马仁敏Renmin Ma

(长聘副教授)


学位:博士学位
性别:男
毕业院校:北京大学
学历:研究生(博士)毕业
在职信息:在职
所在单位:凝聚态物理与材料物理研究所
电子邮箱:

论文发表

当前位置: 中文主页 >> 论文发表

Selected journal publication

[22] X. R. Mao, Z. K. Shao, H. Y. Luan, S. L. Wang and R. M. Ma, Magic-angle lasers in nanostructured moiré superlattice. Nature Nanotechnology 16 1099-1105 (2021).

[21] R. M. Ma,  Multitudes of twists. Nature Physics 17, 673-674 (2021).

[20] H. Jing, R. W. Peng, R. M. Ma, J. He, Y. Zhou, Z. Q. Yang, C. Y. Li, Y. Liu, X. J. Guo, Y. Y. Zhu, D. Wang, J. Su, C. Sun, W. Z. Bao and M. Wang, Flexible Ultrathin Single-Crystalline Perovskite Photodetector. Nano Letters 20, 7144-7151 (2020)

[19] Z. Q. Yang, Z. K. Shao, H. Z. Chen, X. R. Mao and R. M. Ma, Spin-Momentum-Locked Edge Mode for Topological Vortex Lasing. Physical Review Letters 125, 013903 (2020).

[18] S.I. Azzam, A.V. Kildishev, R. M. Ma, C. Z. Ning, R. F. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu and X. Zhang, Ten years of spasers and plasmonic nanolasers. Light: Science & Applications 9, 90 (2020). 

[17] Y. Wang, J. Yu, Y. F. Mao, J. Chen, S. Wang, H. Z. Chen, Y. Zhang, S. Y. Wang, X. Chen, T. Li, L. Zhou, R. M. Ma, S. Zhu, W. Cai and J. Zhu, Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature  581, 401-405 (2020).

[16] H. Z. Chen, T. Liu, H. Y. Luan,  R. J. Liu, X. Y. Wang, X. F. Zhu, Y. B. Li, Z. M. Gu, S. J. Liang, H. Gao, L. Lu, L. Ge, S. Zhang, J. Zhu and R. M. Ma, Revealing the missing dimension at an exceptional point. Nature Physics 16, 571-578 (2020).

[15] Z. K. Shao, H. Z. Chen, S. Wang, X. R. Mao, Z. Q. Yang, S. L. Wang, X. X. Wang, X. Hu and R. M. Ma, A high-performance topological bulk laser based on band-inversion-induced reflection. Nature Nanotechnology 15, 67-72 (2020).

[14] R. M. Ma, Lasing under ultralow pumping. Nature Materials 18, 1152-1153 (2019).

[13] R. M. Ma and R. F. Oulton, Applications of Nanolasers. Nature Nanotechnology 14, 12-22 (2019). 

[12] S. Wang, H. Z. Chen and R. M. Ma, High performance plasmonic nanolasers with external quantum efficiency exceeding 10%. Nano Letters 18,7942-7948 (2018).

[11] J. H. Ahn, Z. J.  Xu, J. H. Bang, Y. H. Deng, T. M. Hoang, Q. K. Han, R. M. Ma and T. C. Li, Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor. Physical Review Letters 121, 033603 (2018).

[10] Z. Q. Yang, Y.  H. Deng, X .W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang and R. M. Ma. High Performance Single Crystalline Perovskite Thin Film Photodetector. Advanced Materials 30, 1704333 (2018).

[9] S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton and R. M. Ma. Unusual Scaling Laws for Plasmonic Lasers beyond Diffraction Limit. Nature Communications, 8, 1889 (2017).

[8] H. Z. Chen, J. Q. Hu, S. Wang, B. Li, X. Y. Wang, Y. L. Wang, L. Dai and R. M. Ma. Imaging the dark emission of spasers. Science Advances 3, e1601962 (2017).

[7] L. Feng, Z. J. Wong, R. M. Ma, Y. Wang and X. Zhang. Single-mode laser by parity-time symmetry breaking. Science 346, 972-975 (2014).

[6] R. M. Ma, S. Ota, Y. M. Li, S. Yang and X. Zhang, Explosives detection in a lasing plasmon nanocavity. Nature Nanotechnology 9, 600 (2014). 

[5] R. M. Ma, X. B. Yin, R. F. Oulton, V. J. Sorger and X. Zhang, Multiplexed and Electrically Modulated Plasmon Laser Circuit. Nano Letters 12, 5396-5402 (2012).

[4] R. M. Ma, R. F. Oulton, V. J. Sorger and Xiang Zhang, Plasmon lasers: coherent light source at molecular scales. Laser & Photonics reviews 7, 1-21 (2012).

[3] R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal and X. Zhang, Room temperature sub-diffraction-limited plasmon laser by total internal reflection. 10, 110-113 Nature Materials (2011).

[2] R. M. Ma, L. Dai, H. B. Huo, W. J. Xu and G. G. Qin, High-Performance Logic Circuits Constructed on Single CdS Nanowires. Nano Letters 7, 3300-3304 (2007). 

[1] R. M. Ma, L. Dai and G. G. Qin, High-Performance Nano-Schottky Diodes and Nano-MESFETs Made on Single CdS Nanobelts. Nano Letters 7, 868-873 (2007). 



Journal publication

[68] X. Y. Wang, H. Z. Chen, S. Wang, L. Ge, S. Zhang and R. M. Ma, Vortex radiation from a single emitter in a chiral plasmonic nanocavity. Nanophotonics (2022). Invited

[67] S. Yang, W. Bao, X. Z. Liu, J. Kim, R. K. Zhao, R. M. Ma, Y. Wang, X. Zhang, Subwavelength-scale lasing perovskite with ultrahigh Purcell enhancement. Matter 4, 1-9 (2021).

[66]  Z. Q. Yang, Z. K. Shao, H. Z. Chen, X. R. Mao, R. M. Ma, Yang et al. Reply:. Physical Review Letters 127, 209402 (2021).

[65] R. M. Ma, S. Y. Wang, Plasmonic nanolasers: fundamental properties and applications. Nanophotonics 10(14), 3623-3633 (2021). Invited

[64] Z. Zhang, Leona Nest, S. Wang, S. Y. Wang, R. M. Ma, Lasing-enhanced surface plasmon resonance spectroscopy and sensing. Photonics Research 9,1699-1714 (2021). Invited

[63] X. R. Mao, Z. K. Shao, H. Y. Luan, S. L. Wang, R. M. Ma, Magic-angle lasers in nanostructured moiré superlattice. Nature Nanotechnology 16, 1099–1105 (2021).

[62] R. M. Ma, Multitudes of twists. Nature Physics 17, 673-674 (2021).

[61] Y. H. Deng, Z. Q. Yang and R. M. Ma, Growth of centimeter-scale perovskite single-crystalline thin film via surface engineering. Nano Convergence 7, 25 (2020). Invited

[60] H. Jing, R. W. Peng, R. M. Ma, J. He, Y. Zhou, Z. Q. Yang, C. Y. Li, Y. Liu, X. J. Guo, Y. Y. Zhu, D. Wang, J. Su, C. Sun, W. Z. Bao, and M. Wang, Flexible Ultrathin Single-Crystalline Perovskite Photodetector. Nano Letters  20, 7144-7151 (2020).

[59] Z. Q. Yang, Z. K. Shao, H. Z. Chen, X. R. Mao, R. M. Ma, Spin-Momentum-Locked Edge Mode for Topological Vortex Lasing. Physical Review Letters 125, 013903 (2020).

[58] S.I. Azzam, A.V. Kildishev, R. M. Ma, C. Z. Ning, R. F. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu and X. Zhang, Ten years of spasers and plasmonic nanolasers. Light: Science & Applications 9, 90 (2020). 

[57] J. B. You, X. Xiong, P. Bai, Z. K. Zhou, R. M. Ma, W. L. Yang, Y. K. Lu, Y. F. Xiao, C. E. Png, F. J. Garcia-Vidal. C. W. Qiu and L. Wu, Reconfigurable photon sources based on quantum plexcitonic systems. Nano Letters 20(6), 4645-4652 (2020).

[56] Y. Wang, J. Yu, Y. F. Mao, J. Chen, S. Wang, H. Z. Chen, Y. Zhang, S. Y. Wang, X. Chen, T. Li, L. Zhou, R. M. Ma, S. Zhu, W. Cai and J. Zhu, Stable, high-performance sodium-based plasmonic devices in the near infrared. Nature 581, 401-405 (2020).

[55] S. L. Wang, S. Wang, X. K. Man, and R. M. Ma, Loss and gain in a plasmonic nanolaser. Nanophotonics 9(10), 3403-3408 (2020). Invited

[54] H. Z. Chen, T. Liu, H. Y. Luan,  R. J. Liu, X. Y. Wang, X. F. Zhu, Y. B. Li, Z. M. Gu, S. J. Liang, H. Gao, L. Lu, L. Ge, S. Zhang, J. Zhu and R. M. Ma, Revealing the missing dimension at an exceptional point. Nature Physics 16, 571-578 (2020).

[53] H. Jeong, Y. Yang, H. Cho, T. Badloe, I. Kim, R. M. Ma and J. Rho, Emerging advanced metasurfaces: Alternatives to conventional bulk optical devices. Microelectronic Engineering 220, 111146(2020).

[52] Z. K. Shao, H. Z. Chen, S. Wang, X. R. Mao, Z. Q. Yang, S. L. Wang, X. X. Wang, X. Hu and R. M. Ma, A high-performance topological bulk laser based on band-inversion-induced reflection. Nature nanotechnology 15, 67-72 (2020).

[51] B. K. Qi, H. Z. Chen, L. Ge, P. Berini and R. M. Ma, Parity–Time Symmetry Synthetic Lasers: Physics and Devices. Advanced Optical Materials 7, 1900694 (2019). Invited

[50] R. M. Ma, Lasing under ultralow pumping. Nature Materials 18, 1152-1153 (2019).

[49] X. Yang, P. N. Ni, P. T. Jing, Li. G. Zhang, R. M. Ma, C. X. Shan, D. Z. Shen and P. Genevet, Room temperature electrically driven ultraviolet plasmonic lasers. Advanced Optical Materials, 7(10), 1801681 (2019).

[48] Y. F. Zhang, Y. J. Gong, B. Li, R. M. Ma, Y. K. Che and J. C. Zhao, Light-Driven Continuous Twist Movements of Microribbons. Small, 15(7), 1804102 (2019).

[47] X. X. Wang, H. Z. Chen, H. Zhou, X. Wang, S. P. Yuan, Z. Q. Yang, X. Zhu, R. M. Ma and A. L. Pan, Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers. Nanoscale, 11(5), 2393-2400 (2019).

[46] R. M. Ma and R. F. Oulton, Applications of Nanolasers. Nature Nanotechnology 14, 12-22 (2019). 

[45] X. W. Zhang, Z. Q. Yang, J. Z. Li, Y. H. Deng, Y. M. Hou, Y. F. Mao, J. Lu and R. M. Ma, Directly imaging the structure–property correlation of perovskites in crystalline microwires. Journal of Materials Chemistry A 7, 13305-13314 (2019).

[44] Y. L. Wang, X. Cheng, K. Yuan, Y. Wan, P. Li, Y. H. Deng, H. R. Yu, X. L. Xu, Y. Zeng, W. J. Xu, Y. P. Li, R. M. Ma, K. Watanabe, T. Taniguchi, Y. Ye and L. Dai, Direct synthesis of high-quality perovskite nanocrystals on a flexible substrate and deterministic transfer. Science Bulletin 63(23), 1576-1582 (2018).

[43] S. Wang, H. Z. Chen and R. M. Ma, High performance plasmonic nanolasers with external quantum efficiency exceeding 10%. Nano Letters 18,7942-7948 (2018).

[42] J. H. Ahn, Z. J.  Xu, J. H. Bang, Y. H. Deng, T. M. Hoang, Q. K. Han, R. M. Ma and T. C. Li, Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor. Physical Review Letters, 121, 033603 (2018).

[41] H. Z. Chen, S. Wang, R. M. Ma, Characterization of Plasmonic Nanolasers in Spatial, Momentum, and Frequency Spaces. IEEE Journal of Quantum Electronics, 54, 1-7 (2018). Invited

[40] Z. Q. Yang, Y.  H. Deng, X .W. Zhang, S. Wang, H. Z. Chen, S. Yang, J. Khurgin, N. X. Fang, X. Zhang, and R. M. Ma. High Performance Single Crystalline Perovskite Thin Film Photodetector. Advanced Materials 30, 1704333 (2018).

[39] G. Yoon, S. So, M. Kim, J. Mun, R. M. Ma and J. Rho, Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Convergence 4, 36(2017).

[38] S. Wang, X. Y. Wang, B. Li, H. Z. Chen, Y. L. Wang, L. Dai, R. F. Oulton and R. M. Ma. Unusual Scaling Laws for Plasmonic Lasers beyond Diffraction Limit. Nature Communications, 8, 1889 (2017).

[37] Q. Zhang, Q. Y. Shang, J. Shi, J. Chen, R. Wang, Y. Mi, W. N. Du, C. Shen, R. M. Ma, X. H. Qiu, X. F. Liu and T. C. Sum, Wavelength tunable plasmonic lasers based on intrinsic self-absorption of gain material. ACS Photonics 4(11), 2789-2796 (2017).

[36] S. Wang, B. Li, X. Y. Wang, H. Z. Chen, Y. L. Wang and R. M. Ma, High-Yield Plasmonic Nanolasers with Superior Stability for Sensingin Aqueous Solution. ACS Photonics 4, 1355-1360 (2017).

[35] Z. R. Ren, Q. Kan, G. Z. Ran, C. Y. Jin, L. J. Yuan, X. Y. Wang, L. Tao, H. Y. Yu, L. X. Zhang, W. X. Chen, K. He, R. M. Ma, J. Q. Pan and W. Wang, Hybrid single-mode laser based on graphene Bragg gratings on silicon, Optical letters 42(11), 2134-2137 (2017).

[34] H. Z. Chen, J. Q. Hu, S. Wang, B. Li, X. Y. Wang, Y. L. Wang, L. Dai and R. M. Ma, Imaging the dark emission of spasers, Science Advances 3(4), e1601962 (2017).

[33] X. Y. Wang, H. Z. Chen, Y. Li, B. Li and R. M. Ma. Microscale vortex laser with controlled topological charge. Chinese Physics B 25, 124211 (2016).

[32] Y. F. Zhang, C. Peng , B. Cui, Z. F. Wang , X. B. Pang , R. M. Ma , F. Liu , Y. K. Che and J. C. Zhao, Direction-Controlled Light-Driven Movement of Microribbons. Advanced Materials 28, 8538-8545 (2016). 

[31] X. Y. Wang, Y. L. Wang, S. Wang,  B. Li,  X. W. Zhang, L. Dai and R. M, Ma, Lasing Enhanced Surface Plasmon Resonance Sensing. Nanophotonics 6, 472-478 (2016).

[30] L. Feng, Z. J. Wong, R. M. Ma, Y. Wang and X. Zhang. Single-mode laser by parity-time symmetry breaking. Science 346, 972-975 (2014).

[29] R. M. Ma, S. Ota, Y. M. Li, S. Yang and X. Zhang, Explosives detection in a lasing plasmon nanocavity. Nature Nanotechnology 9, 600 (2014).

[28] R. M. Ma and X. Zhang, A high-performance silicon-based plasmonic modulator. Iraqi Journal of Applied  Physics 9, 10-12 (2013).

[27] R. M. Ma, X. B. Yin, R. F. Oulton, V. J. Sorger and X. Zhang, Multiplexed and Electrically Modulated Plasmon Laser Circuit. Nano Letters 12, 5396-5402(2012).

[26] V. J. Sorger, R. F. Oulton, R. M. Ma and X. Zhang, Toward integrated plasmonic circuits. MRS bulletin 37 (8), 728-738(2012).

[25] V. J. Sorger, N. D. L-Kimura, R. M. Ma and X. Zhang, Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1, 17-22 (2012).

[24] R. M. Ma, R. F. Oulton, V. J. Sorger and Xiang Zhang, Plasmon lasers: coherent light source at molecular scales. Laser & Photonics reviews 7, 1-21 (2012).

[23] R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal and X. Zhang, Room temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Materials 10, 110-113 (2011).

[22] R. M. Ma, R. M. Peng, X. N. Wen, L. Dai, C. Liu, T. Sun, W. J. Xu and G. G. Qin, Ultralow-Power Complementary Metal-Oxide-Semiconductor Inverters Constructed on Schottky Barrier Modified Nanowire Metal-Oxide-Semiconductor Field-Effect-Transistors. Journal of Nanoscience and Nanotechnology 10, 6428-6431 (2010).

[21] Z. Fang, C. Lin, R. M. Ma, S. Huang, and X. Zhu, Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano 4, 75-82 (2010). 

[20] R. M. Ma, L. Dai, and G. G. Qin, Light coupling and modulation in coupled nanowire Ring-Fabry-Perot cavity. Nano Letters 9, 2697-2703 (2009).

[19] R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal and X. Zhang, Plasmon lasers at deep subwavelength scale. Nature 461, 629-632 (2009).

[18] P. C. Wu, R. M. Ma, C. Liu, T. Sun, Y. Ye, and L. Dai. High-performance CdS nanobelt field-effect transistors with high-k HfO2 top-gate dielectrics. J. Mater. Chem. 19, 2125-2130 (2009).

[17] C. Liu, P. C. Wu, S. Tuo, L. Dai, Y. Ye, R. M. Ma, G. G. Qin. Synthesis of High Quality n-type CdSe Nanobelts and Their Applications in Nanodevices. Journal of Physical Chemistry C 113, 14478-14481 (2009).

[16] X. Sun, D. S. Jiang, W. B. Liu, J. H. Zhu, H. Wang, Z. S. Liu, J. J. Zhu, Y. T. Wang, D. G. Zhao, S. M. Zhang, L. P. You, R. M. Ma, H. Yang, Nonpolar growth and characterization of InN overlayers on vertically oriented GaN nanorods. Journal of Applied Physics 026102 (2009).

[15] X. B. Han, G. Y. Jing, X. Z. Zhang, R. M. Ma, X. F. Song, J. Xu, Z. M. Liao, N. Wang, D. P. Yu, Bending-Induced Conductance Increase in Individual Semiconductor Nanowires and Nanobelts. Nano Res. 2, 553-557 (2009).

[14] P. C. Wu, Y. Ye, C. Liu, R. M. Ma, T. Sun, and L. Dai, Logic gates constructed on CdS nanobelt field-effect transistors with high-kappa HfO2 top-gate dielectrics. J. Mater. Chem. 19, 7296-7300 (2009).

[13] Y. Ye, L. Dai, P. C. Wu, C. Liu, T. Sun, R. M. Ma and G. G. Qin, Schottky junction photovoltaic devices based on CdS single nanobelts. Nanotechnology 30, 375202 (2009). 

[12] R. M. Ma, L. Dai, C. Liu, W. J. Xu, and G. G. Qin, High-Performance Nanowire Complementary Metal-Semiconductor Inverters. Applied Physics Letters 93, 053105 (2008).

[11] W. Q. Yang, L. Dai, R. M. Ma, C. Liu, T. Sun, and G. G. Qin, Back-Gate ZnO Nanowire Field-Effect Transistors Each with a Top Omega Shaped Au Contact. Applied Physics Letters 93, 033102 (2008).

[10] C. Liu, L. Dai, R. M. Ma, W. Q. Yang and G. G. Qin, p-Zn3P2 Single Nanowire Metal-Semiconductor Field-Effect Transistors. Journal of Applied Physics 104, 034302 (2008).

[9] C. Liu, L. Dai, L. P. You, W. J. Xu, R. M. Ma, W. Q. Yang, Y. F. Zhang and G. G. Qin, Synthesis of High Quality p-type Zn3P2 Nanowires and Their Application in MISFETs. Journal of Materials Chemistry 18, 3912-3914 (2008).

[8] R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, High-Performance Logic Circuits Constructed on Single CdS Nanowires. Nano Letters  7, 3300-3304 (2007). 

[7] R. M, Ma, L. Dai, and G. G. Qin, Enhancement-Mode Metal-Semiconductor Field-Effect Transistors Based on Single n-CdS. Applied Physics Letters 90, 093109 (2007). 

[6] R. M. Ma, L. Dai, and G. G. Qin, High-Performance Nano-Schottky Diodes and Nano-MESFETs Made on Single CdS Nanobelts. Nano Letters 7, 868-873 (2007). 

[5] R. M. Ma, X. L. Wei, L. Dai, H. B. Huo, and G. G. Qin, Synthesis of CdS Nanowire Networks and Their Optical and Electrical Properties. Nanotechnology 18, 205605 (2007). 

[4] H. B. Huo, C. Liu, L. Dai, L. P. You, W. Q. Yang, R. M. Ma, Y. F. Zhang and G. G. Qin, A Method to Identify Shallow Dopants in Semiconductor Nanowires. Applied Physics Letters 91, 181117 (2007).

[3] R. M. Ma, L. Dai, H. B. Huo, W. Q. Yang, G. G. Qin, P. H. Tan, C. H. Huang, and J. Zhen, Synthesis of High Quality n-type CdS Nanobelts and Their Applications in Nanodevices. Applied Physics Letters 89, 203120 (2006). 

[2] W. Q. Yang, H. B. Huo, L. Dai, R. M. Ma, S. F. Liu, G. Z. Ran, B. Shen, C. Lin and G. G. Qin, Electrical Transport and Electroluminescence Properties of n-ZnO Single Nanowires. Nanotechnology 17, 4868 (2006).

[1] H. B. Huo, L. Dai, C. Liu, L. P. You, W. Q. Yang, R. M. Ma, G. Z. Ran and G. G. Qin, Electrical Properties of Cu Doped p-ZnTe Nanowires. Nanotechnology 17, 5912 (2006).