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Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

李晓光 教授
中国科学技术大学物理系, 合肥 230026

Prof. Li Xiao-Guang
Department of Physics, University of Science and Technology of China,
Hefei 230026, China

沈元壤 教授 Prof. Shen Yuan-Rang
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

王亚愚 教授
清华大学物理系, 北京 100084

Prof. Wang Ya-Yu
Department of Physics, Tsinghua University, Beijing 100084, China

王玉鹏 研究员
中国科学院物理研究所, 北京 100190

Prof. Wang Yu-Peng
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

王肇中 教授 Prof. Wang Zhao-Zhong
Laboratory for Photonics and Nanostructures(LPN) CNRS–UPR20,
Route de Nozay, 91460 Marcoussis, France

闻海虎 教授

南京大学物理学院系, 南京 210093

Prof. Wen Hai-Hu
School of Physics, Nanjing University, Nanjing 210093, China

徐至展 研究员, 院士
中国科学院上海光学精密机械研究所,
上海 201800

Prof. Academician Xu Zhi-Zhan
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of
Sciences, Shanghai 201800, China

许岑珂 助理教授 Assist. Prof. Xu Cen-Ke
Department of Physics，University of California, Santa Barbara, CA 93106,

USA
薛其坤 教授, 院士

清华大学物理系, 北京 100084
Prof. Academician Xue Qi-Kun
Department of Physics, Tsinghua University, Beijing 100084, China

叶 军 教授 Prof. Ye Jun
Department of Physics, University of Colorado, Boulder, Colorado
80309-0440, USA

张振宇 教授 Prof. Z. Y. Zhang
Oak Ridge National Laboratory, Oak Ridge, TN 37831–6032, USA

2015–2020
Prof. J. Y. Rhee Department of Physics, Sungkyunkwan University, Suwon, Korea
Prof. Robert J. Joynt Physics Department, University of Wisconsin-Madison, Madison, USA
程建春 教授

南京大学物理学院, 南京 210093
Prof. Cheng Jian-Chun
School of Physics, Nanjing University, Nanjing 210093, China

戴 希 研究员
中国科学院物理研究所，北京 100190

Prof. Dai Xi
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

郭光灿 教授, 院士

中国科学技术大学物理学院,
合肥 230026

Prof. Academician Guo Guang-Can
School of Physical Sciences, University of Science and Technology of China,
Hefei 230026, China

刘朝星 助理教授 Assist. Prof. Liu Chao-Xing
Department of Physics, Pennsylvania State University, PA 16802-6300, USA

刘 荧 教授
上海交通大学物理与天文系,
上海 200240

Prof. Liu Ying
Department of Physics and Astronomy, Shanghai Jiao Tong University,
Shanghai 200240, China

龙桂鲁 教授
清华大学物理系, 北京 100084

Prof. Long Gui-Lu
Department of Physics, Tsinghua University, Beijing 100084, China

牛 谦 教授 Prof. Niu Qian
Department of Physics, University of Texas, Austin, TX 78712, USA

欧阳颀 教授, 院士
北京大学物理学院, 北京 100871

Prof. Academician Ouyang Qi
School of Physics, Peking University, Beijing 100871, China

孙秀冬 教授
哈尔滨工业大学物理系, 哈尔滨 150001

Prof. Sun Xiu-Dong
Department of Physics, Harbin Institute of Technology, Harbin 150001, China

童利民 教授
浙江大学光电信息工程学系,
杭州 310027

Prof. Tong Li-Min
Department of Optical Engineering, Zhejiang University,
Hangzhou 310027, China

童彭尔 教授
香港科技大学物理系, 香港九龍

Prof. Tong Penger
Department of Physics, The Hong Kong University of Science and Technology,
Kowloon, Hong Kong, China

王开友 研究员
中国科学院半导体研究所, 北京 100083

Prof. Wang Kai-You
Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083,
China

魏苏淮 教授 Prof. Wei Su-Huai
National Renewable Energy Laboratory, Golden, Colorado 80401-3393, USA

解思深 研究员, 院士
中国科学院物理研究所, 北京 100190

Prof. Academician Xie Si-Shen
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

叶朝辉 研究员, 院士
中国科学院武汉物理与数学研究所,
武汉 430071

Prof. Academician Ye Chao-Hui
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences,
Wuhan 430071, China

郁明阳 教授 Prof. Yu Ming-Yang
Theoretical Physics I, Ruhr University, D-44780 Bochum, Germany

张富春 教授
香港大学物理系, 香港

Prof. Zhang Fu-Chun
Department of Physics, The University of Hong Kong, Hong Kong, China

张 勇 教授 Prof. Zhang Yong
Electrical and Computer Engineering Department, The University of North
Carolina at Charlotte, Charlotte, USA

郑 波 教授
浙江大学物理系, 杭州 310027

Prof. Zheng Bo
Physics Department, Zhejiang University, Hangzhou 310027, China

周兴江 研究员
中国科学院物理研究所, 北京 100190

Prof. Zhou Xing-Jiang
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

编编编 辑辑辑 Editorial Staff
王久丽 Wang Jiu-Li 章志英 Zhang Zhi-Ying 蔡建伟 Cai Jian-Wei 翟 振 Zhai Zhen 郭红丽 Guo Hong-Li



Chin. Phys. B Vol. 25, No. 12 (2016) 124211

RAPID COMMUNICATION

Microscale vortex laser with controlled topological charge∗

Xing-Yuan Wang(王兴远)1, Hua-Zhou Chen(陈华洲)1, Ying Li(黎颖)1,
Bo Li(李波)1, and Ren-Min Ma(马仁敏)1,2,†

1State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing, China

(Received 20 October 2016; revised manuscript received 7 November 2016; published online 25 November 2016)

A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector
vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its
application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex
laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional
point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping.
The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-
generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to
generate lasing eigenmode with other complex functionalities.

Keywords: exceptional point, non-Hermitian system, orbital angular momentum, vortex laser

PACS: 42.55.Px, 42.55.Sa, 42.60.By DOI: 10.1088/1674-1056/25/12/124211

1. Introduction
Vortex beams are light beams with helical phase front

possessing infinite topological charge and a phase singularity
at the beam axis.[1–3] These special properties inspired major
interest for quantum information and communication, super-
resolution imaging, micromanipulation, optical measurement,
and digital imaging.[4–14] The generation of optical vortex
beam relies on the phase modulation of a laser beam either in-
side or outside of a laser cavity.[1–3,15–29] To miniaturize the
vortex beam generator, Cai et al. demonstrated an on-chip
vortex emitter with well-defined orbital angular momentum
by coupling light into a micro-ring with azimuthal scattering
gratings.[30] Recently, researches on metamaterial and excep-
tional point have provided a general method to manipulate
electromagnetic field in a controlled manner.[31–42] Miao et
al. demonstrated a laser with emission carrying orbital angu-
lar momentum at microscale.[43] However, a microscale laser
with controlled topological charge, which is crucial for virtu-
ally any of its application, is still unrevealed.

Here we demonstrated avortex laser with controlled topo-
logical charge at microscale. The vortex laser eigenmode syn-
thesized in a micro-ring cavity at the exceptional point is stable
enough to lasing state and emits vortex beam directly under
optical pumping. Such a system can generate different orders
of vortex beams by simply modulatingthe grating protruded
on the micro-ring cavity. We obtained all these results from
rigorous theoretical derivation and further proved them using
three-dimensional (3D) full wave simulations.

2. Methods
2.1. Theoretical derivation

As for the vortex laser design, the key point is to con-
struct an eigenmode in the microcavity which can emit vortex
beam at desired order. First of all, we presented an analyti-
cal analysis for all kinds of exceptional points in a micro-ring
cavity in the parameter space. Exceptional point is a singular-
ity where both eigen-frequency and eigen-function coalesce.
Here we employed a general form of refractive index modula-
tion along the azimuthal direction of a micro-ring cavity and
derived the conditions of exceptional point based on the cou-
pled mode theory. Then, from the physical picture of scatter-
ing waves interference, we obtained the equations describing
the parameters relationships of the refractive index modula-
tions to achieve the exceptional point where only one propa-
gating whispering-gallery mode exist at the lasing frequency.
Secondly, a non-zero momentum perpendicular to the micro-
ring plane is generated by introducing periodic gratings on the
out wall of the micro-ring cavity. The out-of-plane momentum
and the micro-ring cavity eigen-mode will twisted into an op-
tical vortex beam. we can tune the order of the optical vortex
emission by simply tuning the number of the grating elements
along the outer sidewall.

2.2. Numerical simulation

The characteristics of the vortex laser is analyzed by 3D
full wave simulations (Comsol Multiphysics). For a vortex

∗Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of
China (Grant Nos. 11574012 and 61521004).

†Corresponding author. E-mail: renminma@pku.edu.cn
© 2016 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn
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laser cavity based on III–V InGaAsP gain materials as an ex-
ample, the three dimensional eigen-mode solution will give all
the information of the field distribution. The pumping effect
of the cavity is treated as an increase of the imaginary part
of InGaAsP refractive index. The stability of the vortex laser
during the pumping is verified by the chirality of the angular
momentum distribution in the lasing process. Q factor is cal-
culated by the formula Q = fr/2 fi, where fr and fi are the real
and imaginary part of the eigenfrequency. Details forspecific
parameters can be found in the corresponding figure captions.

3. Results and discussion
3.1. Principles of a vortex laser

Figure 1 is the schematic diagram of a vortex laser. This
vortex laser can generate arbitrary order of vortex beam. Here,
we choose the second-order vortex beam as an example. Fig-
ure 1(a) presents the perspective view of the magnetic field
|H| distribution of a full wave simulation of the vortex laser
on a log scale. Inside the laser cavity, the exceptional point
ensures a unidirectional travelling whispering gallery mode,
which is evidenced by the weak fluctuation of the magnetic
field (Fig. 1(b)). Figure 1(c) shows the transversal distribution
of the radial component of the magnetic field Hr in the far field,
which presents a vortex beam profile. The vortex laser cavity
is simulated with III–V InGaAsP gain materials, because its
emission is at the C-band of the optical communication.[44]

The inner radius and the width of the vortex laser cavity are
1500 nm and 500 nm respectively.

(a) (c)

(b)

Hr↼ρ,ϕ↽exp↼ilϕ↽ l/↪ ↪ ↪ ...

H

z

ρ
ϕ

Fig. 1. (color online) Operation principles of a vortex laser. (a) A perspec-
tive view of the magnetic field |H| distribution of a full wave simulated vortex
laser on a log scale. (b) The exceptional point enables a unidirectional trav-
elling whispering gallery mode inside the laser cavity evidenced by the weak
fluctuation of magnetic field |H|. (c) The transversal distributions of radial
component of the magnetic field Hr in the cross section of the vortex laser
emission, showing typical optical vortex beam characteristic.

3.2. Exceptional points in the vortex laser cavity

The chirality mode at exceptional point is necessary for
the realization of vortex laser with well-defined topological
charge. Here we derived a general expression for the excep-
tional points in a vortex laser cavity. The derivation is based
on the unsymmetrical coherent scattering between two de-
generate counter propagating modes in a whispering-gallery
micro-ring cavity. In a fundamental physical picture of in-
terference, when the back scatterings from counter-clockwise
(CCW) mode to clockwise (CW) mode interfere destructively

while the back scatterings from CW mode to CCW mode do
not, the system locates at the exceptional point and degenerate
eigen-modes of the system coalesce to a pure CCW travel-
ing mode and vice versa.[40] Here we employed two sets of
periodic gratings to generate discrete momentums satisfying
the resonance Bragg-scattering condition. Figure 2(a) shows
a general form of the refractive index modulation along the
azimuthal direction (ϕ):

n =

{
n0+∆1 e iφ1 , (lπ/m≤ϕ≤lπ/m+δϕ1),

n0+∆2 e iφ2 , (lπ/m+ϕ0≤ϕ≤lπ/m+ϕ0+δϕ2),
(1)

where l = 0,1,2, . . . ,2m−1. The micro-ring is divided into
2m periods. n0 is the unperturbed part of the refractive index.
The index modulation is given by complex number ∆2 e iφ2 and
∆1 e iφ1 .

The two gratings, ∆n = ∆1 e iφ1 and ∆n = ∆2 e iφ2 can be
viewed as two sources of scattering. The modulus of the effec-
tive refractive index modulation induced by each grating will
modulate the amplitude of the corresponding backscattering
while its position and the angular width of the effective refrac-
tive index modulation (φ1 and φ2) decides the relative phase
of the corresponding back scattering. Based on the mode cou-
pling theory, we can obtain all the possible grating configura-
tions to achieve fully destructive interference in one direction
with nondestructive interference in the other direction, a.k.a.
the exceptional point in the vortex laser cavity.

Here, we show two special classes of exceptional points
with simplified parameters: 1) δϕ1 = δϕ2, 2) φ1= 0, and 3)
φ2 = π/2, where parity time symmetry is included in both
cases.

In case 1), where the two modulation parts have the same
angular width δϕ1 = δϕ2, the refractive index modulation
to realize exceptional points needs to satisfy the relations of
∆1 = ∆2 and φ2+2mϕ0−φ1 = π . δϕ1 = δϕ2 and ∆1 = ∆2 en-
sure equal amplitudes of back scatterings. The initial phase
difference of the two back scatterings is φ2−φ1. The angular
displacement ϕ0 between the centers of the two gratings pro-
vides additional phase difference of 2mϕ0. The two back scat-
terings interfere destructively when the total phase difference
φ2+2mϕ0−φ1 equals to π , leading to an exceptional point for
the unidirectional traveling CCW mode.

Another class of refractive index modulation is case 2)
φ1= 0 and φ2 = π/2. Figures 2(b) and 2(c) show the rela-
tions the parameters need to satisfy. The systems with pa-
rameters locating at the parameter surface in Figs. 2(b) and
2(c) are at certain exceptional point. We can see that the PT-
symmetrical refractive index modulation is only a special case
(2mϕ0 = π/2, 2mδϕ1= 2mδϕ1= π , and ∆1 = ∆2). To illus-
trate this, we solved the eigen-value problem under the condi-
tion of φ1= 0,φ1 = π/2, 2mϕ0 = π/2. Figures 2(d) and 2(e)
show the real part and imaginary part of the eigen-values re-
spectively. Obviously, the systems corresponding to the clin-
odiagonal of the nR−nI coordinate plate (∆1 = ∆2) have coa-
lesced eigen-value and thus locate at exceptional point.
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Fig. 2. (color online) Exceptional points in the vortex laser cavity. (a) A general form of refractive-index modulation in a micro-ring cavity. The index
modulation consists of two sets of periodic scattering elements, which are essential to realize exceptional points in the view of interference. Panels (b) and (c)
show the relations the parameters need to satisfy simultaneously to achieve exceptional points on the condition of φ1= 0 and φ2 = π/2. Panels (d) and (e) are
the real part and imaginary part of the eigen-values in the case of one grating with pure real part nR (nR = ∆1 e iφ1 ,φ1 = 0) while the other grating with pure
imaginary nI (nI = ∆2 e iφ2 , φ2 = π/2) index modulation and keeping 2mϕ0 = π/2. This is the case of PT-symmetrical refractive index modulation. In the
calculation, azimuthal order m = 16, refractive index of the cavity n0 = 2.67, ∆nR = nπ/16≤ ϕ ≤ nπ/16+π/32, ∆nI = nπ/16+π/64≤ ϕ ≤ nπ/16+3π/64,
n = 0,1,2, . . . ,31. The inner radius and the width of the vortex laser cavity is 1500 nm and 500 nm respectively.

3.3. Different orders of optical vortex generation on demand

Optical vortex with different orders of orbital angular momentum has an additional degree of freedom for multiplexing.
Here, we presented the generation of optical vortex with different order while in the PT-symmetrical refractive index modulated
system:

n =


n0+∆nR , (lπ/m≤ ϕ ≤ lπ/m+π/4m) ,

n0+∆nR+∆nI i, (lπ/m+π/4m≤ ϕ ≤ lπ/m+π/2m) ,

n0+∆nI i, (lπ/m+π/2m≤ ϕ ≤ lπ/m+3π/4m),

(2)

where n0 is the unperturbed part of the refractive index, and
∆nR and ∆nI are the real and imaginary index modulation, re-
spectively. l= 0,1,2, . . . ,2m−1.

The 2m periods of refractive index modulation is cho-
sen to tune the system to an exceptional point. At the same
time the index modulation will not couple the beam into free
space according to momentum-matching condition. This en-
sures that we can avoid uncontrollable additional orders of vor-
tex beam. And then we choose the number of the outer side-
wall grating qOWG as 2m > q

OWG
> m. In this case, the outer

sidewall grating does not cause the change of the exceptional
point in parameter space. It only takes the role of coupling the
travelling whispering-gallery mode and the free-space vortex
beam mode. The order νrad of the optical vortex is solely de-
termined by the difference between azimuthal order m of the
desired whispering gallery mode and the number of the outer

sidewall gratings:

νrad = m−qOWG . (3)

The general results obtained are valid for both TE and TM
polarized whispering-gallery modes. In our device with thin
ring geometry, the effective index for TM modes is consider-
ably decreased.[45] Thus, the TE modes preferentially reach
the lasing condition of the cavity. The magnetic field vector
Hz of the TE modes are perpendicular to the cavity plane.

Vortex beams with arbitrary orbital angular momentum
can be achieved by tuning the outer sidewall grating. Figure 3
shows that stable vortex beam with increasing orbital angular
momentum can be obtained by changing qOWG. As shown in
Figs. 3(a), 3(e), and 3(i), almost homogeneous magnetic field
intensity distributions on the ring can be obtained for gener-
ating different orders of optical vortex. The fluctuation of the
corresponding field intensity distribution |H| in the cross sec-
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tion of the vortex beam is also very weak (Figs. 3(b), 3(f),
and 3(j)). The transversal distributions of radial component Hr

(Figs. 3(c), 3(g), and 3(k)) and the corresponding phase dis-
tributions arg (Hr) (Figs. 3(d), 3(h), and 3(l)) further confirm
that the vortex beams emitted from cavities with outer sidewall

grating elements qOWG = 17,18,19 have definite OAM }, 2},
and 3}, respectively, which can be calculated from Eq. (3).
These results are direct evidences indicating that the vortex
laser can generate optical vortex with controllable definite or-
bital angular momentum.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

l/

Ng/

l/

Ng/

l/

Ng/

H inside the cavity H arg↼Hr↽Hr

Fig. 3. (color online) Different orders of optical vortex generation on demand. (a)–(d) A Vortex laser with the first order of orbital angular momentum
optical vortex emission, where the magnetic field intensity distributions inside the laser cavity (a), and |H| (b), Hr (c), and arg (Hr) (d) at 4 µm above the
lase cavity are depicted. (e)–(h) A Vortex laser with the second order of orbital angular momentum optical vortex emission, where the magnetic field
intensity distributions inside the laser cavity (e), and |H| (f), Hr (g), and arg (Hr) (h) at 4 µm above the lase cavity are depicted. (i)–(l) A Vortex laser
with the third order of orbital angular momentum optical vortex emission, where the magnetic field intensity distributions inside the laser cavity (i), and
|H| (j), Hr (k), and arg (Hr) (l) at 4 µm above the lase cavity are depicted. All systems have the same index modulation (∆nR = ∆nI = 0.01).

3.4. Visualization of vortex laser orbital angular momen-
tum distribution

To further confirm the generation of the specific order of
optical vortex, we decomposed the light field in the far field
into a series of eigen-modes with different orbital angular mo-
mentum while the principle of the realization of vortex mode is
also clearly shown. The field distribution can be decomposed
by being expanded in cylindrical harmonics,[45,46]

Hz (r,ϕ) =
∞

∑
m=−∞

αmJm (nkr)exp(imϕ), (4)

where Jm is the m-th order Bessel function of the first kind, and
k is the wave number, and n is the effective refractive index of
the micro-ring. The CW (CCW) traveling-wave components
are denoted by positive (negative) values of the angular mo-
mentum index m.[46]

Figures 4(a) and 4(b) show the simulated intensity pat-
terns |H| and Hz in the far field of a vortex laser cavity

for generation of second order of orbital angular momentum
emission. We can see that the fluctuation of the simulated
magnetic pattern |H| (Fig. 4(a)) is negligible at exceptional
point. Figure 4(c) shows the ratio of the CW and CCW com-
ponents |αm|2 / |α−m|2 as a function of real index modula-
tion ∆nR with fixed ∆nI = 0.01. The exceptional point lo-
cates at ∆nR = ∆nI , at which the real and imaginary parts
of the eigen-frequencies coalesce simultaneously. At ∆nR =

0, both eigenmodes have equal CW and CCW components(
|α16|2 / |α−16|2∼ 1

)
while in the vicinity of the exceptional

point (∆nR = ∆nI), both eigenmodes have dominant CCW
component

(
|α16|2 /|α−16|2� 1

)
. These show an evolution

from standing waves to traveling wave when the system is
approaching the exceptional point. Especially, the simulation
shows that the CCW component is about 484 times larger than
the CW component at exceptional point, indicating a nearly
perfect traveling wave mode.
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Fig. 4. (color online) Visualization of vortex laser angular momentum distribution. Panels (a) and (b) show the simulated intensity patterns |H| and Hz
of a mode inside the vortex laser cavity at ∆nR = ∆nI . The weak fluctuation of the |H| and the periodicity of the Hz clearly show a 16-order traveling
mode. (c) Ratio of CW and CCW component |αm|2 / |α−m|2 as a function of real index modulation ∆nR . The imaginary index modulation is fixed
at ∆nI = 0.01. The mode shows clear chirality in the vicinity of the exceptional point (∆nR = ∆nI ). The CCW component is about 484 times larger
than the CW component at exceptional point, which indicates a nearly perfect traveling wave mode. (d) Angular momentum distribution |αm|2 of the
whispering-gallery mode at exceptional point (∆nR = ∆nI= 0.01). The outer sidewall grating elements (qOWG = 18) couple the dominated CW mode to
the vertically emitted vortex beams with orbital angular momentum index m =−2 (16–18).

Figure 4(d) shows the orbital angular momentum distri-
bution of the mode at exceptional point, which illustrates the
physical process of the creation of the vortex beam. Under
the index modulation, the CW modes are dominant (two or-
ders larger than the CCW component while m = 16), and the
outer sidewall grating elements (qOWG = 18) couples CW and
CCW traveling modes to the vertically emitting vortex beams
with orbital angular momentum indexes m = −2 and m = 2,
respectively. Thus, the emitted vortex beam with m=−2 from
CW mode is two orders larger than the vortex beam with m= 2
from CCW mode, generating a vortex beam with definite an-
gular momentum.

3.5. Stability of the vortex-beam output in the lasing pro-
cess under pumping

Exceptional point is sensitive to the environmental pa-
rameters. Here we illustrate the stability of the vortex laser
in the lasing process under uniform pumping. The uniform
pumping of the gain material InGaAsP of the cavity is equiv-
alent to increasing the imaginary part of refractive index nI of
the InGaAsP. The uniformly changed background refractive
index nI will only cause the change of the first order of the
Fourier expansion coefficient of the refractive index, which
will not induce additional coupling between the CCW and
CW whispering-gallery modes according to the phase match-
ing condition, and thus will not cause the change of the ex-
ceptional point in parameter space. We have confirmed this by
3D full wave simulations. As shown in Fig. 5(a), the vortex
laser cavity mode becomes lasing and emitting vortex beam
with the increase of nI . However, the ratio of orbital angu-
lar momentum components is almost unchanged as shown in
Fig. 5(b), which confirms that the vortex laser is stable in the
lasing process. The system is stable while nI =−0.005, corre-
sponding to material gain of 202.5 cm−1, which is achievable

in InGaAsP system.[47]
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Fig. 5. (color online) Stability of the vortex-beam output in the las-
ing process under pumping. (a) The background gain dependence of
the cavity quality factor for a vortex beam laser at exceptional point
(∆nR = ∆nI= 0.01) with Ng = 19. The uniform pumping gain of the
InGaAsP ring is mimicked by increasing the imaginary part of back-
ground refractive index nI . The quality factor is about 365 for the cav-
ity without gain. With the increasing of the gain coefficiency, the cavity
quality factor increases by orders of magnitude, indicating that the loss
is compensated by the gain. (b) Ratio of the CW and CCW compo-
nents |αm|2 / |α−m|2 as a function of background refractive index nI .
The black dots show the main component of the mode is CW mode,
which is almost unchanged with the increase of the background refrac-
tive index nI . The CW traveling mode is coupled to a vortex beam with
azimuthal quantum number m =−2 (see the red dots).

4. Conclusions
In conclusion, the microscale vortex laser with controlled

topological charge is demonstrated. The vortex laser eigen-
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mode was synthesized in a meta-materials engineered non-
Hermitian micro-ring cavity system and the optical vortex
emission with defined orbital angular momentum can be ob-
tained in a controlled manner. The vortex laser with con-
trolled topological charge synergizes lasing and modulating
functionalities in one device with microscale footprint, mak-
ing it a unique and general building block for next-generation
photonic integrated circuits and coherent vortex beam source.
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