能区新物理

曹庆宏

北京大学理论物理研究所

I．何为高能粒子物理？
2．高能物理实验技术
3．粒子物理标准模型
4．为什么需要新物理？
物体

规律

量纲
自由度

不同小尺度的物理规律

厘米：
流体（经典流体力学）
10^{-5} 厘米：
分子（分子运动学）
10^{-8} 厘米：
原子（量子力学）
10^{-13} 厘米：
核子（核物理）
$10^{-13} \sim 10^{-18}$ 厘米：
夸克（量子色动力学）
10^{-33} 厘米：
弦理论（陈斌老师）

自然单位制：微观世界语言

高能物理中大部分情形下，基本粒子间的相互作用仅仅发生在极高能量和极短距离

$$
\begin{gathered}
\hbar=c=k_{B}=1 \\
{[\text { 长度 }]=[\text { 时间 }]=[\text { 质量 }]^{-1}=[\text { 温度 }]^{-1}=[\text { 能量 }]^{-1}}
\end{gathered}
$$

\hbar 量子性质
c 相对论性质
k_{B} 热力学性质

需要仔细处理微观世界的理论结论推广到
宏观世界的观测量

或高能物理？

我是谁？
我从哪来？
我到那去？

我是谁？

哲
学
家

我从哪来？

我到那去？

History of the Universe

History of the Universe

高能物理的实验手段

高能理论研究的数次革命都是基于

达验物理技或的華命性突破，

特别是加速器和探测器技术的成熟。

能量和空间尺度

加速器：强力的＂显微镜＂

高能加速的粒子束，帮助我们看清细微的结构

低能量粒子束

高能量粒子束

投石问路：
 高能散射实验

固定靶实验
$E_{\mathrm{cm}} \propto \sqrt{E_{\mathrm{in}}}$

对撞机实验

$$
E_{\mathrm{cm}} \propto E_{\mathrm{in}}
$$

卢瑟福散射实验

对撞实验鼻祖

Rutherford＇s Gold Foil Experiment

Interpretation

卢瑟福散射实验

对撞实验鼻祖

散射截面

粒子束和勤或另一粒子束之间相互作用的有效面积

加速器和对撞机

二战之后高能物理才成为一门公认的学科 （富人的游戏）

加速器和对撞机

二战之后高能物理才成为一门公认的学科 （富人的游戏）

能量上限由机器的环半径和磁场强度决定

- 上世纪50年代，半径～10－20米（房子中）
- 上世纪60年代，半径～100米（地下）
- 上世纪70年代，半径～1000米（地下）
- 上世纪80年代，半径～4000米（地下）

对撞机年表

大型强子对撞机

质心系能量14TeV

CMS：长21米，高15米，宽15米，12．5千顿

ATLAS：长46米，高25米，宽25米，7千顿

粒子物理的标准模型

 （集400年物理之大成）
神奇数字

$$
\begin{aligned}
& 2 \times \overline{2}=3+1 \\
& 3 \times \overline{3}=8+1
\end{aligned}
$$

＂世界基本组成成分为何？’
和
＂它们如何相互作用？＂

> 基本粒子物理或
> 高能物理

研究自然界的
基本相互作用（力）

费米子和玻色子

费米子：
遵守Pauli不相容原理
自旋为半整数

玻色子：
不遵守Pauli不相容原理
自旋为整数

物质场粒子：轻子

- 不参与强相互作用
- 整数或零电荷
- 味：

e^{-}	＂电子＂	(1897)	在原子中
μ^{-}	＂Muon＂	(1937)	在宇宙射线中首次观测到
	$\left(206 m_{e}\right)$	(1975)	在SLAC观测到
τ^{-}	＂Tau＂		
	$\left(17 m_{\mu}\right)$		（Stanford Linear Accelerator Center）

v_{e}＂Electron 中微子＂
（1956）
泡利以之解释Beta衰变中能动量不守恒（1930）
v_{μ}＂Muon 中微子＂
（1962）
v_{τ}＂Tau 中微子＂

物质场粒子：夸克

- 参与强相互作用
- 带分数电荷

$$
Q=\left\{\begin{array}{c}
2 / 3 \\
-1 / 3
\end{array}\right\} \times \text { Proton charge }
$$

－质子和中子的组成成分 （udd）（uud）

$$
\binom{u}{d} \quad \text { "up" } \begin{gathered}
\text { "down" }
\end{gathered}
$$

－味：

u	＂up＂
d	＂down＂
s	＂strange＂
c	＂charmed＂
b	＂bottom＂
t	＂top＂

（I977）＂Beauty＂
1995 ＂Truth＂
＠Fermilab（Tevatron）

标准模型的物质场

－费米子（自旋 $1 / 2$ ）

$\binom{V_{e}}{e^{-}}$
e_{R}^{-}

$$
\begin{array}{ccccc}
\binom{u}{d}_{L} & \binom{u}{d}_{L} & \binom{u}{d}_{L} & \binom{c}{s}_{L} & \binom{c}{s}_{L}
\end{array}\binom{c}{s}_{L} \quad\left(\begin{array}{l}
t \\
u_{R}
\end{array} u_{R} \quad u_{R} \begin{array}{l}
t \\
b
\end{array}\right)_{L}\binom{t}{b}_{L}
$$

－标量场（自旋为 0 ）
希格斯玻色子：唯一知道不同代的粒子间不同之处的粒子
（希格斯机制——对称性自发破缺）

自然界中四种力

相互作用传播子

相互作用传播子

相互作用（通过交换自旋为 1 的规范玻色子）
电磁相互作用（QED）
光子
（无质量）

强相互作用（QCD）胶子
（无质量）
（1979）

弱相互作用
$W^{ \pm}$和 Z 规范玻色子
$\left(\begin{array}{l}\left.\text { 有质量 } \begin{array}{l}M_{W}=80.4 \mathrm{GeV} \\ M_{Z}=91.187 \mathrm{GeV}\end{array} \quad 1 \mathrm{GeV}=10^{9} \mathrm{eV}\right)\end{array}\right.$

粒子物理的标准模型

已知基本粒子谱

规范统一之路

Is there an underlying simplicity behind vast phenomena in Nature？

麦克斯韦：电磁学

$$
\begin{array}{ll}
\vec{\nabla} \times \vec{D}=\rho & \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \times \vec{B}=0 & \vec{\nabla} \times \vec{H}=\vec{j}+\frac{\partial \vec{D}}{\partial t}
\end{array}
$$

爱因斯坦的统一之梦

－Einstein dreamed to come up with a unified description
－But he failed to unify electromagnetism and gravity（GR）

物理统一之路

工具：对称性

I）不可观测
无法观测的物理量
绝对位置 \vec{p}
绝对时间 E
绝对方位 $\vec{L}=\vec{r} \times \vec{p}$
绝对左右 P
绝对未来 T
绝对电荷 C

在微观世界中，等价的相互作用，力的载体为无质量的粒子

标准模型的规范对称性
（Strong Interaction）

$\underbrace{S U(3)_{\text {Color }}}_{\text {QCD }}$
 $\otimes \underbrace{S U(2)_{\text {Left }} \otimes U(1)_{\text {Hyper charge }}}_{\text {WEAK } \oplus \mathrm{QED}}$

Unification of Weak and Electromagnetic

对称性自发破缺 （希格斯机制）

$U(1)_{\text {е．}}$.
量子电动力学
（电磁相互作用）

对称性自发破缺

对称性自发破缺

（具有高对称性的系统的解具有较低对称性）

将4个城市联系起来所需的最小路径？

对称性自发破缺
（具有高对称性的系统的解具有较低对称性）

需要花费
4 个单位

对称性自发破缺
（具有高对称性的系统的解具有较低对称性）

需要花费
3 个单位

对称性自发破缺
（具有高对称性的系统的解具有较低对称性）

需要花费 $2 \sqrt{2}$ 个单位

对称性自发破缺
（具有高对称性的系统的解具有较低对称性）

需要花费
$1+\sqrt{3}$ 个单位

对称性自发破缺
（具有高对称性的系统的解具有较低对称性）

两种方案之和还具有原始对称性

粒子物理的标准模型

已知基本粒子谱

标准模型的两大疑难

电弱对称性破缺起源 和 味对称性破缺起源
 （ W 和 Z 质量）
 （费米子质量）

$\mathrm{GeV}=10^{9} \mathrm{eV}$

标准模型的希格斯机制

电弱对称性破缺起源 和 味对称性破缺起源 （ W 和 Z 质量）

在标准模型中，这两种对称性破缺是通过引入一个基本的标量场（希格斯玻色子）来实现

$$
\Phi=\frac{1}{\sqrt{2}}\binom{\phi_{1}+i \phi_{2}}{\phi_{3}+i \phi_{4}}
$$

$$
\begin{aligned}
& \text { 产生 } M_{\boldsymbol{W}} \text { 和 } \boldsymbol{M}_{\mathbf{Z}} \\
& \mathcal{L}_{\Phi}=\left(D_{\mu} \Phi\right)^{\dagger}\left(D^{\mu} \Phi\right)-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
\end{aligned}
$$

$$
\begin{array}{ccc}
\begin{array}{cc}
v \\
\times \\
\times \\
\vdots \\
g^{2}
\end{array} & \\
W^{+} \\
W^{+} & \\
\hline
\end{array}
$$

产生 m_{f}

$$
y_{f} \bar{F}_{L} \Phi f_{R}+h . c .
$$

$$
\Rightarrow m_{f}=y_{f} \frac{v}{\sqrt{2}}
$$

Higgs: the Goddamin Particle

Quarks

$$
\begin{array}{|l|l|l|}
\hline e & \mu & \tau \\
\hline v_{e} & v_{\mu} & v_{\tau} \\
\hline
\end{array}
$$

Leptons

标准模型的希格斯机制

标准模型的希格斯机制

标准模型的希格斯机制

标准模型的希格斯机制

标准模型的希格斯机制

见证奇迹的历史时刻

July $4^{\text {th }}, 2012$

我们终于验证基本粒子的质量起源 （1964－2012）

希格斯信号

实验信号寻找末态两个光子的共振峰

耗时48年？！为什么？

一个希格斯粒子产生和衰变的事例

All charged tracks with pt $>2 \mathrm{GeV}$

Higgs decay in 4 muons 1 in $10{ }^{13}$ events

希格斯粒子和真空稳定性

$$
m_{H} \simeq 125 \mathrm{GeV}
$$

Degrassi et al．＇12

Higgs mass M_{h} in GeV

超出标准模型之外的新物理

新物理探索：盲人摸象

泡利和中微子

Beta－衰变

$$
n \rightarrow p e^{-} \bar{\nu}
$$

（1930）

泡利和中微子

Wolfgang Pauli 1930

Letter to the physical Institute of the Federal

 Institute of Technology，Zurich
The Desperate Remedy

4 December 1930
Gloriastr．
Zürich
Physical Institute of the
Federal Institute of Technology（ETH）
Zürich
Dear radioactive ladies and gentlemen，

```
to save the "exchange theorem"* of statistics and the energy
theorem. Namely [there is] the possibility that there could
exist in the nuclei electrically neutral particles that I
wish to call neutrons,*" which have spin 1/2 and obey the
exclusion principle, and additionally differ from light quan-
```

中微子历史

1930 泡利猜测存在一个中性粒子——Neutron（中子）
1932 查德威克发现中子
1933 费米将泡利的＂neutron＂改为＂Neutrino＂
1956 Reines和Cowan发现了中微子
1957 Bruno Pontecorvo建议中微子＂震荡＂
1962 Steinberger，Lederman和Schwartz发现 ν_{e} 和 ν_{μ}
1968 发现太阳中微子＂丢失＂
1975 Perl和Reines发现Tau轻子
1998 日本Super－Kamiokande实验发现中微子震荡
2000 费米实验室的DONUT合作组发现Tau－中微子

中微子质量起源

neutrinos

${ }_{d \bullet} s_{\bullet} b_{\bullet}$
\qquad
$\stackrel{3}{\square} \stackrel{(2)}{<}$

2．暗物质 （粒子宇宙学）

粒子
物理

Astro
particle

暗物质（Dark Matter）

暗物质

已知信息：

不发光物质（无电磁相互作用）
寿命非常长或绝对稳定
非重子
大质量

未知信息：

质量和自旋
相互作用形式
种类和数目

更糟的是，我们甚至不知道 ＂什么是我们不知道的＂

暗物质

已知信息：

不发光物质（无电磁相互作用）
寿命非常长或绝对稳定 Dark Energy
非重子
大质量

未知信息：

质量和自旋

相互作用形式
种类和数目

更糟的是，我们甚至不知道 ＂什么是我们不知道的＂
暗物质候选者之一

作用力微弱的大质量粒子
（Weakly interacting massive Particle）

暗物质残留丰度

I）宇宙早期暗物质和可见物质处于热力学平衡态

暗物质残留丰度

2）宇宙膨胀（温度降低，暗物质变为非相对论性）

暗物质残留丰度

3）暗物质热力学退艃

γ

DM

暗物质残留丰度

I．暗物质和可见物质处于热力学平衡态

$$
\chi \chi \leftrightarrow f f
$$

2．宇宙膨胀冷却

$$
N=N_{E Q} \sim e^{-\frac{m}{T}}
$$

3．暗物质从热库中退耦
$N \sim$ Constant

暗物质直接探测

局
－

暗物质间接测量

暗物质在宇宙中湮灭产生正反电子，正反质子，光子，中微子

早期宇宙中物质和反物质

｜0，000，000，00｜
10，000，000，000

物质
反物质

目前宇宙中物质和反物质

难以置信的精确相消
（0．000000000I）

反物质

Two things are infinite．The Universe and human stupidity．
．．．and I＇m not sure about the Universe．

4.大统理论

超对称模型

The known world of Standard Model particles

The hypothetical world of SUSY particles

squarks
sleptons
SUSY force carriers

5．各面多小日寸等 维 度

时空：最熟悉也最陌生

大型强子对撞机信号

大额外维模型（Large Extra Dimensions）

已知的基本粒子都生活在平常的（ $3+1$ ）维时空中，仅有引力可以在额外维空间中传播

对撞机信号

$$
p \bar{p} \rightarrow g G_{N}\left(G_{N} \rightarrow \#_{T}\right) \longrightarrow \text { jet }+\#_{T}
$$

为什么希格斯粒子质量为 125 GeV ？
费米子和玻色子质量起源是否相同？
大CP破坏产生机制？
为何仅有 3 代夸克和轻子？
是否有 4 代物质场粒子？
能否把自然界所有的力统一为 1 种？
是否存在新的相互作用？
夸克和轻子是否有内部结构？
暗物质的内禀属性及其相互作用？
什么是暗能量？
是否有额外的空间维度？
\qquad

History of the Universe

生逢其时，何其幸也！

欢迎大家来我所
 起探索奋 三

如果说我比别人看得更远些，那是因为我站在了巨人的肩上。 ——牛顿（1672）

我没有别人看得更远，
那是因为巨人站在我的肩上。

