の能区新物理

北京大学理论物理研究所

何为高能粒子物理?
高能物理实验技术
粒子物理标准模型
为什么需要新物理?

不同小尺度的物理规律

高能物理中大部分情形下,基本粒子间的 相互作用仅仅发生在极高能量和极短距离

 $\hbar = c = k_B = 1$ [长度]=[时间]=[质量]-'=[温度]-'=[能量]-'

量子性质 ħ.

C 相对论性质

 k_{R} 热力学性质

需要仔细处理 微观世界的理论结论 推广到 宏观世界的观测量

什么是粒子物理 或高能物理?

我从哪来?

我到那去?

我从哪来?

我到那去?

"世界是由什么组成的?""它们是怎样组成这个世界?""宇宙如何演化?"

高能物理的实验手段

高能理论研究的数次革命都是基于 <u>实验物理技术的革命性突破</u>, 特别是加速器和探测器技术的成熟。

能量和空间尺度

加速器: 强力的"显微镜" 高能加速的粒子束,帮助我们看清细微的结构 E c \mathcal{X} 低能量粒子束 高能量粒子束

固定靶实验 $E_{\rm cm} \propto \sqrt{E_{\rm in}}$

对撞机实验 $E_{\rm cm} \propto E_{\rm in}$

卢瑟福散射实验

散射截面

粒子束和靶或另一粒子束之间相互作用的有效面积

二战之后高能物理才成为一门公认的学科 (富人的游戏)

二战之后高能物理才成为一门公认的学科 (富人的游戏)

能量上限由机器的环半径和磁场强度决定 →上世纪50年代,半径~10-20米(房子中) →上世纪60年代,半径~100米(地下) →上世纪70年代,半径~1000米(地下) →上世纪80年代,半径~4000米(地下)

对撞机年表

<u>欧洲大型强子对撞机</u> 通向新物理的时间机器

CMS: 长21米,高15米,宽15米,12.5千顿

ATLAS: 长46米,高25米,宽25米,7千顿

約子物理的 标准模型 (集400年物理之大成)

$2 \times \bar{2} = 3 + 1$ $3 \times \bar{3} = 8 + 1$

"世界基本组成成分为何?" 和 "它们如何相互作用?"

研究自然界的 基本相互作用(力)

费米子和玻色子

费米子: 遵守Pauli不相容原理 自旋为半整数

玻色子:

不遵守Pauli不相容原理

自旋为整数

物质场粒子:轻子

- 不参与强相互作用
- 整数或零电荷
- 味:

^ν_e "Electron 中微子" (1956)
泡利以之解释Beta衰变中能动量不守恒 (1930)
ν_µ "Muon 中微子" (1962)
ν_τ "Tau 中微子" (2000)

物质场粒子: 夸克

- 参与强相互作用
- 带分数电荷

 $Q = \begin{cases} \frac{2}{3} \\ -\frac{1}{3} \end{cases} \times \text{Proton charge}$

 质子和中子的组成成分 (udd) (uud)

 $\begin{pmatrix} u \\ d \end{pmatrix}$ "up" "down"

u

d

t

• 味:

- "up" "down"
- s "strange"
- c "charmed"
- b "bottom"
 - "top"

第一次实验证据:

Stanford Linear Accelerator Center (Giant Electron Microscope)

(1974) (1977) "Beauty" 1995 "Truth" @ Fermilab (Tevatron)

标准模型的物质场

■ 费米子 (自旋1/2)

 标量场 (自旋为0)
希格斯玻色子: 唯一知道不同代的粒子间不同之处的粒子 (希格斯机制 —— 对称性自发破缺)

Beta 衰变 Muon 衰变

时间尺度: 10⁻¹²~10³ 秒

时间尺度: 10-23 秒

重力

相互作用(通过交换自旋为I的规范玻色子)

电磁相互作用 (QED) 光子 (无质量)

强相互作用 (QCD) 胶子 (无质量) (1979)

弱相互作用 $W^{\pm} 和 Z 规范玻色子$ (1983) (有质量 $M_w = 80.4 \text{ GeV}$ $M_z = 91.187 \text{ GeV}$ 1 GeV = 10⁹ eV

粒子物理的标准模型

已知基本粒子谱

Is there an underlying simplicity behind vast phenomena in Nature?

麦克斯韦: 电磁学

$$\vec{\nabla} \times \vec{D} = \rho \qquad \vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
$$\vec{\nabla} \times \vec{B} = 0 \qquad \vec{\nabla} \times \vec{H} = \vec{j} + \frac{\partial \vec{D}}{\partial t}$$

• Einstein dreamed to come up with a unified description

• But he failed to unify electromagnetism and gravity (GR)

I) 不可观测

- 无法观测的物理量
 - 绝对位置 $ec{p}$
 - 绝对时间 E
 - 绝对方位 $\vec{L} = \vec{r} \times \vec{p}$
 - 绝对左右 P
 - 绝对未来 T
 - 绝对电荷 C

- 一个物体变换为另一个物体
- 整体对称性:同位旋
- 时空对称性
- → 等价性
- → 完美但却无聊的世界

在微观世界中, 等价的相互作用,力的载体为无质量的粒子

标准模型的规范对称性

对称性自发破缺

(希格斯机制)

U(1)_{E.M.} 量子电动力学 (电磁相互作用)

0110/

(具有高对称性的系统的解具有较低对称性)

两种方案之和还具有原始对称性

粒子物理的标准模型

已知基本粒子谱

在标准模型中,这两种对称性破缺是 通过引入一个基本的 标量场(希格斯玻色子) $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix}$

产生 M_W 和M_Z $\mathcal{L}_{\Phi} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - \mu^{2}\Phi^{\dagger}\Phi + \lambda (\Phi^{\dagger}\Phi)^{2}$ $\mathcal{V} \qquad \mathcal{V} \qquad \langle \Phi \rangle_{\min} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v \end{pmatrix}$

 $\frac{W}{\sigma^2} \longrightarrow M_W = \frac{1}{2}gv$

产生
$$m_f$$

 $y_f \overline{F}_L \Phi f_R + h.c.$
 $f \longrightarrow f$
 y_f $m_f = y_f \frac{v}{\sqrt{2}}$

Higgs: the Goddamn Particle

ForcesZZZDoron<t

见证奇迹的历史时刻 July 4th, 2012

耗时48年?!为什么?

一个希格斯粒子产生和衰变的事例

希格斯粒子和真空稳定性

 $m_H \simeq 125 \,\,\mathrm{GeV}$

Degrassi et al. '12

Higgs mass M_h in GeV

超出标准模型之外的新物理

泡利和中微子

Wolfgang Pauli 1930

Letter to the physical Institute of the Federal Institute of Technology, Zurich

The Desperate Remedy

4 December 1930 Gloriastr. Zürich

Physical Institute of the Federal Institute of Technology (ETH) Zürich Dear radioactive ladies and gentlemen,

to save the "exchange theorem"* of statistics and the energy theorem. Namely [there is] the possibility that there could exist in the nuclei electrically neutral particles that I wish to call neutrons,** which have spin 1/2 and obey the exclusion principle, and additionally differ from light quan-

中微子历史

- 1930 泡利猜测存在一个中性粒子——Neutron (中子)
- 1932 查德威克发现中子
- 1933 费米将泡利的"neutron"改为"Neutrino"
- 1956 Reines和Cowan发现了中微子
- 1957 Bruno Pontecorvo建议中微子"震荡"
- 1962 Steinberger, Lederman和Schwartz发现 ν_e 和 ν_μ
- 1968 发现太阳中微子"丢失"
- 1975 Perl和Reines发现Tau轻子
- 1998 日本Super-Kamiokande实验发现中微子震荡
- 2000 费米实验室的DONUT合作组发现Tau-中微子

路跷板机制也意味着 中微子是一个通向更高能标的窗子

2.
 暗物质
 (粒子宇宙学)

Astro particle

-ZINA TAY

粒子

物理

暗物质 (Dark Matter)

<u> 已知信息</u>:

不发光物质 (无电磁相互作用)

寿命非常长或绝对稳定

大质量

<u>未知信息</u>:

种类和数目

更糟的是,我们甚至不知道 "什么是我们不知道的"

<u> 已知信息</u>:

不发光物质(无电磁相互作用) 寿命非常长或绝对稳定 非重子 大质量 未知信息: 质量和自旋 相互作用形式

更糟的是,我们甚至不知道 "什么是我们不知道的"

暗物质候选者之一

作用力微弱的大质量粒子 (Weakly interacting massive Particle)

I) 宇宙早期暗物质和可见物质处于热力学平衡态

2) 宇宙膨胀(温度降低,暗物质变为非相对论性)

3) 暗物质热力学退耦

暗物质残留丰度

I. 暗物质和可见物质处于热力学 平衡态

$$\chi\chi \leftrightarrow ff$$

2. 宇宙膨胀冷却

 $N = N_{EQ} \sim e^{-\frac{m}{T}}$

3. 暗物质从热库中退耦 N ~ Constant

年调制效应

 直接探测暗物质和 原子的弹性散射。

•信号:热,光,电

World Wide Dark Matter Searches

暗物质在宇宙中湮灭产生正反电子,正反质子,光子,中微子

早期宇宙中物质和反物质

10,000,000,001

10,000,000,000

目前宇宙中物质和反物质

• 我们

Two things are infinite. The Universe and human stupidity.

... and I'm not sure about the Universe.

4. 大统一理论

The known world of Standard Model particles

The hypothetical world of SUSY particles

5. 额外时空维度

大型强子对撞机信号

大额外维模型(Large Extra Dimensions) 已知的基本粒子都生活在平常的(3+I)维时空中, 仅有引力可以在额外维空间中传播

为什么希格斯粒子质量为125GeV? 费米子和玻色子质量起源是否相同? 大CP破坏产生机制? 为何仅有3代夸克和轻子? 是否有4代物质场粒子? 能否把自然界所有的力统一为1种? 是否存在新的相互作用? 夸克和轻子是否有内部结构? 暗物质的内禀属性及其相互作用? 什么是暗能量? 是否有额外的空间维度?

<u>欧洲大型强子对撞机</u> 通向新物理的时间机器

生逢其时,何其幸也!

欢迎大家来我所一起探索奋斗

如果说我比别人看得更远些, 那是因为我站在了巨人的肩上。 —— 牛顿(1672)

我没有别人看得更远, 那是因为巨人站在我的肩上。

