Top Yukawa Coupling and Four Top Quark Production

Qing-Hong Cao Peking University

(QHC, Yandong Liu, arXiv:1410.xxxx)

Recent Measurements of Top Yukawa Coupling
 Measuring/Bounding yt in Four Top Quark Production
 Sensitivities at LHC(14) and High Luminosity LHC

What inSpireHEP tells us

125GeV Higgs does not favor any New Physics paradigm

Top Quark and Higgs Boson

Higgs Boson Production and Decay

Η

 \overline{q}

′BF

Higgs boson decay

5

Higgs Measurements

Global Fit of Higgs Couplings

★ Coupling constraints from ATLAS+CMS under assumption of only SM contribution to total width

★ NP contributions to the loops in the $H\gamma\gamma$ and Hgg couplings could relax the bounds

Global Fit Constraint on c_t/c_g Plane

Bélusca-Maïto, 1404.5343

 c_t is poorly determined ggH could be entirely NP-driven! Only $\left|c_g + \frac{\alpha_s}{3\pi}c_t\right|^2$ constrained

Measuring c_t in ttH Production

 $\sigma_{ttH}(8 \text{ TeV}) \approx 127 \text{ fb}$ rare rate + huge backgrounds

multi-leptons

ATLAS: ATLAS-CONF-2014-011 CMS: arXiv:1408.1682 CMS-PAS-HIG-14-010

ATLAS: arXiv:1409.3122 CMS: arXiv:1408.1682 CMS: 1408.1682

Measuring c_t in ttH Production Assume SM Higgs branching ratio, so free parameter is the ttH signal strength

Measuring c_t in Htq Production

$$\mathcal{M}_{tHq} \propto c_V - c_t$$

Chang, Cheung, Lee, Lu, 1403.2053

With $c_t = -1$ $\sigma_{tHq} = 234 \text{fb}$ 13 times enhanced $Br(H \rightarrow \gamma \gamma)$ 2.4 times enhanced

$$\sigma_{tHq}^{\rm SM} = 18.3 {\rm fb}$$

Accidental cancellations at c_t =+4.7

95% C.L. Limit on C_t

- Null hypothesis: background
 + SM Higgs production

95% C.L. Limit on $\kappa_{\rm t}$

	Observed	Expected
Upper Limit	+8.0	+7.8
Lower Limit	-1.3	-1.2

- Consistent with SM expectation of $\kappa_{t} = 1$

Boser, Top2014

Can we measure c_t without any assumption on Higgs boson decay?

Find a process

 Sensitive to top-Higgs Yukawa coupling
 Insensitive to Higgs boson decay (total width)
 No interference with other Higgs coupling, e.g. Vector-boson-Higgs coupling
 With small backgrounds

Four Top Production in SM

SM QCD production @ NLO, Bevilacqua and Worek, 1206.3064

Four Top Production and New Physics

Top Compositeness

Lillie, Shu, Tait (2007) Kumar, Tait, Veg-Morale (2009)

CMS Measurements of $\sigma(tt\bar{t}\bar{t})$

8TeV, 19.6fb⁻¹ arXiv:1409.7339

 $\sigma(tt\overline{t}\overline{t}) \leq 32 \text{ fb}$

Implication of $\sigma(tt\overline{tt})$ on C_t

If we interpret the upper bound of $\sigma(tttt)$ as an upper limit of the cross section of

i.e.

$$\sigma(tt\bar{t}t)_{\rm QCD} + \sigma(tt\bar{t}\bar{t})_{\rm H}^{\rm SM} \times c_t^4 \leq 32 \text{ fb}$$

then it yields a tight bound on top-Higgs coupling $c_t \leq 3.72$

ATLAS ttH (H->AA) channel (8TeV, 19.6fb⁻¹): $-1.3 < c_t \leq 8$

Sensitivity of C_t at LHC(14)

Event selection:

★ Same-sign di-leptons
★ At least two b-tagged jets
★ At least three tagged jets

Backgrounds:

 $t\bar{t} + (0, 1, 2)j$ $t\bar{t}W^{\pm} + (0, 1, 2)j$ $t\bar{t}Z + (0, 1, 2)j$ $W^{\pm}Z + (0, 1, 2)j$ ZZ + (0, 1, 2)j+ other backgrounds

 $\star \not{E}_T \ge 150 \text{ GeV}$ $\star m_T \ge 100 \text{ GeV}$ $\star H_T \ge 700 \text{ GeV}$

Number of jets

H_T (scalar sum of P_T)

All the background processes are produced in association with up to two additional jets

Event rate at 14TeV, 10fb⁻¹

	$t\bar{t}$	$t\bar{t}W^+$	$t\bar{t}W^-$	$t\bar{t}Z$	$tt\overline{t}\overline{t}$
b-jet	73.8272	30.081	17.8695	23.2867	0.217413
jets	59.1507	24.8343	14.5614	19.7812	0.215194
$E_T^{\rm miss}$	7.11588	4.8969	2.42198	2.37875	0.0547969
m_t	3.33557	3.0871	1.2996	1.5441	0.0333514
$m_{ m eff}$	2.00134	2.15697	0.856553	1.29371	0.0269917

	W^+Z	W^-Z	ZZ
\mathbf{ssl}	745.862	521.433	196.45
b-jet	0.0765887	0.0981645	0.00448526

negligible

Sensitivity of C_t at LHC(14)

The 95% C.L. limits on c_t at LHC (14TeV) is

$$c_t^4 \sqrt{\frac{\mathcal{L}}{\mathrm{fb}^{-1}}} \le 702.2$$

With an integrated luminosity of 300 fb⁻¹

 $c_t \leq 2.52$

With an integrated luminosity of 3000 fb⁻¹

 $c_t \leq 1.89$

SppC (100TeV)

27

Summary

 \star Top-Higgs coupling is poorly determined so far.

ATLAS ttH channel (8TeV, 19.6fb⁻¹): $-1.3 < c_t \leq 8$

★ Four top-quark production is sensitive to top-Higgs coupling to the fourth power

Pros: Good to bound on the coupling Cons: Small rate limiting the discovery potential

★ CMS 4-Top production ★ LHC (14TeV) ($(8TeV, 19.6fb^{-1})$

 $c_t \leq 3.72$

 $c_t \le 2.52 \text{ for } \mathcal{L} = 300 \text{fb}^{-1}$ $c_t \le 1.89 \text{ for } \mathcal{L} = 3000 \text{fb}^{-1}$

ttH prospects at 13/14TeV

 $g \underbrace{\overline{f}}_{g} \underbrace{\overline{f}}_{\overline{t}} \frac{t}{\gamma} \gamma$

Complementary channels will help improving our knowledge of top-Higgs coupling and unveiling top-partner presence + spectrum, properties

Thank You!