任华忠 研究员

北京大学地球与空间科学学院遥感与地理信息系统研究所研究员,长聘副教授,博士生导师。主要研究方向:热红外遥感,开展多源热红外遥感数据的地表温度与发射率反演方法研究、地表温度角度归一化、红外遥感影像目标识别、热异常监测等研究工作。国家自然科学基金委优秀青年基金获得者;获高校GIS创新人物奖(2022)、李小文遥感科学青年奖(2019)、北京市科技新星人才计划(2017)、科技部国家遥感中心遥感青年科技人才创新计划(2016);入选中国科学院-美国科学院空间科学新领军人物(2019);担任全球定量遥感最新进展国际会议(International Symposium on Recent Advances in Quantitative Remote Sensing)科学委员会委员、中国遥感应用...

查看更多>>

Simultaneous Estimation of Land Surface and Atmospheric Parameters From Thermal Hyperspectral Data Using a LSTM-CNN Combined Deep Neural Network

发布时间: 2022-01-20 点击次数:

  • 影响因子:0.0
  • 发表刊物:IEEE Geoscience and Remote Sensing Letters
  • 关键字:Deep neural network (DNN), hyperspectral remote sensing, simultaneous estimation, thermal airborne hyperspectral imager (TASI), thermal infrared (TIR)
  • 摘要:Thermal infrared (TIR) remote sensing observation signal is influenced by both atmospheric and land surface conditions that are difficult to separate with conventional multichannel TIR data. Because of the advantage of channel wealth, hyperspectral TIR data can simultaneously estimate the land surface and atmospheric parameters using neural network models or integrating them with physical models. However, the commonly used neural network models do not fully explore the correlation between different channels by treating the input data as discrete features. Thus, this study aims to develop a new deep neural network (DNN) by combining the long short-term memory (LSTM) network and convolutional neural network (CNN) for estimating land surface temperature (LST), emissivity, atmospheric transmittance, upward radiance, and downward radiance more accurately. By applying on the thermal airborne
    hyperspectral imager (TASI) simulation dataset covering global atmospheric conditions with 32 channels in 8.0−11.5 µm, the pro
    posed model achieved results with the LST error of 0.95 K, the emissivity error of less than 0.012 for each channel, and the accuracy of three atmospheric parameters has also been improved compared with the current neural network models. Our model has been applied to a real TASI image, and its validity was further proved by the ground measurement validation data.
    Therefore, it can provide more reliable initial values for physical
    optimization models.
  • 论文类型:期刊论文
  • 学科门类:理学
  • 一级学科:地理学
  • 文献类型:J
  • 卷号:19
  • 期号:5508705
  • 页面范围:1-5
  • 是否译文:
  • 收录刊物:SCI
  • 第一作者:Xin Ye
  • 通讯作者:Huazhong Ren
  • 全部作者:Jing Nie,Jian Hui,Jinshun Zhu,Chenchen Jiang,Wenjie Fan,Yonggang Qian,Yanzhen Liang
  • 发表时间:2022-01-01