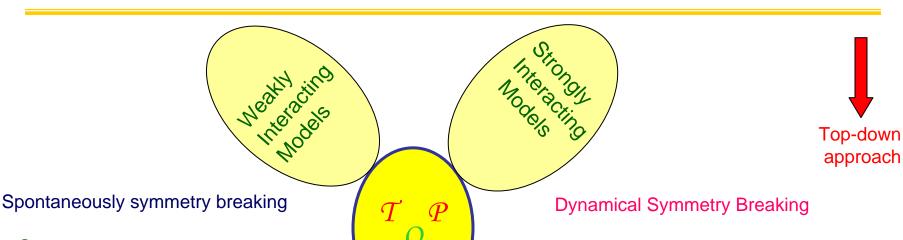


Lessons we learned from the History on the discovery of Top Quark

Only Experimental Data has the final say about Mother Nature. The interaction between **Experimentalists** and SUPERCONDUCTIVITY **Theorists** SUPERSYMMETRY! is essential for the advance of science. Theorists should not give up any probable idea.


What motivated my 1990 single-top paper

(with $m_t = 180 \text{ GeV}$)



What motivated my 1990 single-top paper

(with $m_t = 180 \text{ GeV}$)

Ideas of Symmetry Breaking (in 4-dim)

Supersymmetry

- Minimal supersymmetry Standard Model (MSSM) with Radiative EWSB and
 - soft SUSY-breaking

(Elementary Higgs bosons) h, H, H^{\pm}, A

Effective Theory

quark

Electroweak Chiral Lagrangian

Studying the most general Form factors of Top quark interactions To compare with present data,

- Technicolor
- TopColor / Condensate / Seesaw Models

(can have composite Higgs bosons)

$$H \equiv \langle t \, \overline{t} \rangle$$

Bottom-up approach

Top quark Decay $(m_t > m_W)$

• If the SU(2) structure $\binom{t}{b}_L$ of the Standard Model holds,

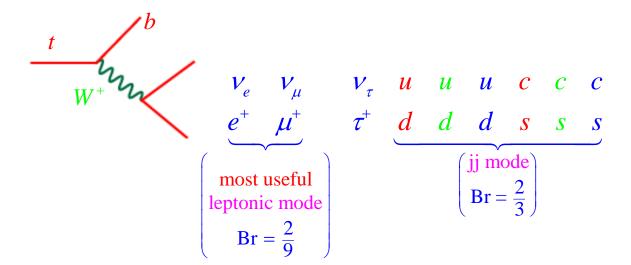
then $t \to bW^+$ always occurs at tree level in any model.

■ For a Standard Model t, the decay width $t \rightarrow bW^+$

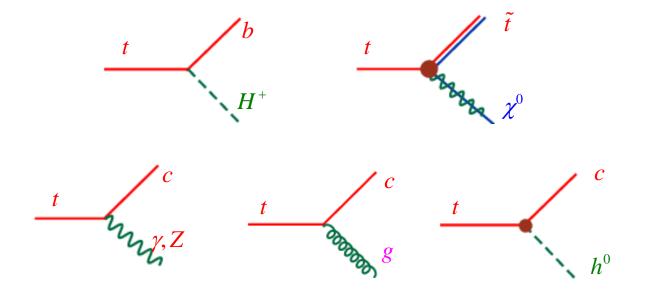
$$\Gamma_t \sim 1.6 \text{ GeV} \left(\frac{m_t}{180}\right)^3$$

Lifetime

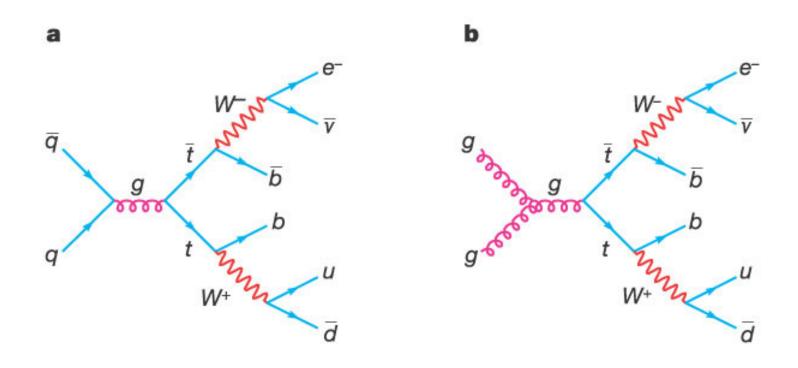
$$\tau_{\text{decay}} = \frac{1}{\Gamma_t} \sim 4.4 \times 10^{-25} \left(\frac{m_t}{180}\right)^3 \text{ sec}$$

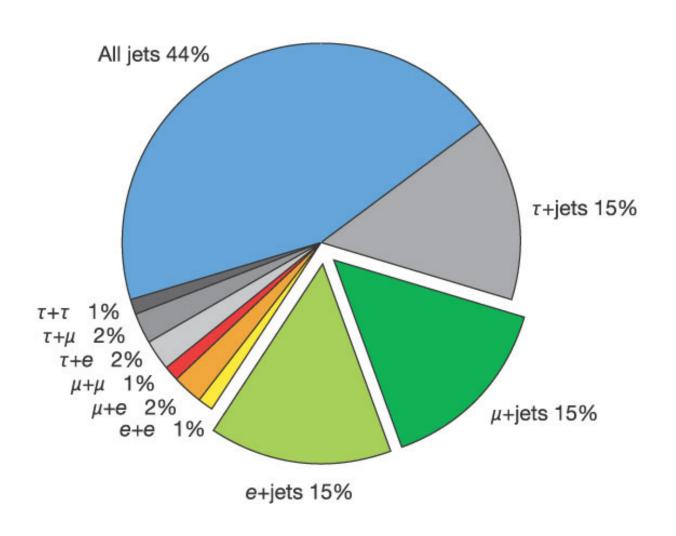

t decays before it feels non-perturbative strong interaction.

$$\left(\frac{1}{\Lambda_{QCD}} \sim \frac{1}{0.2 \text{ GeV}} \sim 3.3 \times 10^{-24} \text{ sec}\right)$$


Studying Property of Bare quark.

Decay Branching Ratio of Top quark

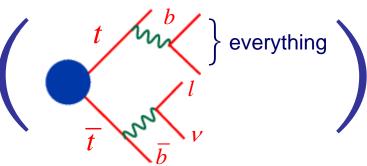

• In the SM:


New Physics:

$t\bar{t}$ Pair Production

Br in $t\bar{t}$ decay modes

How to measure Branching Ratio (BR)?

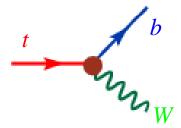

$$t \to b W^+$$

$$\downarrow \qquad \qquad l^+ \nu$$

This can be done by measuring the ratio

$$Br(t\overline{t} \to ll + X) = \frac{\overline{t}}{\overline{b}}$$

$$R_{l} \equiv \frac{Br(t\overline{t} \to ll + X)}{Br(t\overline{t} \to l + X)} = \frac{1}{\sqrt{1 + \frac{1}{2}}}$$


What if ...?

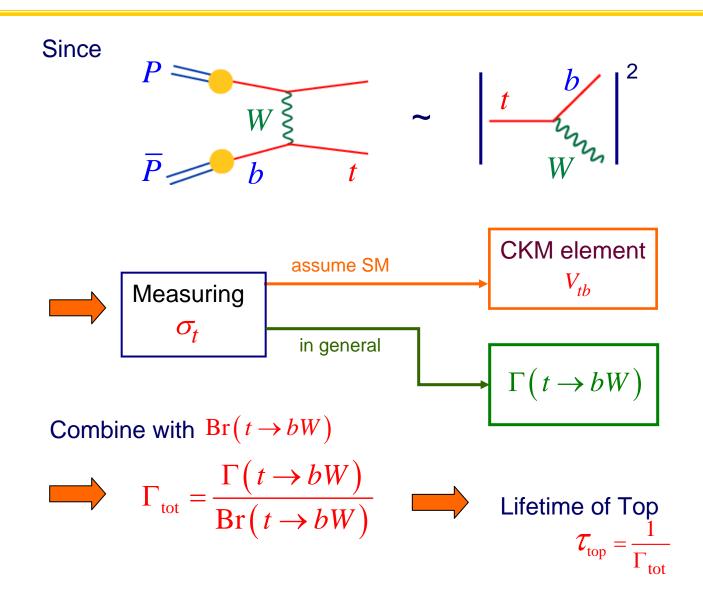
It is however possible that new physics

might not change the $Br(t \rightarrow bW)$,

 $\left(\begin{array}{c} \text{e.g. no additional new light fields} \\ \text{with mass less than } m_t \end{array}\right)$

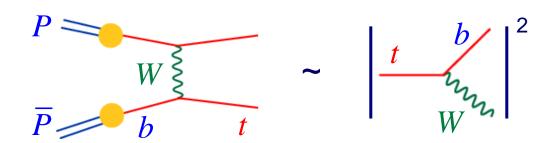
but will strongly modify the width of $\Gamma(t \to bW)$, due to the interaction

is strongly modified.


Hence, the lifetime of top quark is different from SM's prediction.

Need to study the interaction of t-b-W.

$P\overline{P} \rightarrow t X$ and $P\overline{P} \rightarrow \overline{t} X$


(single top production)

$$P\overline{P} \rightarrow t X \text{ and } P\overline{P} \rightarrow \overline{t} X$$

(single top production)

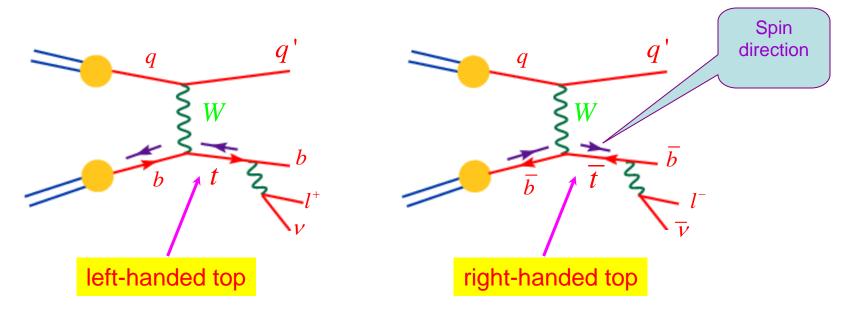
Since

The asymmetry in the production rate

$$A_{t}^{\text{CPX}} = \frac{\sigma(p\overline{p} \to t) - \sigma(p\overline{p} \to \overline{t})}{\sigma(p\overline{p} \to t) + \sigma(p\overline{p} \to \overline{t})}$$

can be used to measure CP-violation.

This observable is unique for $p\overline{p}$ collider. (Tevatron)

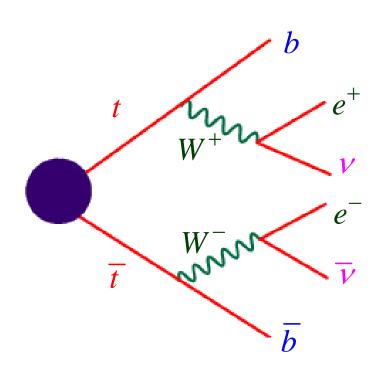

For 2 fb⁻¹,
$$\delta A_t^{\rm CPX} \sim 20\%$$

 $\mathbf{C} \colon P \leftrightarrow \overline{P}$

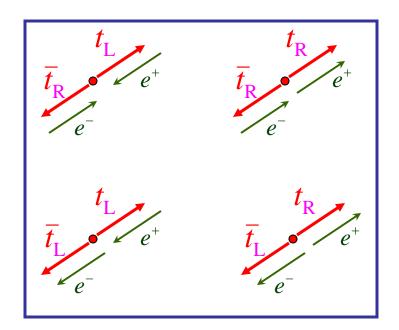
 $P: \vec{x} \leftrightarrow -\vec{x}$

A SM t (\overline{t}) is purely

left-handed (right-handed) polarized in the single-top process.

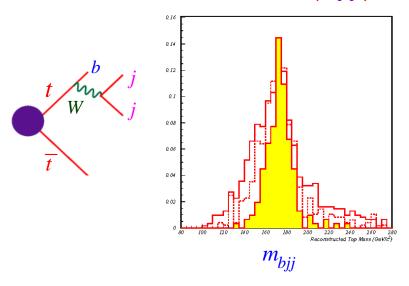

Measuring both

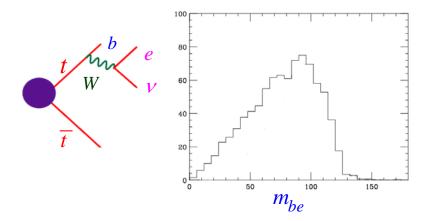
$$\left\langle \vec{\sigma}_{\!t} \bullet \vec{p}_b \times \vec{p}_{l^+} \right\rangle \text{ and } \left\langle \vec{\sigma}_{\!\bar{t}} \bullet \vec{p}_{\bar{b}} \times \vec{p}_{l^-} \right\rangle$$



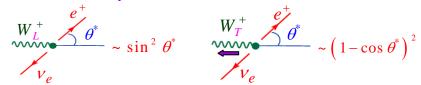
Probe CP-violation at the LHC

Spin correlation in $t\bar{t}$ events

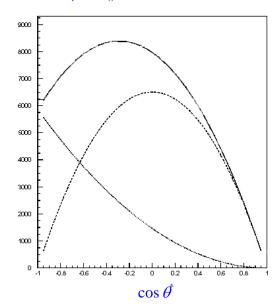

In the $t\bar{t}$ center-of-mass frame

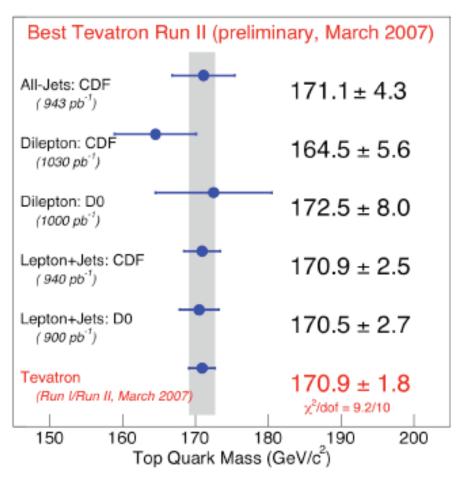

If $\sigma(t_L \overline{t}_L) \neq \sigma(t_R \overline{t}_R)$, then CP is violated.

Need better measurement of m_t


From the invariant mass of (b j j)

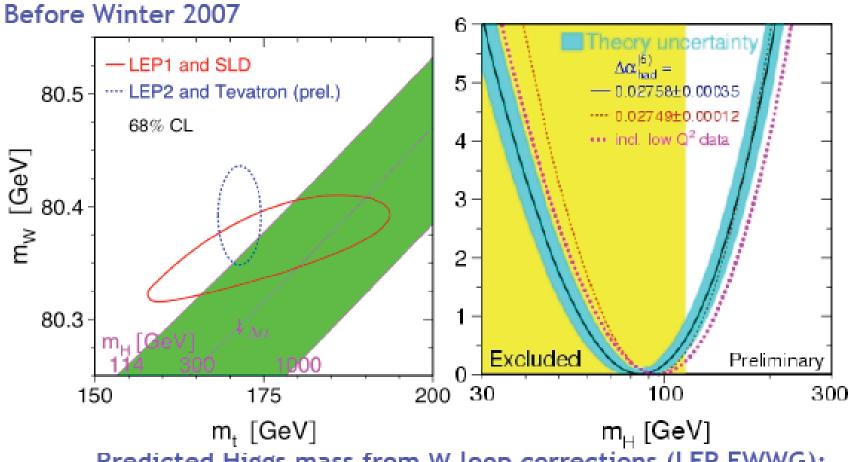
From the invariant mass of (b e)


From the polarization of W


$$F(\cos\theta^*) \sim (1 - f_{\text{Long}}) \left(\frac{1 - \cos\theta^*}{2}\right)^2 + f_{\text{Long}} \left(\frac{\sin\theta^*}{\sqrt{2}}\right)^2$$

$$f_{\text{long}} = \frac{\Gamma(t \to bW_L)}{\Gamma(t \to bW_L) + \Gamma(t \to bW_T)} = \frac{m_t^2}{2m_W^2 + m_t^2}$$

$$\cos\theta^* = \frac{2m_{be}^2}{m_t^2 - m_W^2} - 1$$



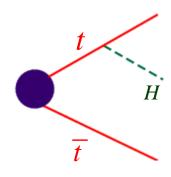
Top Quark Mass

New Tevatron average (3 weeks ago): Top mass now measured to 1.8 GeV http://tevewwg.fnal.gov/top

Impact on Higgs Mass

Predicted Higgs mass from W loop corrections (LEP EWWG): m_H =85⁺³⁹₋₂₈ GeV (<166 GeV at 95% CL)

direct search from LEP II: m_H>114.4 GeV


http://lepewwg.web.cern.ch/LEPEWWG/


Impact on Higgs Mass

- Summer 2006 SM Higgs fit: (LEP EWWG)
 - $M_{H} = 85^{+39}_{-28} \text{ GeV}$
 - M_H < 166 GeV (95% CL)
 - M_H < 199 GeV (95% CL) Including LEPII direct exclusion
- Updated preliminary SM Higgs fit: (With new CDF W Mass)
 - M_H = 80⁺³⁶-26 GeV (M. Grünewald, private communication)
 - M_H < 153 GeV (95% CL)
 - M_H < 189 GeV (95% CL) Including LEPII direct exclusion
- Updated preliminary SM Higgs fit: (With new Tevatron top mass)
 - $M_{\rm H} = 76^{+33}_{-24} \, \text{GeV}$
 - M_H < 144 GeV (95% CL)
 - M_H < 182 GeV (95% CL) Including LEPII direct exclusion

Discriminating Models of **Electroweak Symmetry Breaking**

Testing the interaction of Top, Bottom and Higgs Boson

$$y_t^{\text{SM}} = \frac{m_t}{\sqrt{2}v} = 1$$

$$y_b^{\text{SM}} = \frac{m_b}{\sqrt{2}v} = \frac{1}{40}$$

MSSM:
$$(\tan \beta = 40)$$

$$y_t = y_t^{\text{SM}} \cdot \cot \beta = \frac{1}{40}$$
 $y_b = y_b^{\text{SM}} \cdot \tan \beta = 1$

$$y_b = y_b^{\text{SM}} \cdot \tan \beta = 1$$

$$y_t = 1$$

$$y_b = 1$$

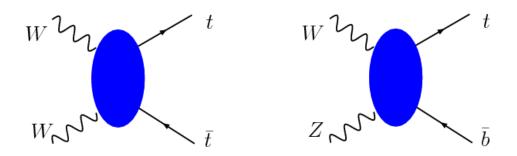
$$H \equiv < t\,\overline{t}>$$

If Higgs boson exists

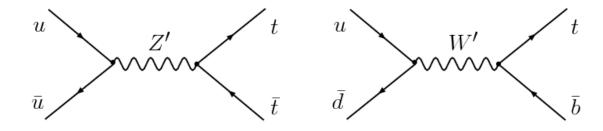
Discovering the Higgs boson and studying its interaction is essential to probe the electroweak symmetry breaking and the flavor symmetry breaking

Otherwise,

Studying interaction among longitudinal W and Z bosons in the TeV region and interaction of longitudinal W (Z) boson and heavy fermions (top and bottom)


Higgsless Model

(Extra-dimension Models)


 No elementary or composite Higgs boson to regulate unitarity violation in the TeV region for

$$WW, ZZ \rightarrow WW, ZZ$$
 and $WZ \rightarrow WZ$

• Need to study W W, $Z Z \rightarrow t t$, W $Z \rightarrow t b$ scatterings in the TeV region

Look for W' and Z', to delay unitarity breakdown

Summary

We need experimental Data to advance our knowledge.

Fermilab Tevatron

CERN LHC (Large Hadron Collider)

ILC (International Linear Collider)

