
Engineering Fine-Grained
Dependability Requirements

An Environment Modeling based
Approach

Zhi Jin
Key Lab of High Confidence Software Technologies (MoE)

Peking University
zhijin@pku.edu.cn

QRS, 2017.07.28, Prague, Czech Republic

mailto:zhijin@pku.edu.cn

Outline
• Motivation:
– System need to be more dependable

• Challenges:
– Dependability is non-functional feature and needs

to be interweaved with functional features
• Approach:
– Derive dependability concerns from environment

features
– Adopt control-based framework to interweave

dependability and functionality
• Expectation:
– Benefits and further efforts

Motivation: Trend in Computing

• Cyber-Physical Systems

– Cyber-physical systems are integrations of computation with physical

processes. Embedded computers and networks monitor and control the

physical processes, …… (Edward A. Lee)

– The integration of physical systems and processes with networked

computing has led to the emergence of a new generation of engineered

systems: cyber-physical systems. (CPS steering group)

– A world where physical objects are seamlessly integrated into the

information network, and where the physical objects can become

active participants in business processes. (SAP)

Motivation: Trend in Computing

Cyber-Physical (-Social) Systems
Software systems are to be tightly
integrated with the physical systems and
the social systems

with
networked sensing,
computation,
actuation, etc.

Realm of Integration：
Everywhere + Invisible

Populations of computing entities will be a significant part of
our environment, performing tasks that support us, and we
shall be largely unaware of them.

The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life until
they are indistinguishable from it.

Mark Weiser, a pioneer of ubiquitous computing

Invisible = Software and hardware are embedded in the
physical world and human society. That
produce a new operable "application scenario"

Motivation: Trend in Computing
Traditional Application Scenario

Software: be in charge of
information processing

As tool of the information
processing, software needs only to
meet the predefined specification

New Application Scenario

Software: be carrier of
application values

As a carrier of application values,
software needs to deal with the open
and dynamic environment,
continuously meet the diverse and
varied needs of users

Turing Award winner: Joseph Sifakis (2011):
A Vision for Computer Science, CACM.

Adaptivity, Continuous
Evolution, Dependability

and Scalability

Outline
• Motivation:
– System need to be more dependable

• Challenges:
– Dependability is non-functional feature and needs

to be interweaved with functional features
• Approach:
– Derive dependability concerns from environment

features
– Adopt control-based framework to interweave

dependability and functionality
• Expectation:
– Benefits and further efforts

State of Art: Process

• A defined software process is essential
– Enforcing standards, avoiding that issues fall through

cracks, learning from past mistakes

– Including procedures for version control, bug tracking
and regression testing

– Including standard structures for documents and
guidelines for meetings

– Including collection of detailed statistics and explicit
mechanisms for adjusting the process accordingly

State of Art: Testing

• To find bugs
– Structural tests identify bugs in known categories

• A mutation test, a regression test, ……
– A successful test is one that fails, and thus

identifies a bug
• To provide evidence of dependability

– Test cases are drawn randomly from the expected
profile of use, and statistical inferences are made
about the likelihood of failure

– A successful test is one that succeeds to provide
direct evidence for demonstrating dependability

Challenges Remained

• What form of process and testing should take that
can offer just enough dependability considering the
cost, usability, performance, etc.?
– make balance

• The adoption of rigorous processes and testing has an
indirect impact on dependability, evidence of a direct
link between dependability and design is missing.
– build trace links

• Developers find interweaving the business needs and
dependability needs is still real headache
– help operationalization

D. Jackson (2009), A Direct Path to Dependable
Software, Communication of ACM, 52(4): 78-88

Challenges to Developers

• From where, the needs for
dependability can be identified ?

• What is the relationship between
dependability needs and the business
functionality ?

• How will these two be interweaved
together ?

Outline
• Motivation:
– System need to be more dependable

• Challenges:
– Dependability is non-functional feature and needs

to be interweaved with functional features
• Approach:
– Derive dependability concerns from environment

features
– Adopt control-based framework to interweave

dependability and functionality
• Expectation:
– Benefits and further efforts

Dependability by Construction

• Dependability by construction
– build dependability into every step
– demand
• rigorous requirements definition
• precise system-behavior specification
• solid and verifiable design
• code that can be precisely understood

• Construction starts from requirements
definition

Where comes Requirements

• Needed business capabilities
– To solve the business domain problem

Quality Properties

Bu
sin

es
s C

on
str

ain
ts • Integrity

• Reliability
• Availability
• Robustness
• Security
• Safety
• ……

Us
ag

e
Ex

pe
rie

nc
e • Efficiency

• Flexibility
• Usability
• Interoperabi

lity
• ……

Sy
ste

m
Ar

ch
ite

ct
ur

e • Maintainabili
ty

• Portability
• Reusability
• Testability
• ……

Business Relevance

• Needed quality
properties of entire
system, a system
component, service,
or function
– Not about business

logics
– But ensure the

quality of domain
problem solving

What is Dependability
D

ep
en

da
bi

lit
y

non-functional
requirements

quality property

underspecified
functional requirements

IFIP WG10.4

The notion of dependability, defined as the
trustworthiness of a computing system which
allows reliance to be justifiably placed on the
service it delivers, enables these various
concerns to be subsumed within a single
conceptual framework.

Dependability

Reliability

Availability

Safety

Security

Confidentiality

Integrity

Quality Properties
Bu

sin
es

s
Co

ns
tr

ai
nt

s • Integrity
• Reliability
• Availability
• Robustness
• Security
• Safety
• ……

Us
ag

e
Ex

pe
ri
en

ce • Efficiency
• Flexibility
• Usability
• Interoperabi
lity

• ……

Sy
st

em
 A

rc
hi
te

ct
ur

e • Maintainabili
ty

• Portability
• Reusability
• Testability
• ……

Business Relevance

Developer’s
Design skill

Algorithm
Implementation

Domain Feature
Usage Scenario

Dependability

It is a kind of
unspecified
functional

requirements

RE assumption
and Dependability Argument

Environment
Assumptions

Specification Requirements

E

The task of RE
Given Environment Assumptions
And Requirements
When Conduct RE
Then System Capability is decided

Three Penetrations

Analyzing
Environment

Features

Considering System
Potential Faults

Directly focusing on
Requirements

Environment
Assumptions

Specification Requirements

NFR Framework: Focus on Req

!

• Generic to any NFR
• Directly Analyze Requirements
• Associate to Function Implementation

I want high
quality

Which types of
quality ?

Which vulnerabilities
may be introduced

during implementation
that may reduce quality

?

What are
countermeasures
dealing with the
vulnerabilities ?

Chung, L., Nixon, B., Yu, E., Mylopoulos, J., 2000, Non Functional
Requirements in Software Engineering, Kluwer Academic Publisher.

scope

• Type
•Whole	system
• Service
•Operational	Profile
•Distribution	of	
transaction
•Workload	volumes
•……

measure

•Measurement	Model
•MTBF
•Probability	of	
Occurrences
•%	cases
•MAX	cases	in	interval	X
•Ordinal	scale
(rarely/sometimes/…

event
• Type
•Adverse	condition
•Attack
•……

reaction

• Impact	mitigation
•Warning
•Alternative	services
•Mitigation	services
•Recovery
•Recovery	time/actions
•Occurrence	reduction
•Guard	service

issue

• FAILURE
• Type
• Accuracy
• Response	time
• ……
• Availability
• Stopping
• Non-stopping
• Severity
• High
• Low

• HAZARD
• Severity
• People	affected
• Property	only
• ……

concern

cause

manifest

trigger

Basili, L., Clements, P., Asgari, S., 2004. The Unified Model of Dependability:
Putting Dependability in Context, IEEE Software 21(3): 19-25

• Start from the
potential issues of
the system

• Identify the event
that may cause the
issues and the
scope impacted by
the issues

• Decide the
measurements for
detecting the
issues

• Specifying the
desired system
reactions

UMD: Concerning System Failures

Dependability from Environment

Analyzing
Environment

Features and
Application

Scenarios Considering System
Potential Faults

Directly focusing on
Requirements

Environment
Assumptions

Specification Requirements

Why this is Reasonable ?

Physical
and

Social
World

Software
System

Functionality

When the
Environment is Open,
Dynamic, Uncertain,

Safe-Critical,
Malicious ?

Physical
and

Social
World

Software
System

Non-Deterministic
Factors

Malicious Factors

Safety-Critical
Factors

Errors

System Fault

Security Reqs.

Safety Reqs.

Robustness Reqs.

Availability
Reqs.

Context-aware Reqs.

Functional Reqs.

Changeable Factors Self-adaptation Reqs.

Timeliness FactorReal Time Reqs.

Undesired external
interference

Need to guard against

Undesired, loss-
caused effects

Need to be
prevented

Undesired internal
behaviors

Need to avoid by online
self-healing

Why this is reasonable ?Inherent Properties for
the physical/social world
Need to be adaptive to
match and pace with

Why not Dependable ?

Errors and Malicious Attacks from
known or unknown environment entities

Un-anticipated
Domain Behaviors

Changes in causal entity, e.g. un-
recognized states, new causal entities

New Domain
Assumptions

Un-proper system behaviors causing
disaster to critical environment entity

Fatal System
Behaviors

Fault in system producing undesired
system performance

Un-anticipated
System Behaviors

Domain
Assumptions

Specification
Requirements

Side Effects

Dependability from Scenario
Based on

environment
assumptions

and application
context to
introduce

dependability
strategies Considering System

Potential Faults

Directly focusing on
Requirements

Environment
Assumptions

Specification Requirements

Define just-enough
quality property

Trace to application
context

Be operationalized as
interactions or constraints

Control Based Meta-Model

Core
system

Feedback
controller

Feedforward
controller

Desired
Environment
behaviors

System
behaviors

Dependable
System

Undesired
Environment
behaviors

Control Environment
Abnormal Behaviors

Control System
Abnormal Behaviors

Use-CasesFB Control-
Cases

FF Control-
Cases

A Knowledge Base
about Threats and Faults

Core
system

Feedforward
controller

Feedback
controller

Behaviors
deviations Controls

System

Threats (Attacks,
Malicious Usage,
Operation Errors,
……)

Desired
behaviors

System
behaviors

Requirements Representation
Environment

Entities

Environment
Entities

Conceptual Model

share
phenomena

share
phenomena

share
phenomena

Environment Model

OperatorData Physical
World

Designed
Entity

Function Profile

Control
Profile

Feedforward
Control Profile

Feedback
Control Profile

Threat System Behavior
Deviation

produce

counter
counter

threaten

control

System Model control

Concerns Identification from
Interactive Environment

Entity

Autonomou
s entity

Causal
entity

Symbolic
entity

Phenomenon

Environment
Related Thing

Value

State

Event

Interaction

Value
transfer

State
detection

Event
propagation

Environment Entity /
System Asset / Interaction
/ Phenomenon

Undesired Feature Implied Concern

External / Internal
Autonomous Entity

Has malicious intent to
access

Authorization
Concern

System / System
Component

Produce unexpected
behavior / output;
Failure

Fault tolerance

Adaptation Concern
External Entity Trigger known attack /

virus
Security Concern

External Symbolic Entity Has different levels of
sensitiveness

Privacy Concern

External Physical Device Produce unexpected
input

Robustness Concern

External Entity Valuable or Critical Safety Concern

Connection Be lost, Be tampered Security Concern
Interactive Environment Uncertain Adaptation Concern

U
pp

er
 L

ev
el

 O
nt

ol
og

y
of

En
vi

ro
nm

en
t

M
od

el

Entity / Threat / Countermeasure
Featured Entity /
Service / Interaction

Threat Countermeasure

Private/sensitive data Information
disclosure in
transmission or
service delivering

Strong authorization to data accessing;
Strong encryption to the data;
Communication link securing with protocols that provides
message confidentiality

High available system
service

Denial of service by
malicious user

Resource and bandwidth throttling;
Input validation and filtering

Malicious operator Spoofing for illegal
usage

Strong authentication;
Strong encryption to operators’ login data;
Authentication cookie protection with Secure Sockets
Layer

Critical / Valuable data,
Device, or Interactor
that can result in big
loss

Tampering with data
in transmission or
data storage and/or
processing

Data hashing and signing;
Digital signatures;
Strong authorization;
Tamper-resistant protocols across communication links;
Communication link securing with protocols that provides
message integrity

System fault or
behavior deviation

Oracle-based system behavior checking

Open system/service
with highly-desired
availability

Virus, e.g. Trojan
horse, Worms, ……

Block all unnecessary ports at the firewall and host;
Disable unused functionality;
Harden weak, default configuration settings

…… …… ……MicroSoft, Improve Web Application Security;
Common Criteria for Information Technology Security Evaluation;

Process of Requirements Elicitation

• Adopt use cases to specify the business functional
requirements

• For each use case
– Identify feed-forward controllers to handle the potential

undesired inputs, e.g. errors, attacks, etc. They are the
external threats

– Identify feed-back controllers to handle the potential
system behavior deviations. They are the internal threats

– Adopt threat-counter patterns (specific domain knowledge)
to specifying the operationalization of the controllers

– Weave controllers and use case to build dependable use case

Requirements Elicitation Process

Functional requirements
elicitation

Dependability requirements
elicitation

Start

End

Use cases
model

Use/control
cases model

Participants : users,
requirements

engineers

Participants : users,
requirements

engineers, domain
experts

Concern : what
services does the
system need to

deliver ?

Concern : how does
the system ensure

the dependability of
the delivered

services ?

Requirements Elicitation Process

Knowledge Base
about Threats and

Controls

Identify undesired interactions
(potential attacks, errors, ……, and

system behavior deviation)

Assess the risks

Determine the control policy

Use cases model

There are some new
concerns introduced

Use/control cases model

N

Y

Pattern for controller

Patterns for controller

Measure: Detect what?
Compare: Compare with what?
Compute: Based on what to

make decisions?
Correct: Control what?

Requirements Elicitation Process

Identify the interaction’s
properties of interest

Identify the deviations
of each property

Determine the possible threats
and behavior deviations causing

the property deviations

Each interaction
described in a

use case

The threats and system
behavior deviations derived
from interaction of the
use case

Interaction of use case: log-in:
The customer inputs the account and password.

Properties of interest:
1, The frequency of this interaction,
2, The confidentiality of the account and password

Deviations of properties:
1, This interaction occurs frequently (guideword:
more)
2, The account and password is disclosed
(guideword: no)

Threats or system behavior
deviations:
1, Brute force attack
2, Network monitoring

Example:

Use Case / Controller Model

Feedforward
control case

Feedback
control case

Threat

Behavior
deviation

Search
goods

Log in

Authentication

D
Response delay

T
Unauthorized access

Online store system

<<threaten>>

<<counter>>
<<control>>

<<produce>>

<<control>>

<<trigger>>

Response time
monitor and control

customer

Multi-level Controls

Search
goods

Log in

Authentication

D
Response delay

T
Unauthorized access

<<threaten>>

<<counter>>

<<produce>>

<<control>>

<<trigger>>

customer
Multi-factor

authentication

T
Brute force attack

Response time
monitor and control

D
……

……

<<control>>

<<counter>>

<<threaten>>

<<produce>>

<<trigger>>

<<control>>

<<control>>

Controller Representation

FFControl case: Authentication

Controlled use case: Log in

Stakeholders: Customer

Threat model:
Threat:
Threat

description:

Unauthorized access
The unauthorized customer may
buy a lot of goods with the
malicious intentions in the name
of others

Controls: while the customer log in, the
system needs to require the
customer to provide the
password, and validate it. If it is
valid, allow to enter, otherwise,
deny the login

FBControl case: Response time monitor and
control

Controlled use case: Search goods

Stakeholders: Customer, system manager

Behavior deviation model:
Behavior deviation:
Deviation description:

Response time >30 sec
While the customers search what
they are interested in, they
expect the system to respond
within 30 sec. But with the
increase of the customers, the
response time may delay, and it
will affect the reputation of the
enterprise

Controls: the system needs to monitor the
response time of each request.
And if the response time delays,
activate more computing
resource to accelerate the
system responses

Requirements Interweaving

D. Rosenberg, et al., 2001, Applying Use Case Driven Object
Modeling with UML: an Annotated e-Commerce Example,
Addison-Wesley

Domain
Modeling

Use Case
Modeling

Domain
Model

Use Case
Model

Robustness
Analysis

Robustness
Diagram

Interaction
Analysis

Sequence
Diagram

Class
Diagram

Start

End

Domain
Modeling

Use Case
Modeling

Domain
Model

Use Case
Model

Extended
Robustness

Analysis

Extended
Robustness

Diagram

Extended
Interaction

Analysis

Extended
Sequence
Diagram

Class
Diagram

Start

End

Control Case
Modeling

Use Case +
Control Case

Model

Integrated
with ICONIX
by Including
Control Cases

Extended Modeling Icons

Functional Object Icon Dependability Object Icon

Boundary Object Dependability Boundary Object

Entity Object Dependability Entity Object

Controller Dependability Controller

The Boundary object

Analyze and
decide

Monitor

Data to be aware
System behaviors to

be controlled

(a) Robustness diagram of FFcontrol case

Analyze and decide

Monitor

Data to be awareSystem behaviors
to be monitored
and controlled

(b) Robustness diagram of FBcontrol case
Pattern for Dynamic Feedforward controller

Pattern for Dynamic Feedback controller

The Boundary object

Analyze and
decide

Monitor

Data to be aware
System behaviors
to be controlled

(a) Robustness diagram of FFcontrol case
Analyze and decide

Monitor

Data to be awareSystem behaviors
to be monitored
and controlled

(b) Robustness diagram of FBcontrol case

Static / Dynamic Controller
Robustness Analysis

Extended Interaction Analysis

: Object

Object for use case Message for use case

: Object

Object for control case Message for control case

The symbols for use cases:

The symbols for control cases:

The Whole Process

Update order
price according

to ticker

Exchanger
monitor

Ticker
monitor

T T
Failure of link
to ticker feed

Failure of link
to exchanger

Increase of waiting time
for routing an orderD

Route an
order to

exchanger

Load
monitor and

balance<<threaten>>

<<threaten>> <<threaten>>
<<control>>

<<control>>

<<control>>

<<counter>>

<<counter>>

<<counter>>

<<include>>

<<control>>

Submit an
order

Access
authentication

Encrypt
order

Multi-factor
authentication

T

T T

DDelay of the trader
to submit order

Interception of
the information

Unauthorized
access

Brute force
attack

<<control>>

<<control>>

<<control>><<control>>

<<counter>>

<<counter>>

<<counter>>

<<counter>>

<<produce>>

<<threaten>>
<<threaten>>

<<threaten>>

Decrease order
processing time

Choose
alternative
connection

TCurrent connection
failure

<<control>>

<<threaten>>

<<counter>>

Log in

Limits number
of password

attempts

T

Encrypt
account

information

T

<<control>>

<<threaten>>

<<control>>

<<threaten>>

<<counter>>

<<counter>>

Environment
Entity / System
Asset

Undesired Feature Implied Concern

System /
System
Component

Produce unexpected
behavior / output;
Failure

Fault tolerance
Adaptation
Concern

External Entity Trigger known attack
/ virus

Security Concern

External
Symbolic Entity

Has different levels
of sensitiveness

Privacy Concern

External
Physical Device

Produce unexpected
input

Robustness
Concern

External Entity Valuable or Critical Safety Concern

Use Case DiagramUse Case Description

Interactive Entities
and Attributes

NLP Techniques:
Domain Entity Recognition,
Relation Classification

Domain Knowledge
Domain Expert Experience
(Entity’s Property, Relation’s Property)

Dependable Use Cases

Candidate Controlled Domain,
Threats and Concerns

Controllers and
Use Case Diagram

Risk Analysis
Countermeasure Selection
Threats-Countermeasure

Knowledge Base

Guided
Generation

A Case Study:
Online Stock Trading System

Subscribe
business

information
Create an
account

Submit and
execute an
order with
hard limit

Submit and
execute an

order

Submit and
execute an
order with
float limit

Submit and
execute a

market
order

Submit and
execute an
order with
stop price

Execute an
order

Update
order price
according
to tickers

Route an
order to

exchanger

Report
order

executed
information

Calculate
the

allocation

Update the
constraint
to broker

Update
broker

exposure

Subscribe
client

information

Un-allocate
an allocation

from an
account

Allocate
trade to an

account
Un-allocate
an account

Update an
order

Suspend an
order

trader

ticker feed broker

exchanger

Use case: Log in
Actor: Trader
Preconditions:

lThe stock trading system is available.
Main flow:

1. The trader clicks the login button on the Home page.
2. The system displays the Login page.
3. The trader enters the account name and password, and click the submit button.
4. The system validates the account information against the persistent account data and returns the customer to
 the Home page.

Postconditions:
lThe trader has logged in the system.

Alternative flows:
4a. The account information is not right:
4a1. The system displays a message to inform the failure and prompts the trader to either re-enter the account
 information or click the create account button

Use Case : Submit an order
Actor: Trader
Preconditions:

lThe exchanger which the order will route is connected and can accept instructions from system.
lThe trader has logged in.

Main flow:
1.The trader clicks the submit order button on the Home page
2.The system displays the order submission page.
3.The trader sets the basic information of the order: the stock symbol, the size, the type of the order in remote flag field,
 the price, and the type of the transaction(buy or sell) .
4.The trader clicks the submit button to send the order to system.
5.The system checks the order if legal.
6.The system routes the order to the exchange where the stock lists for trading
7.The system sends a submission success message to the trader

Postconditions:
lThe system has received an order from the trader.
lThe system waits for the trading result of the order.

Alternative Flows:
 5a. The order is not legal.
 5a1. The system asks the trader to reset the information of the order.
 7a. The order’s submission fails.
 7a1. The system returns the failure information to the trader.

Online Stock Trading System:
Use Cases

Update order
price according

to ticker

Exchanger
monitor

Ticker
monitor

T T
Failure of link
to ticker feed

Failure of link
to exchanger

Increase of waiting time
for routing an orderD

Route an
order to

exchanger

Load
monitor and

balance<<threaten>>

<<threaten>> <<threaten>>
<<control>>

<<control>>

<<control>>

<<counter>>

<<counter>>

<<counter>>

<<include>>

<<control>>

Submit an
order

Access
authentication

Encrypt
order

Multi-factor
authentication

T

T T

DDelay of the trader
to submit order

Interception of
the information

Unauthorized
access

Brute force
attack

<<control>>

<<control>>

<<control>><<control>>

<<counter>>

<<counter>>

<<counter>>

<<counter>>

<<produce>>

<<threaten>>
<<threaten>>

<<threaten>>

Decrease order
processing time

Choose
alternative
connection

TCurrent connection
failure

<<control>>

<<threaten>>

<<counter>>

Log in

Limits number
of password

attempts

T

Encrypt
account

information

T

<<control>>

<<threaten>>

<<control>>

<<threaten>>

<<counter>>

<<counter>>

Online Stock Trading System:
Use Case with Controllers

Threats Identification
and Controller Design

Online Stock Trading System:
Controller Description

FFcontrol case: Encrypt account name and password
Stakeholder: Trader
Controlled use case: Log in
Threat model:
 Threat name: Data interception
 Threat description: After the customer enters the account information, the account information may be intercepted by some malicious persons
through some sniffers. The malicious person may use the account information for some purpose undesired by the customer.
Controls:
 Alternative 1: Encryption
 Actions: After the customer enters the account information for login, the system encrypts the account name and password before other actions.

FFcontrol case: limit the number of password attempts
Stakeholder: Trader
Controlled use case: Log in
Threat model:
 Threat name: Password cracking
 Threat Description: Once some malicious persons know the account name of the trader, he will crack the account password by testing the
password again and again with the help of some software tools.
 Characteristics quantity: The number of the password attempts in one trading day
 Acceptable interval: [0,5]
 Event: The number of the password attempts in one trading day>5
Controls:
 Alternative 1: Limit the number of password attempts in one trading day
 Actions: 1, while the trader enters the account information, the system first check the number that the trader has attempted, and them the
 system validate the account.
 2, If the password is right, then return the trader to the Home page.
 3, If the password is not right, the system needs to increase the number of the password attempts.
 4, IF the number of attempts is bigger than three, the system displays the message about the closure of the account on the Login page.

FFcontrol case: Encrypt order
Stakeholder: Trader
Controlled use case: Submit an order
Threat model:
 Threat name: Data interception
 Threat description: Someone may use some agents to intercept the order information that the trader has submitted. In that way, the malicious
person may fake the information to destroy the system or cause losses to the trader.
Controls:
 Alternative 1: Encryption
 Actions: The system encrypts the order after the trader has submitted it.

FFcontrol case: Enable alternate connection
Stakeholder: Trader
Controlled use case: Submit an order
Threat model:
 Threat name: Exchange connection failure
 Threat description: Because of the physical reasons, the connection between the system and eacH exchange may be not available. This will cause
that the order can’ t be routed to the exchange timely, and bring some losses.
 Characteristics quantity: The state of the connection to the exchange
 Acceptable interval: The connection is ok.
 Event: The connection is not available.
Controls:
 Alternative 1: Monitor the state of the connection and alarm the failure
 Actions: 1, The system sends the "SYSTEM CHECK" message to the exchange in every 5mintures.
 2, If the connections are ok, the system will receive the same message from the exchange.
 3, If one connection is down, the system needs to alarm, and enable the alternate connection.

FBcontrol case: Decrease order process time
Stakeholder: Trader
Controlled use case: Submit an order
Behavior deviation model:
 Deviation name: Submission delay
 Deviation Description: Because of Some reasons, some orders may be blocked at some steps during the order processing in system. This may
cause the submission delay of the orders. However, the system managers event don’ t know about this. Since routing the orders to exchange timely is
very important for the stock trading, the submission delay may cause great losses to the investors.
 Acceptable interval: [0, 0.8s]
 Event: Average order process time>0.8s
Controls:
 Alternative1: Increase computing resource
 Precondition:There are idle servers which can be allocated
 Actions: 1, After the trader submits the order, the system needs to start to monitor the process time of the order.
 2, After the system has routed the order, the system ends the monitor.
 3, The system computes the average time of processing the order.
 4, The system allocates more servers to deal with the orders accepted from the traders if the average time>0.8.
 Alternative2: Submission delay alarm
 Precondition: There are no allocatable servers.
 Actions: 1, The system activates the submission delay alarm to report that the submission delay occurs and the allocatable resources are
 exhausted.

1

Customer

Click login

Enter account
and click submit

Login page

Home page Display

Account

Encrypt account

Validate account

Trader

Encrypt account
information

<<counter>>

<<control>>
<<threaten>>

T

Data interception
Log in

Limit the number of
password attempts

<<threaten>>

<<control>>

<<counter>>

T
Password cracking

Customer

Click login

Enter account
and click submit

Login page

Home page Display Increase the number
of password attempts

Account

Encrypt account

Check the number of
password attempts

Validate account

Login page

Home page

Click login

Display

Validate account

Trader

Enter account
and click submit

Account

(a) use cases +control cases
diagram (b) analyze use case: log in

（c) analyze control case: encrypt account (d) analyze control case: limit the number of password attempts

2

3
4

Online Stock Trading System: Log-in
Static Controller and Robustness Analysis

onLogIn()

display()

onSubmit()

checkNumPassAtte()

encrypt()

Use case: Login/control cases: encrypt account name and password, limit
the number of password attempts

Main flow:
1, The trader clicks the login button on the Home page.

2, The system displays the Login page.

3, The trader enters the account information, and click the submit button.

 /encrypt account name and password: After the customer enters the
account information for login, the system encrypts the account information
before other actions.

4, The system validates the account information against the persistent account
 data and returns the trader to the Home page.

/limit the number of password attempts: 1,while the trader enters the
account information, the system first checks the number that the trader has
attempted, and then validate the account.

2, If the password is right, then return the trader to the Home page.

3, If the password is not right, the system needs to increase the number of the
password attempts.

4, If the number of attempts is bigger than three, the system displays the
denying message on the Login page.

Alternative flows:
4a. The account information is not right:
4a1. The system displays a message to inform the failure and prompts the trader
 to either re-enter the account information or click the create account button

display()

validateAccount()

increaseNumPassAtte()

displayDenyMess()

2: Home page 3: Login page 4: Account
1: Trader

displayLoginFaiMess()

Online Stock Trading System: Log-in
Controlled Use Case

Trader

Set order information
 and click submit

Home page

Display

Order submission page Encrypt order Check order

Order

Exchange connectorRoute order

Exchange

Submit order

Click submit
order button

Online Stock Trading System: Submit Order
Robustness Analysis Diagram with Static Controller

Set alarm
“ on”Order submission page

Monitor average order
process time

Submission delay
alarm driver

Submission
delay alarm

Activate alarm

Exchange connector

Server poolServer mangerIncrease servers

Monitor exchange
connection

Exchange connector Exchange

Activate alarm Connection failure
alarm driver

Connection
failure alarm

Set alarm
“ on”

“ SYSTEM CHECK”
message

Count time

Enable alternate connection

Online Stock Trading System: Submit Order
Dynamic Controllers

Reduce Processing Time

Activate Alter Connection

Control cases: decrease order process time

Controls:
 Alternative1: Increase computing resource
 Precondition:There are idle servers which
can be allocated
 Actions: 1, After the trader submits the
order, the system needs to start to monitor the
process time of the order.
 2, After the system has routed the order, the
system ends the monitor.
 3, The system computes the average time of
processing the order.
 4, The system allocates more servers to deal
with the orders accepted from the traders if the
average time>0.8.
 Alternative2: Submission delay alarm
 Precondition: There are no allocatable
servers.
 Actions: 1, The system activates the
submission delay alarm to report that the
submission delay occurs and the allocatable
resources are exhausted.

1: Or der
submi ssi on page

2: Or der aver age
pr ocess t i me

moni t or
3: Exchange
connect or

startMonitor()

endMonitor()

5:server pool
4: Ser ver manager

activate()

computeAverageTime()

7:submission delay
alarm

6: submi ssi on
del ay al ar m

dr i ver

isIdleServers()

increaseServer()

Online Stock Trading System: Submit Order
Dynamic Controllers: Reduce Processing Time

Including Controller and Control actions
are interweaved with business actions

countTime()

checkConnection()

activateAlarm()

Control cases: enable alternate
connection

Controls:
 The system sends the "SYSTEM
CHECK" message to the exchange in
every 5mintures.

If the connections are ok, the system
will receive the same message from
the exchange.

 If one connection is down, the
system needs to alarm, and enable
the alternate connection.

1:Exchange
connection

monitor
2:Exchange
connector

4:Connection
failure alarm

driver3: Exchagne
5: Connection
failure alarm

enableAltConnection()

Online Stock Trading System: Submit Order
Dynamic Controllers: Activate Alter Connection

Including Controller and Control actions
are interweaved with business actions

• Start from function scenarios
• Modeling functional/business requirements

(Dependability is accordance with business logic and
domain value)

• Focusing on interactions between the system and its
interactive environment (input threats and output
effect take place here)

• Each dependability requirement is attached onto a
functional point (just enough scope, and dependability
trace links)

• Knowledge based
• The strategies dealing with the dependability issues

are IT techniques based (reuse mature experience)

Key Points

1. Model system as a control system. Within a certain context,
for handling the critical factors in the interactive
environment D, and the unexpected system behaviors, use
controllers to guarantee the satisfiability of R

2. Use feed-forward controllers to control the environment
factors; use feed-back controllers to avoid disasters
resulted by system behavior deviations

3. Provide guidelines to help identifying controlling policies
based on knowledge about strategies of enhancing system
dependability

4. Integrate with ICONIX framework to provide fine grained
operationalization of dependability requirements that are
integrated into functional requirements to reduce the
burden of developers

Summarization

Outline
• Motivation:
– System need to be more dependable

• Challenges:
– Dependability is non-functional feature and needs

to be interweaved with functional features
• Approach:
– Derive dependability concerns from environment

features
– Adopt control-based framework to interweave

dependability and functionality
• Expectation:
– Benefits and further efforts

Benefits

• Providing guided process to support
– the elicitation of dependability

requirements
– trace link building among dependability of

different layers
– interweaving of the business functionality

and dependability functionality of fine-
grained

Future Work

• More case studies, real industry applications
• Quantify risks, threats and countermeasures so

to prioritize dependability needs and other
NFRs

• To become a go-through approach from
specification to execution depends on:
– Dynamic re-configuration and deployment
– Run-time system adaptation and evolution
– ……

• All are challenges

Acknowledgements

• National Grand Fundamental Research Program of China under
Grant No. 2009CB320701, Ministry of Science and Technology

• Key Project of National Natural Science Foundation of China
under Grant No. 90818026

• Thanks to the students and colleagues who contribute to these
projects

• Zhi Jin, Environment Modeling based Requirements Engineering
for Software-Intensive Systems (to be published by Elsevier)

