Engineering Fine-Grained
Dependability Requirements

An Environment Modeling based
Approach

Zhi Jin
Key Lab of High Confidence Software Technologies (MoE)

Peking University
zhijin@pku.edu.cn

i~

ERHEEAR
=

@ ez QRS, 2017.07.28, Prague, Czech Republic

Al
BE

S‘#Jn}
£

NSk

mailto:zhijin@pku.edu.cn

R W .
L) Outline

Motivation:
— System need to be more dependable

Challenges:

— Dependability is non-functional feature and needs
to be interweaved with functional features

Approach:

— Derive dependability concerns from environment
features

— Adopt control-based framework to interweave
dependability and functionality

Expectation:
— Benefits and further efforts

i

bt >

8¢
o

d¥ivation: Trend in Computing

« Cyber-Physical Systems
— Cyber-physical systems are integrations of computation with physical
processes. Embedded computers and networks monitor and control the

physical processes, ... (Edward A. Lee)

— The integration of physical systems and processes with networked
computing has led to the emergence of a hew generation of engineered

systems: cyber-physical systems. (CPS steering group)

— A world where physical objects are seamlessly integrated into the

information network, and where the physical objects can become ©

Gr elnternet
7 of THINGS

active participants in business processes. (SAP)

m§%ﬂ5ﬁ1&ﬁ &
HEME SR oo

Bhivation: Trend in Computing

C/yber-Physical (-Social) Systems N
Software systems are to be tightly
integrated with the physical systems and
the social systems

with
networked sensing,
computation,

N actuation, etc. -/

i Realm of Integration:
- Everywhere + Invisible

Populations of computing entities will be a significant part of

our environment, performing tasks that support us, and we
shall be largely unaware of them.

The most profound technologies are those that disappear.

They weave themselves into the fabric of everyday life until
they are indistinguishable from it.

Mark Weiser, a pioneer of ubiquitous computing

Invisible = Software and hardware are embedded in the
physical world and human society. That
produce a new operable “application scenario”

p¥ivation: Trend in Computing

Traditional Application Scenario
As tool of the information

processing, software needs only to
meet the predefined specification

Software: be in charge of

Adaptivity, Continuous

Evolution, Dependability

o and Scalability I

0 deal with the open
dynamic environment,
continuously meet the diverse and
varied needs of users

New App

N\

Software: be carrier of
application values

B A {EEHEREA Turing Award winner: Joseph Sifakis (2011):
HERNERIRE A Vision for Computer Science, CACM.

<3O0 T .
g Outline

Motivation:
— System need to be more dependable

Challenges:

— Dependability is non-functional feature and needs
to be interweaved with functional features

Approach:

— Derive dependability concerns from environment
features

— Adopt control-based framework to interweave
dependability and functionality

Expectation:
— Benefits and further efforts

i~

bt >

8¢
o

‘.L"{

A defined software process is essential

State of Art: Process

— Enforcing standards, avoiding that issues fall through
cracks, learning from past mistakes

— Including procedures for version control, bug tracking
and regression testing

— Including standard structures for documents and
guidelines for meetings

— Including collection of detailed statistics and explicit
mechanisms for adjusting the process accordingly

NSERGENS b

I<

&3 state of Art: Testing

* To find bugs
— Structural tests identify bugs in known categories
* A mutation test, a regression test,
— A successful test is one that fails, and thus
identifies a bug
» To provide evidence of dependability

— Test cases are drawn randomly from the expected
profile of use, and statistical inferences are made
about the likelihood of failure

— A successful test is one that succeeds to provide
direct evidence for demonstrating dependability

i”FF&
REE

%‘Jﬂ
134

A
B

3‘#1&

nSkER

Challenges Remained

* What form of process and testing should take that
can offer just enough dependability considering the
cost, usability, performance, etc.?

— make balance

« The adoption of rigorous processes and testing has an
indirect impact on dependability, evidence of a direct
link between dependability and design is missing.

— build trace links

« Developers find intferweaving the business needs and
dependability needs is still real headache

— help operationalization

mAEREREAR D. Jackson (2009), A Direct Path to Dependable
HBEHMERSRE Software, Communication of ACM, 52(4): 78-88

'J‘allenges to Developers

* From where, the needs for
dependability can be identified ?

* What is the relationship between
dependability needs and the business
functionality ?

* How will these two be interweaved
together ?

<3O0 T .
g Outline

Motivation:
— System need to be more dependable

Challenges:

— Dependability is non-functional feature and needs
to be interweaved with functional features

Approach:

— Derive dependability concerns from environment
features

— Adopt control-based framework to interweave
dependability and functionality

Expectation:
— Benefits and further efforts

i~

bt >

8¢
o

ipendability by Construction

« Dependability by construction

nSkER

— build dependability into every step

— demand
* rigorous requirements definition
* precise system-behavior specification

- solid and verifiable design
« code that can be precisely understood

« Construction starts from requirements
definition

i”#&ﬂi
ERERE

%37

A
B

%:Inr

fhere comes Requirements

* Needed business capabilities
— To solve the business domain problem

* Needed quality
properties of entire
system, a system Quality Properties
component, service,
or function
— Not about business

logics

— But ensure the
quality of domain
roblem solvin
lﬁmwmﬁ#afa 9 '
&ﬁﬁﬂﬁ%ﬁ% g Business Relevance

Business Constraints
Usage Experience
System Architecture

%«h

non-functional
requirements

quality property

underspecified
functional requirements

“What is Dependability

The notion of dependability, defined as the
trustworthiness of a computing system which
allows reliance to be justifiably placed on the
service it delivers, enables these various
concerns to be subsumed within a single
conceptual framework.

Dependability

Reliability
Availability
Safety
Confidentiality
Security
Integrity

NS

Quality Properties

Domain Feature Algorithm
Usage Scenario Implementation
2| o/integrity S / fficiency
£ /¢ Reliability S /¢ Flexibility
e Availability = { ® Usability
g_ e Interoperabi
lity
- - [
It is a kind of S,
unspecified O
functional g
requirements

Developer's
Design skill

HEHE R TR

/

System Ar@%ure

Business Relevance

Maintainabili
ty

e Portability

®) Reusability
Testability

- RE assumption
and Dependability Argument

[Envlronrr.lent] , | [Specification] |::I [Requirements]
Assumptions _

[~ D\E

/The task of RE
Given
And
When

Then
U »

v

Three Penetrations

Analyzing Dir‘ec‘rly focusing on

Environment Requirements
Features

Con5|der|n9 System
Po’ren’rlal Faults

[EHVI"O“".‘e“t] |) [Specification] [
Assumptions u

Focus on Req

I want high
quality

Which types of
quality ?

« Generic to any NFR
« Directly Analyze Requirements
« Associate to Function Implementation o

Which vulnerabilities
may be introduced
during implementation

that may reduce quality

?

AN
N\
\

Functional Functlonal Functional \\
Goal-1 Goal-n \
\
N TR \
N éKme-
AN

i \
[| t | t Inplementati Ifplementati
dome A gfr?s?aﬁ & gfmoeona?1 A of Goal-2 C of Goal-n 1
pme N\ 1
N I
Ma \ \ I Q
1

\
\ “8ome - Bagosdrgell /I -
TN RN Q /TN
. A] ~ M
"éom%m'ec:tﬁgscr?ed;aﬁve" AN e 7 3 ! (™ Using refactoring A
I I ey 4 M P ‘we}ﬁ%ﬁgfgﬂr?ﬁ%oa'&sscrﬁ2||s countermeasures
o’ - ¢
- ’ X SAE - . .
% h—s uplicated - d l h h
— s pica - ealing with the

vulnerabilities ?

Re T
Remdverafnoy - Remove -
ermove Refhovi = - 2 \
[dlrectlona

Pull U £ ‘ ep»ace
Method AEXract Classkutove Method ssot%atmn Move Field) 'Mheritance

il
oo Delegatio

= A5 %ﬁ:?&*Chung L., Nixon, B., Yu, E., Mylopoulos, J., 2000 Non Functional
= Requirements in Sof‘rwar‘e Engineering, Kluwer Academic Publisher.

Hide
Delegate

=0
23g
232
e
;?<
=m
o33
28

i

Start from the
potential issues of
the system

Identify the event

that may cause the -

issues and the
scope impacted by
the issues

Decide the
measurements for
detecting the
issues

Specifying the
desired system
reactions

*Type

*Whole system
*Service

* Operational Profile

* Distribution of

transaction

* Workload volumes

concern

J_>

Concerning System Failures

* Measurement Model

* MTBF

* Probability of
Occurrences

* % cases

* MAX cases in interval X
* Ordinal scale
(rarely/sometimes/...

~

)

N

2/

-

*Type

* Adverse condition
* Attack

)

manifest

trigger

J L

-

* Impact mitigation
*Warning

* Alternative services

* Mitigation services

* Recovery

* Recovery time/actions
* Occurrence reduction
* Guard service

~

2/

7R Basili, L., Clements, P., Asgari, S., 2004. The Unified Model of Dependq@" A)

s AERMHT
#j{ﬁ%ﬂz;{-ﬁ;‘ggﬁg Putting Dependablh‘ry in Context, IEEE Software 21(3): 19-25

Bependability from Environment

Analyzing
Environment Directly focusing on
Requirements
Features and
Application

Scenar; Considering System

Potential Faults

O

[Envlronn.lent] , | [Specification] [_l [RequirementS]
Assumptions a

mggw%ﬁ#&ﬁ 25
BEWE AR

hy this is Reasonable ?

When the
4) Environment is Open,
Dynamic, Uncertain,
Safe-Critical,
Malicious ?

_[Physical
- and

Software |y
it
System [

'
BAERERR Functi /
lE Al it b unctionality

SR b —
! Inherent Properties for reasonable ?

the physical/social world

SafetV-Chitical 7~ ~
te,,s

MXOTx Determm w
Factors

aware Req

Selfadaptation Regs.

Real Time Reqs

Software

System |, Availability @S ” l , Social
Regs. World

2 MaliciousX: actors|

Vet
.* rors

Undesired external
interference

[N

Undesired internal
behaviors

Legs.

Functiona -
]

19

system performance)

“'..f”fWhy not Dependable ?

()
_ Requirements
Domain e | L . y
, = = | Specification | ; <
Assumptions _
—1| Side Effects
- _ J/

" Errors and Malicious Attacks from | — " Un-anticipated
_known or unknown environment enftities _ Domain Behaviors |
Changes in causal entity, e.g. un-) — New Domain
_ recognized states, new causal entities _ Assumptions
i Un-proper system behaviors causing) — " Fatadl System)
_disaster to critical environment entity L Behaviors)
Fault in system producing undesired | — " Un-anticipated

System Behaviors

%@ﬁ‘_'_rﬁ_v_"’)

ﬁ‘é ';‘pendabili'ry from Scenario

Based on
Define just-enough ™ eéenvironment
quality property assumptions
and application Directly focusing c
Trace to application context to R@iremenfs
context introduce
. il
Be operationalized as dependab l.w
interactions or constraints y strate Considering Sy:s

o’ren’rial Faults

Environment |
Assumptions
mgﬁﬂ%ﬁﬁﬁﬁ

| [Specification [Requirements]

7SI

Control Based Meta-Model

Undesired
Control Environment Environment
Abnormal Behaviors behaviors

Dependable
System

Feedforward
controller

Desired

. Feedback System
Environment controller behaviors
behaviors .

L Q ’

@)

lquirements Representation

Environment
Entities

Threats (Attacks,

FB Control- FF Control- Q;Qf;‘;ﬁ'jn“;fr%is
Cases Cases | .)
N

@y Fem

Feedforward

controller
i

Desired Behaviors 1
ey Feedback Controlg
controller d

i

--I l ----- ™ |

~

System

/

—

A Knowledge Base
about Threats and Faults

NSERIEES

Use-Cases

be mvior}s Environment
Entities °

Conceptual Model

Environment Model

System Model

control

l Designed Physical
Data Entity World
/
share share share
phenomena phenomena phenomena
\ \/ d \
. . produce | System Behavior
Threat Function Profile]——)[Deviation]
/ / \
counter %
e Y counter
Feedforward Control Feedback
Control Profile Profile = Control Profile
N

/

i

= K%

s‘#mur
’—Pﬁ

Environment
Related Thing

Y-
(@]
S
S
53
+ O
<
Q=
—_—
Q <
> 9
=
¢ O
Q0
Q.
a
2w

cerns Identification from

AT T

Environment Entity /

System Asset / Interaction
/ Phenomenon

External / Internal
Autonomous Entity

System / System
Component

External Entity

External Symbolic Entity

External Physical Device

External Entity

Connection

Interactive Environment

Event
propagation

Undesired Feature

Has malicious intent to
access

Produce unexpected
behavior / outpuft;
Failure

Trigger known attack /
virus

Has different levels of
sensitiveness

Produce unexpected
input

Valuable or Critical

Be lost, Be tampered
Uncertain

“::inferacfive Environment

Implied Concern

Authorization
Concern

Fault tolerance

Adaptation Concern
Security Concern

Privacy Concern
Robustness Concern

Safety Concern

Security Concern
Adaptation Concern

/ Threat / Countermeasure

Featured Entity /
Service / Interaction

Threat

Countermeasure

Private/sensitive data

Information
disclosure in
transmission or
service delivering

Strong authorization to data accessing;

Strong encryption to the data;

Communication link securing with protocols that provides
message confidentiality

High available system
service

Denial of service by
malicious user

Resource and bandwidth throttling;
Input validation and filtering

Malicious operator

Spoofing for illegal
usage

Strong authentication;

Strong encryption to operators' login data;
Authentication cookie protection with Secure Sockets
Layer

Critical / Valuable data,
Device, or Interactor
that can result in big
loss

Tampering with data
in transmission or
data storage and/or
processing

Data hashing and signing;

Digital signatures;

Strong authorization;

Tamper-resistant protocols across communication links;
Communication link securing with protocols that provides
message integrity

System fault or
behavior deviation

Oracle-based system behavior checking

Open system/service
with highly-desired

Virus, e.g. Trojan
horse, Worms,

Block all unnecessary ports at the firewall and host;
Disable unused functionality;
Harden weak, default configuration settings

bl |
B R i

MicroSoft, Improve Web 4

Application Security;

“"Common Criteria for Infor

mation Technology Security Evaluation;

eess of Requirements Elicitation

« Adopt use cases to specify the business functional
requirements
* For each use case

— Identify feed-forward controllers to handle the potential
undesired inputs, e.g. errors, attacks, etc. They are the
external threats

— Identify feed-back controllers to handle the potential
system behavior deviations. They are the internal threats

— Adopt threat-counter patterns (specific domain knowledge)
to specifying the operationalization of the controllers

— Weave controllers and use case to build dependable use case

aquirements Elicitation Process

Participants : users, . e Concern : what
requirements Functional requirements services does the
engineers elicitation system need to
deliver ?

\ 4

Use cases
model

Dependability requirements
elicitation Concern : how does)
the system ensure

Participants : users,
requirements

engineers, domain v Thefiepznld'abilizy of
experts Use/control € dellvere
services ?)
cases model

Sauirements Elicitation Process

Patterns for controller

Use cases model
ll Measure: Detect what?

Compare: Compare with what?

(. . . .
Identify undesired interactions Compute: Based on what to
—> (potential attacks, errors,, and make decisions?
L system behavior deviation))| correct: Control what?
r ! 1 i
Assess the risks :
\ v :
\ 2 |
é Y I
Determine the control policy s GRELLITLLLLLL

There are some hew
concerns introduced

Knowledge Base
about Threats and
Controls

Use/control cases model

irements Elicitation Process

Example:

Interaction of use case: log-in:

Each interaction The customer inputs the account and password.

described in a

use case
Properties of interest:
] 1, The frequency of this interaction,

Identify the interaction’s
properties of interest

2, The confidentiality of the account and password

N

l Deviations of properties:
1, This interaction occurs frequently (quideword:
[Iden’rify the devia’rionsJ more)
2, The account and password is disclosed
of each J|:(>ropcar‘ry Cuidenornd: 1oy
Determine the possible threats Threats or system behavior
and behavior deviations causing deviations:

1, Brute force attack

the Pr'oper'Ty deviations 2, Network monitoring

The threats and system

behavior deviations derived
from interaction of the
use case

il
S Tl

Case / Controller Model

e

customer

Online store system

«threaten>>

<«<control>

Authentication ~_

A

Unauthorized access

ccounter>> Threat

\ Feedforward
control case

<«<control>

T~

«trigger>

Response delay

Response time
<«produce monitor and control

ﬁ Feedback
control case

¢

NSES
ﬁ% HIF 3= /W 7N 720 ==

Behavior
deviation

% Multi-level Controls

Unauthorized access

«<threaten>>

<«<counter>>

i ”! Multi-facter
customer authentication

«<counter>>

e attack

Response time
monitor and coniro

Response delay

«trigger>>

]

&

* % Controller Representation

FFControl case:

Authentic(

FBControl case:

Response time monitor and
control

Controlled use case:

Log in

Controlled use case:

Search goods

Stakeholders:

Customer

Stakeholders:

Customer, system manager

Threat model:

Behavior deviation model:
Behavior deviation:

Response time >30 sec

$:::z::' :}_EZUJ:(?:# Deviation description:| While ‘rhg customers search what
d iotion: h lot they are interested in, they
escription: Uy a ot o expect the system to respond
e within 30 sec. But with the
of others increase of the customers, the
Controls: while the ¢ response time may delay, and it
system neg will affect the reputation of the
customer 1 enterprise
paﬁzwolr;d, Controls: the system needs to monitor the
\éc;rl\yl’raheo‘llt response time of each request.

And if the response time delays,
activate more computing
resource to accelerate the
system responses

equirements Interweaving

Domain Use Case \ Domain Use Case
Modeling Modeling Modeling Modeling
Start Start
v
v v v / Use Case /
Domain Use Case Domain eed
Model Model Model
Com‘r'ol Case
Modelmg
Robustness Use Case "
Analysis Control Case /
Model
\ 4 v ExTended
Robusthess \ 4 Robustness
Class Di Analysis
: S iagram _C' o na y
a End DI Ex‘rended
J Robus‘rness
Diagr
Interaction }
Analysis Extended
In’regra’red [Interaction }
with ICONIX | dihytc
by Including Sequence / 2’2232ﬂ‘2’2 /
Control Cases Diagram / Diagram

D. Rosenberg, et al., 2001, Applying Use Case Driven Object
EAUERGRE 7£ Modeling with UML: an Annotated e-Commerce Example,

h% ﬁﬁ%ﬁg)ﬁgg& Addison-Wesley

Extended Modeling Icons

Functional Object

Icon

Dependability Object

Icon

Boundary Object _O Dependability Boundary Object I_@
Entity Object Q Dependability Entity Object @
Controller O Dependability Controller @
mAERERAR
BERERIRE

A Il

tatic / Dynamic Controller

Robustness Analysis

Process: “mse case ' control cases driven robustness analysis
Input
US: the st of use cascs
CS the set of coutral cases
Outpur:
Exrended robustness disgrams
Bugia.
I for coch use cose wen 'S
2 wentify the boundary object, entity object, and conerol
object from wc™s descripoon:
3 construct the robustness diagram for wc;
4 fimd the set of control cases CS, that deectly or indirectly
control the use case we from C5;

5 for ¢ach control case cow CS,
& wdentify boundary object, entity object, and control
object from o' description:

7 if the controls described by oc are dymamic

s cosstruct an sdependent robustsess dagram for e,

9 clee

10 o deectly controls ac

il add the obpects sdentilied fhom co 1o the robusines
diaggram of av,

12 clse

13 add the obpeces sdentitied Thom co to the Sagras of
the coatrol case that co controls,

4 endit

I5 ondif

16 endfor

17 endfor

(End

T D

System behaviors
to be monitored
and controlled
Analyze and decide

Pattern for Dynamic Feedback controller

2

—_—>
Monitorb\4 f Analyze and\
Z decide

The Boundary object Data to be aware System behaviors tc

be controlled

Pattern for Dynamic Feedforward controller

ded Interaction Analysis

Process " use exsecontrol case” driven intoraction medeling
Inpet.

U8 the scg of e caes
CS: the et of coatrol cascs
RS the set of extendad rebustness duagram
Output
Extended soquence diagrams
Hegin
I tor each exsended robustness diagram ey &S
2 copy the mvolved use case and coutral cases of erx 10
the left marges ol dhe sequence diagram,
3 addthe svolved actoes inerx 10 the sequence diagram,
add the mvolved entity obpects i ovy 10 the segquence

duagran
5 add the mvolved boundary objects m erx to the sequ

dogramc _ The symbols for use cases:
& for each control object co inerx
7 allocate the behaviors of co among the collabora

objects: : Object —
5 endf
E*dmdlm Object for use case Message for use case

n

The symbols for control cases:

e,

Object for control case

Use Case Description

NLP Techniques:
Domain Entity Recognition,
Relation Classification

\> Interactive Entities
and Attributes

Detailed Description
(can be repeated unlimited
times)

Entity Type

A —

AND / OR
Overview Description
(can be repeated uniimited
times)

Entity and Attribute
Overview

Entity and Attribute
Detail Citation
(can be repeated
uniimited times)

omain Expert Experience
(Entity's Property, Relation’s Property)

The Whole Process

Controllers and
Use Case Diagram

Use Case Diagram

Guided
Generation

Risk Analysis
Countermeasure Selection
Threats-Countermeasure
Knowledge Base
Environment

Undesired Feature Implied Concern
Asset

Entity / System

System / Produce unexpected Fault tolerance
System behavior / output; Adaptation
Component Failure Concern

External Entity Trigger known attack

/ virus

Security Concern

Has different levels
of sensitiveness

External Privacy Concern

Symbolic Entity

External Produce unexpected Robustness
Physical Device input Concern
External Entity Valuable or Critical Safety Concern

Candidate Controlled Domain,

nowledge Threats and Concerns

A Case Study:
Online Stock Trading System

trader

n-allocate
; Allocate
an allocation trade to an Un-allocate Update an Suspend an

from an an account order order
account account

Subscribe Create an Submit and
business account execute an
information order

ubmit and
execute an
order with
top price

ubmit and
execute an
order wn‘h

ubmit and
execute an
order wn‘rh

ubmit and
execute a

order price
according

Calculate
the
allocation

Route an
order to
exchanger

Update the
constraint
to broker

Subscribe
client
information

Update
broker
exposure

i exchanger i

SN et

. Online Stock Trading System:
Use Cases

Use case: L.og in
Actor: Trader
Preconditions:
®The stock trading system is available.
Main flow:
1. The trader clicks the login button on the Home page.
2. The system displays the Login page.
3. The trader enters the account name and password, and click the submit button.
4. The"System valida T t the persistent account data and returns the customer to
the Home page.
Postconditions:
®The trader has logged in the system.
Alternative flows:
4a. The account information is not right:
4al. The system displays a message to inform the failure and prompts the trader to either re-enter the account
information or click the create account button

Use Case : Submit an order
Actor: Trader
Preconditions:
®The exchanger which the order will route is connected and can accept instructions from system.
®The trader has logged 1n.
Main flow:
1.The trader clicks the submit order button on the Home page
2.The system displays the order submission page.
3.The trader sets the basic information of the order: the stock symbol, the size, the type of the order in remote flag field,
the price, and the type of the transaction(buy or sell) .
4.The trader clicks the submit button to send the order to system.
5.The system checks the order if legal.
6.The system routes the order to the exchange where the stock lists for trading
7.The system sends a submission success message to the trader
Postconditions:
®The system has received an order from the trader.
® The system waits for the trading result of the order.
Alternative Flows:
S5a. The order is not legal.
S5al. The system asks the trader to reset the information of the order.
7a. The order’s submission fails.
7al. The system returns the failure information to the trader.

mAERERAR

8¢

I} o
Hii

.Online Stock Trading System:
Controller Description

FFcontrol case: Encrypt account name and password
Stakeholder: Trader
Controlled use case: Log in
Threat model:

Threat name: Data interception

Threat description: After the customer enters the account information, the account information may be intercepted by some malicious persons
through some sniffers. The malicious person may use the account information for some purpose undesired by the customer.
Controls:

Alternative 1: Encryption

Actions: After the customer enters the account information for login, the system encrypts the account name and password before other actions.

FFcontrol case: limit the number of password attempts
Stakeholder: Trader

Controlled use case: Log in
Threat model:
Threat name: Password cracking
Threat Description: Once some malicious persons know the account name of the trader, he will crack the account password by testing the
password again and again with the help of some software tools.
Characteristics quantity: The number of the password attempts in one trading day
Acceptable interval: [0,5]
Event: The number of the password attempts in one trading day>5
Controls:
Alternative 1: Limit the number of password attempts in one trading day
Actions: 1, while the trader enters the account information, the system first check the number that the trader has attempted, and them the
system validate the account.
2, If the password is right, then return the trader to the Home page.
3, If the password is not right, the system needs to increase the number of the password attempts.
4, IF the number of attempts is bigger than three, the system displays the message about the closure of the account on the Login page.

FFEcontrol case: Encrypt order
Stakeholder: Trader
Controlled use case: Submit an order
Threat model:

Threat name: Data interception

Threat description: Someone may use some agents to intercept the order information that the trader has submitted. In that way, the malicious
person may fake the information to destroy the system or cause losses to the trader.
Controls:

Alternative 1: Encryption

Actions: The system encrypts the order after the trader has submitted it.

FFcontrol case: Enable alternate connection
Stakeholder: Trader
Controlled use case: Submit an order
Threat model:
Threat name: Exchange connection failure

Threat description: Because of the physical reasons, the connection between the system and eacH exchange may be not available. This will cause
that the order can’ t be routed to the exchange timely, and bring some losses.
Characteristics quantity: The state of the connection to the exchange
Acceptable interval: The connection is ok.
Event: The connection is not available.
Controls:
Alternative 1: Monitor the state of the connection and alarm the failure
Actions: 1, The system sends the "SYSTEM CHECK" message to the exchange in every 5Smintures.
2, If the connections are ok, the system will receive the same message from the exchange.
3, If one connection is down, the system needs to alarm, and enable the alternate connection.

EBcontrol case: Decrease order process time
Stakeholder: Trader

Controlled use case: Submit an order

®

Encrypt account
information
<<counter>>

<<control>> ﬁ
<<threaten>>
% @ Data interception
<<threaten>>
Trader
<<control>>

<<counter>>
assword cracking

imit the number o
password attempts

(a) use cases +control cases
diagram

O,

Enter account
and click submit @ » @
/ Login page Encrypt account
Customer @ < e Q
‘ Check the number of Account

Click logm password attempts /
K) e @ %

Home page Display Validate account Increase the number
of password attempts

=

H
BERERIRE

f (d) analyze control case: limit the number of password attempts

Biline Stock Trading System: Log-in
Static Controller and Robustness Analysis

Enter account
and click submit

/

% Login page\
Trader

‘ Validate account

Click login
O—0" O
Home page Display Account

(b) analyze use case: log in

Enter account
and click submit @ — @
/ Login page »En/crypt account

CuZiEner Q
|

Account
Click login

BT

Home page Display Validate account

(¢) analyze control case: encrypt account

line Stock Trading System: Log-in
Controlled Use Case

Use case: Login/control cases: encrypt account name and password, limit

2: Home page 3: Login page 4: Account
the number of password attempts 1: Trader

Main flow:

)) onLogIn()
1, The trader clicks the login button on the Home page.

2, The system displays the Login page.

3, The trader enters the account information, and click the submit button.

/encrypt account name and password: After the customer enters the
account information for login, the system encrypts the account information
before other actions.

checkNumPassAtte

4, The system Valldates the account mformatlon against the persistent account

validateAccount()

| encrypt() §

>

/llmlt the number of password attempts 1 Whlle the trader enters the
account information, the system first checks the number that the trader has

attempted, and then validate the account.

2. If the password is right, then return the trader to the Home page.

_increaseNumPassAtte()

3. If the password is not right, the system needs to increase the number of the i
dlsplayDenyMess() |

password attempts.

4, If the number of attempts is bigger than three, the system displays the
denying message on the L.ogin page.

Alternative flows:

4a. The account information is not right:

4al. The system displays a message to inform the failure and prompts the trader
to either re-enter the account information or click the create account button

lﬁ mAERERAR

displayLoginFaiMess()

Click submit
order button
T <
Trader Home page

y

Set order information @
and click submit
i Display

=

Order submission page Encrypt order

@nline Stock Trading System: Submit Order
obustness Analysis Diagram with Static Controller

A

Exchange
Q) ‘
Order Submit order

!
O —=0O—C

Check order Route order Exchange connector

Stock Trading System: Submit Order
Dynamic Controllers

Reduce Processing Time

7 e e

Increase servers Server manger Server pool

& Set alarm
Order submission page “ on”

Monitor average order ~ Activate alar
process time @

Exchange connector

Enable alternate connection

“ SYSTEM CHECK”
message
N
Count time Monitor exc?hange Exchange connector Exchange
connection
. . i Set al
Activate Alter Connection @ % ot %
4> >
% A 1: ﬁ 1'_‘_?(& ZE Activate alarm Connection failure Connection
ﬁ% l:=ﬂ3 E d—:—\ %g& 2 alarm driver failure alarm

Control cases: decrease order process time

Controls:

1: O der

submi ssi on_page

Alternativel: Increase computing resource
Precondition:There are idle servers which
can be allocated

Actions: 1, After the trader submits the
order, the system needs to start to monitor the
process time of the order.

2, After the system has routed the order, the
system ends the monitor.

3, The system computes the average time of
processing the order.

4, The system allocates more servers to deal
with the orders accepted from the traders if the
average time>0.8.

Alternative2: Submission delay alarm

Precondition: There are no allocatable
Servers.

Actions: 1, The system activates the
submission delay alarm to report that the
submission delay occurs and the allocatable
resources are exhausted.

SU¢
I
o
e
Iir
X
5

iZ:Oder averagei 3: Bxchange
| process tine | 2. LXChange
T ronitor | connect or
onitor() % %
i endMonitor() 3
computeAvgrageTime()
‘ is

6:submission |
delay alarm !
driver ;

Including Controller and Control actions
are interweaved with business actions

V:submission dela
alarm

| 4:Connection |

Control cases: enable alternate || connection | | 2:Exchange | | Failure alarm

connection | i | | connector ‘ ‘ |
I — . 3:Exchagne]

Controls:) | | |

The system sends the "SYSTEM bl

CHECK" message to the exchange 1
every Smintures.

If the connections are ok, the system I s hfottistrm b |
will receive the same message from
the exchange.

% enabl¢ AltConnection %

If one connection is down, the
system needs to alarm, and enable : 1

: ‘ ‘ activateAlarm(),
the alternate connection. R R e et e e I GRS CEEEE |

Including Controller and Control actions

h%ggﬁ;ﬁ 2y &g are interweaved with business actions

5: Connection
failure alarm

Key Points

/S‘rar’r from function scenarios

« Knowledge based

Modeling functional/business requirements
(Dependability is accordance with business logic and
domain value)

Focusing on interactions between the system and its
interactive environment (input threats and output
effect take place here)

Each dependability requirement is attached onto a
functional point (just enough scope, and dependability
trace links)

The strategies dealing with the dependability issues
are IT techniques based (reuse mature experience)/

ﬁﬂ

Al
B

s&:lnr

nSkER

A A
=

ENXR

Summarization D \

1. Model systemas a control system. Within a certain context,
for handling the critical factors in the interactive
environment D, and the unexpected system behaviors, use
controllers to guarantee the satisfiability of R

2. Use feed-forward controllers to control the environment
factors; use feed-back controllers to avoid disasters
resulted by system behavior deviations

3. Provide quidelines to help identifying controlling policies
based on knowledge about strategies of enhancing system
dependability

4. Integrate with ICONIX framework to provide fine grained
operationalization of dependability requirements that are
integrated into functional requirements to reduce the

burden of developers
A P /

R W .
L) Outline

Motivation:
— System need to be more dependable

Challenges:

— Dependability is non-functional feature and needs
to be interweaved with functional features

Approach:

— Derive dependability concerns from environment
features

— Adopt control-based framework to interweave
dependability and functionality

Expectation:
— Benefits and further efforts

i

bt >

8¢
o

Benefits

* Providing guided process to support

— the elicitation of dependability
requirements

—trace link building among dependability of
different layers

— intferweaving of the business functionality
and dependability functionality of fine-
grained

Future Work

More case studies, real industry applications

Quantify risks, threats and countermeasures so
to prioritize dependability needs and other
NFRs

To become a go-through approach from
specification to execution depends on:

— Dynamic re-configuration and deployment
— Run-time system adaptation and evolution

Acknowledgements

National Grand Fundamental Research Program of China under
Grant No. 2009CB320701, Ministry of Science and Technology

Key Project of National Natural Science Foundation of China
under Grant No. 90818026

Thanks to the students and colleagues who contribute to these
projects

Zhi Jin, Environment Modeling based Requirements Engineering
for Software-Intensive Systems (to be published by Elsevier)

Thanks
For Your Attentions

& IEEE fQQRs 2017

The 2017 IEEE International Conference on
ﬂelmmmysuc'ew Software Quality, Reliability & Security

July 25-29, 2017 « Prague, Czech Republic
http://paris.utdallas.edu/qrs17

