Contact Information:

ZipCode :

PostalAddress :

OfficePhone :

Telephone :

Email :


林晨

+

Academic Title:

Degree:Doctoral degree

Status:Employed

School/Department:重离子物理研究所

Paper Publications

High transmission efficiency collection system for laser-accelerated proton beams based on permanent magnet quadrupoles prefocusing
Date of Publication:2024-03-03 Hits:

Impact Factor:0.0
DOI number:10.1103/PhysRevAccelBeams.27.052801
Journal:PHYSICAL REVIEW ACCELERATORS AND BEAMS
Abstract:A new high transmission efficiency, easily tunable, and cost-effective beam collection system is proposed for laser-accelerated proton beams with large divergence angles and wide energy spectra. In previous experiments conducted at the compact laser plasma accelerator platform of Peking University, a beamline was initially constructed with a collection system based on an electromagnetic quadrupoles (EMQs) triplet. However, due to the limited acceptance angle, the EMQs exhibited a monoenergetic
transmission efficiency of only 10% to 20% for laser accelerated proton beams. Permanent magnet quadrupoles (PMQs), known for their high magnetic field gradients, compact size, and lower expenses, are well suited for integration with other readily adjustable transmission elements like EMQs and solenoids,
effectively enhancing the beam collection capabilities of the system. In this paper, we show that by introducing a pair of centimeter-sized PMQs in front of the EMQs for beam prefocusing, the beam’s transverse size is quickly compressed, enabling transmission of highly divergent protons. Experimental results demonstrate that the prefocusing by PMQs increased the system’s transmission efficiency by a factor of 2.44 to 6.01 compared to the original setup, while also enhancing the energy selection based on stronger chromatic effect. This method can be extended to 100 MeV high-energy proton beamlines and is crucial for applications of laser plasma accelerators.
Indexed by:Unit Twenty Basic Research
Discipline:Engineering
First-Level Discipline:Nuclear Science and Technology
Volume:27
Issue:052801
Translation or Not:no
Date of Publication:2024-03-03
Included Journals:SCI
Date of Publication:2024-03-03