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• 源于1895年伦琴射线，⽌止于2012年希格斯粒⼦子发现
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粒⼦子物理的标准模型
集百年物理之⼤大成
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The"Standard"Model"
!  Over"the"last"~100"years:"The"discovery"of"many"subVatomic"

particles"and"advances"in"theoretical"physics"has"led"to""""""
The"Standard"Model"of"Particle"Physics"

!  A"new"“Periodic"Table”"of"fundamental"elements"
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" Force"particles"

One"of"the"greatest"
achievements"of"20th"
Century"Science"""

Fermions" Bosons"
4+

Described+by+one+simple+equation!+

4"

宇宙万物可以⽤用⼀一个简单公式描述

20世纪⾃自然科学
的卓越成就之⼀一

新“元素周期表”
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Standard Model of Particle Physics
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36 Fundamental Forces of Nature: The Story of Gauge Fields

Faraday
Maxwell

∇ · Ε = 4πρ

∇ · Β = 0

∇ × Ε = − Β1
c

∫ ∫Ε · dS = 4πQ

∫ ∫Β · dS = 0

∫ Ε · dr = −

−

∂
∂t

∫ ∫Β · dS1
c

d
dt

∫ Β · dr = I

∫ ∫Ε · dS1
c

d
dt ∇ × Β = Εj + 1

c
4π
c

4π
c

∂
∂t

∂  F      =  − j4π
c

Einstein

∂  F      =   0
~µν

µν ν

µ

µ

Fig. 3.4 College T-shirts with Maxwell’s equations, as sported by sopho-
more, senior, graduate student.

form stresses the local effects of electric and magnetic fields. Finally,
Einstein’s covariant form brings out the true essence.

3.12. Lorentz and Einstein

The crux of the Lorentz transformation is that space and time get
mixed up when you move — a wee bit only, if your velocity is much
less that of light; but mix they must. Ironically, this point was lost
on its originator Hendrik Lorentz, who confessed in hindsight:3

The chief cause of my failure was my clinging to the idea that
only the variable t can be considered as the true time, and that
the local time t′ must be considered no more than an auxiliary
mathematical quantity.

The mathematician Henri Poincaré (1954–1912) wrote about the
principle of covariance, which he called the “principle of relativity”;
but it had no physical relevance, because he did not understand the
“relativity” of simultaneity.

3A. Pais, Sublte is the Lord, Biography of Einstein (Oxford University Press,
2005), p. 167.

Maxwell Equations
1864年10⽉月27⽇日，⻨麦克斯⻙韦写下⽅方程组：	


283种符号，20个变量，20个⽅方程



Standard Model of Particle Physics



Four Forces in Nature
1  Gravity 3  Weak Interaction

2  Electromagnetism
4  Strong Interaction

Newton

将核⼦子紧紧	

结合起来	


Time scale: 10-23 s

Faraday

Beta-decay	

Muon-decay

Time scale: 10-12 ~ 103 s



爱因斯坦的统⼀一之梦
Einstein dreamed to 
come up with a unified 
description	


!

But he failed to unify 
electromagnetism and 
gravity (GR)



太阳、地球和苹果



Electricity

Magnetism

ElectroMagnetism

Light

Three 
Become 

one

Maxwell: Electromagnetism

~r⇥ ~D = ⇢

~r⇥ ~B = 0

~r⇥ ~E = �@~B

@t

~r⇥ ~H = ~j +
@ ~D

@t



Unification

13

-衰变

-衰变

�

�

↵-衰变

狭义相对论

引力

行星 苹果

原⼦子时代

量子力学

弱力

强相互作用

电弱相互作用

广义相对论

大统一理论?

量子电动
力学

弦论

???

力学

电 磁

电磁相互作用



The Magic of Constants
Classical 
Physics

Quantum 
Physics

Relativistic 
Kinematics

Quantum 
Field Theory

c

~

~c



⾃自然单位制：微观世界语⾔言

量⼦子性质
相对论性质
热⼒力学性质

~ = c = kB = 1

~
c
kB

[⻓长度]=[时间]=[质量]-1=[温度]-1=[能量]-1

需要仔细处理	

微观世界的理论结论	


推⼲⼴广到	

宏观世界的观测量

⾼高能物理中⼤大部分情形下，基本粒⼦子间的
相互作⽤用仅仅发⽣生在极⾼高能量和极短距离



The Magic of Units

[c] = m/s

[~] = J · s = MeV · s = [mass] [length]

[time]

~c = 197.3MeV · fb

[e] = Coulomb =

s
[mass][length]

3

[time]2
e2

r
= ma

↵ =
e2

~c =
1

137.036



~ = c = 1
1sec = 3⇥ 108mc = 3⇥ 108m/s

~c = 197.3MeV · fm 1fm ⇠ 1

200MeV

[length] = [time] ⇠ 1

MeV



The History of 
Electroweak Theory



The Birth: Beta Decay
A ! B + e�

The conservation of Energy and momentum  
requires the electron have a single value of energy.

(Z,N) ! (Z + 1, N � 1) + e�



Beta Decay

n ! pe�

1914, Chadwick



What is Wrong?

Something to loose 

or 

Something to add



Neil Bohr
• ready to abandon the law of conservation of 

energy 

• propose a statistical version of the conservation 
laws of energy, momentum, angular momentum

1929

1924, Borh, Kramers, Slater, “辐射的量⼦子理论”： 
能量和动量在单个微观相互作⽤用过程中不必守恒，
⽽而只需要在统计意义上守恒。 
!
1925年，康普顿电⼦子-光⼦子散射验证了微观散射过
程中能动量守恒。 



Wolfgang Pauli 1930  

Letter to the physical Institute of the 
Federal Institute of Technology, Zurich

Neutrino



Neutrino
In 1932 Chadwick discovered a neutral 
nuclear constituent. By studying the 
properties of the neutral radiation n emitted 
in the process  

He found out that n was a deeply 
penetrating neutral particle slightly heavier 
than the proton, quite distinct from 
gamma-rays.

7KH�'LVFRYHU\�RI�WKH�1HXWURQ

In 1932 Chadwick discovered a neutral nuclear constituent. By studying
the properties of the neutral radiation n emitted in the process 

9Be +  D o 12C + n
he found out that the particle n, the neutron, was a deeply penetrating
neutral particle slightly heavier than the proton, quite distinct from 
J-rays, i.e. a different particle from the neutron postulated by Pauli. 
Given the fact that Chadwick’s neutron was much heavier than
Pauli’s, Fermi renamed Pauli’s neutron the neutrino.

Pauli 说的“neutron”被Fermi改成“little 
neutral one”, 成为今天常说的 “Neutrino”



Solvay 1933 Physics Conference (Brussels, Belgium) 

Pauli 报告了他的中微⼦子设想

Neutrino



Fermi Theory
n

p

e�

⌫̄

GFp
2

The interaction behind beta decay remains 
unknown in Fermi’s time.

GF ⇠ 10�5 (GeV)�2

• Fermi theory of � decay (n ! pe�⌫̄) (1934)

– Loosely like QED, but zero range
(non-renormalizable) and non-diagonal
(charged current)

p
e�

⇥̄e

n

J†
µ Jµ

e� ⇥e

⇥e e�

Jµ J†
µ e� ⇥e

⇥e e�

⇥e e�

!
W �

p
e�

⇥̄e

n

g g !
W +

e� ⇥e

⇥e e�

g g

– Typeset by FoilTEX – 1

H ⇠ GFJ
†
µJ

µ

J†
µ ⇠ p̄�µn+⌫̄e�µe

� [n ! p, e� ! ⌫e]

Jµ ⇠ n̄�µp+ē�µ⌫e [p ! n, ⌫e ! e� ( ⇥ ! e�⌫̄e)]

GF ' 1.17⇥10�5 GeV�2 [Fermi constant]

PreSUSY 2011, Chicago (August, 2011) Paul Langacker (IAS)

Mfi = GF

⇥
 n�

µ p

⇤ ⇥
 e�

µ ⌫

⇤

Loosely like QED, but zero range and non-diagonal

1934

It took some 20 years of work to figure out  a 
detailed model fitting the observation.



In Fermi theory the transition probability per unit time is given by:

if J(leptons) = 0 |M|2 = 1 Fermi transition
if J(leptons) = 1 |M|2 = 3 Gamow-Teller transition

0

222
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T, E, EQ kinetic energies of proton, electron, antineutrino

0

0
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&&&
Energy and momentum
conservation

MeVmmmE epn 8.00 |�� 



Parity (reflection) Violation

Lee, Yang (1956)✓ � ⌧ puzzle (1950’s)

Need a pseudo-scalar to measure the parity violation effects.
~� · ~p

Parity conservation had been assumed, almost without question

Two particles with same mass, 
charge, spin, lifetime, 

but different decay modes and 
parity

✓+ ! ⇡+⇡0

⌧+ ! ⇡+⇡+⇡�, ⇡+⇡0⇡0

P = +1

P = �1



Parity Violation in Decay of 
Polarized Nuclei

202 8 Weak Interactions and Neutrinos

Fig. 8.11 Parity violation in ˇ decay. Initially (upper panel), the 60Co nucleus spin (indicated
by the arrow) with J D 5 is aligned by the presence of a magnetic field along the solenoid axis.
Two identical detectors are placed at the ends of the solenoid. In the middle panel, detector 2
counts events: they are electrons with spin aligned as shown. From momentum conservation, the
antineutrinos travel to detector 1 (which of course does not count anything); from the angular
momentum conservation, their spin is parallel to the direction of the momentum. The bottom
panel represents what you would see in a mirror, cutting the middle panel along the dashed
line on the right and approaching that side near the mirror. Unlike before, counter 2 now counts
nothing! In fact, taking into account the properties of angular momentum in the reflection, the
right-handed electrons should reach counter 2 because a left-handed antineutrino is going to
counter 1. However, the left-handed antineutrinos have never been observed, and counter 2 counts
nothing. The reflection in the mirror of this physical process gives a different result from the real
experiment!

in the following months and clearly showed that parity is not conserved in weak
interaction.

Here, we schematically describe the results obtained by Madame Wu and
collaborators on the decay of polarized cobalt nuclei. In Sect. 8.10, we shall analyze
the second experiment which involved the measurement of the ! ! " ! e decay
at the Nevis cyclotron at Columbia University by R. L. Garwin, L. M. Lederman
and M. Weinrich. The articles relating to both experiments were published in 1957
in the same issue of Physical Review Letters (Vol. 105, No. 4, pp. 1413–1414 and
1415–1417).

In the ˇ decay of 6027Co (see Fig. 8.11), a term !Co "pe that changes sign under the
application of the parity operator was considered ŒP.! Co " pe/ D !.! Co " pe/#;
it produces a pseudoscalar quantity. 60Co polarization can be achieved by an
experimental setup at a very low temperature (0.01 K). The nuclear magnetic
moments of 60Co, which are parallel to the nuclear spins, are oriented in a strong
magnetic field B. The emitted electrons were counted in the directions parallel and

www.Atibook.ir
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Fig. 8.12 Measured asymmetry of electrons emitted in 60
27Co decay in the Wu et al. experiment.

The upper counter measures different frequency counts when the magnetic field (denoted as H) is
aligned towards the bottom (upper curve) or top (lower curve). As time (abscissa) increases, the
Co sample warms up, the spins tend to lose alignment, and the asymmetry disappears

antiparallel to the nuclear magnetization: the two numbers were different, which
unambiguously demonstrated that parity is violated in WI.

The 60
27Co .J D 5/ decays into an excited state of 6028 N i

!.J D 4) through a pure
GT transition. The lifetime is seven and a half years, and the available energy is
E0 D 0.32 MeV

60
27Co

!
J D 5C

"
!60

28 N i
!!J D 4C

"
e"!e: (8.31)

From the angular momentum conservation law, the electron and antineutrino are
emitted with spin parallel to the 6027Co spin, oriented in the direction of the magnetic
field.

The intensity of the electrons emitted in the direction of the magnetic field
and in the opposite direction (Fig. 8.11) was measured using scintillation counters.
Counters 1 and 2 play a symmetric role: if Nature and its image in a mirror are the
same (parity conservation), counter 1 should measure the same rate as counter 2,
regardless of the orientation of the magnetic field (and thus of the orientation of the
cobalt nuclear spin). The measurements have shown that when the magnetic field is
inverted, the electron count changes. Electrons prefer to be emitted with momentum
in the opposite direction of the nuclear spin, and with the spin oriented in the same
direction of the nuclear spin. This corresponds to the same electron spin-momentum
assignment in nuclear decays of Fig. 8.8b. The right-left asymmetry in the electron
counts depends on the degree of the magnetization of the source (Fig. 8.12). The
intensity of the emitted electrons as a function of the angle " between the direction

www.Atibook.ir

Gamow-Teller transition~�
Co

· ~pe
Wu, et al 
PRL 105, 1414 
(1957)
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antiparallel to the nuclear magnetization: the two numbers were different, which
unambiguously demonstrated that parity is violated in WI.

The 60
27Co .J D 5/ decays into an excited state of 6028 N i

!.J D 4) through a pure
GT transition. The lifetime is seven and a half years, and the available energy is
E0 D 0.32 MeV

60
27Co

!
J D 5C

"
!60

28 N i
!!J D 4C

"
e"!e: (8.31)

From the angular momentum conservation law, the electron and antineutrino are
emitted with spin parallel to the 6027Co spin, oriented in the direction of the magnetic
field.

The intensity of the electrons emitted in the direction of the magnetic field
and in the opposite direction (Fig. 8.11) was measured using scintillation counters.
Counters 1 and 2 play a symmetric role: if Nature and its image in a mirror are the
same (parity conservation), counter 1 should measure the same rate as counter 2,
regardless of the orientation of the magnetic field (and thus of the orientation of the
cobalt nuclear spin). The measurements have shown that when the magnetic field is
inverted, the electron count changes. Electrons prefer to be emitted with momentum
in the opposite direction of the nuclear spin, and with the spin oriented in the same
direction of the nuclear spin. This corresponds to the same electron spin-momentum
assignment in nuclear decays of Fig. 8.8b. The right-left asymmetry in the electron
counts depends on the degree of the magnetization of the source (Fig. 8.12). The
intensity of the emitted electrons as a function of the angle " between the direction
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of electron emission and the polarization of the sample (emitted electron angular
distribution) has the form

I.!/ D 1C ˛! Co ! pe
Ee

D 1C ˛ ve
c

cos ! (8.32)

where pe; Ee are the momentum and energy of the electron, and !Co is the 60Co spin.
Data are consistent with ˛ D "1. The counts for the upward and downward 60Co
polarization are different and therefore parity is violated. In fact, in (8.32), under
inversion of coordinates (parity P transformation), the pseudoscalar term !Co ! pe
changes sign: P.! Co ! pe/ D "! Co ! pe .

This experiment showed for the first time that electrons are prevalently emitted
longitudinally polarized in the opposite direction of its momentum (the electron has
negative helicity, it is left-handed). The charged current weak processes involve left-
handed e! and right-handed eC. The helicity " (see Appendix A.4) is measured as
the net longitudinal polarization of a set of particles. Using (8.32), one has

" D IC " I!
IC C I!

D ˛ v
c

(8.33)

where IC ed I! are the relative intensities of the component with spin parallel and
antiparallel to the momentum p. The value of ˛ was found to be equal to "1 for e!

." D "v=c) and equal to C1 for eC ." D Cv=c/.

8.9 The Two-Component Neutrino Theory

For a massless neutrino, v D c and (8.33) implies that the particle must be
completely polarized, i.e., " D C1 or " D "1. An experiment performed by
M. Goldhaber et al. in 1958 demonstrated that the neutrino helicity is negative, i.e.,
the neutrino spin #$ is antiparallel to its momentum p$ : schematically, .p$ "+ #$/.
The antineutrino is right-handed .p$ "* #$/; for example, the spin pattern in
polarized neutron decay is

n "! p C e! C $e

* * *LH +RH

where LH means left-handed, i.e., with the spin antiparallel to the momentum
direction ."+/; RH stands for right-handed, which means that the spin and
momentum are in the same direction ."*/. As a result of many experiments, the
helicity assignment of leptons and antileptons is (see also Appendix A.4)

particle $e $e e! eC

helicity probability " 1 C 1 " v=c C v=c: (8.34)

www.Atibook.ir
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e� ⇤ = �ve/c ⇤ = +ve/ce+: :

T~0.01k

left-handed right-handed



Two-Component Neutrino Theory

Neutrino: Left-handed;    Anti-neutrino: Right-handed
Goldhaber et al (1958)
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The antineutrino is right-handed .p$ "* #$/; for example, the spin pattern in
polarized neutron decay is

n "! p C e! C $e

* * *LH +RH

where LH means left-handed, i.e., with the spin antiparallel to the momentum
direction ."+/; RH stands for right-handed, which means that the spin and
momentum are in the same direction ."*/. As a result of many experiments, the
helicity assignment of leptons and antileptons is (see also Appendix A.4)

particle $e $e e! eC

helicity probability " 1 C 1 " v=c C v=c: (8.34)

www.Atibook.ir

204 8 Weak Interactions and Neutrinos

of electron emission and the polarization of the sample (emitted electron angular
distribution) has the form

I.!/ D 1C ˛! Co ! pe
Ee

D 1C ˛ ve
c

cos ! (8.32)

where pe; Ee are the momentum and energy of the electron, and !Co is the 60Co spin.
Data are consistent with ˛ D "1. The counts for the upward and downward 60Co
polarization are different and therefore parity is violated. In fact, in (8.32), under
inversion of coordinates (parity P transformation), the pseudoscalar term !Co ! pe
changes sign: P.! Co ! pe/ D "! Co ! pe .

This experiment showed for the first time that electrons are prevalently emitted
longitudinally polarized in the opposite direction of its momentum (the electron has
negative helicity, it is left-handed). The charged current weak processes involve left-
handed e! and right-handed eC. The helicity " (see Appendix A.4) is measured as
the net longitudinal polarization of a set of particles. Using (8.32), one has

" D IC " I!
IC C I!

D ˛ v
c

(8.33)

where IC ed I! are the relative intensities of the component with spin parallel and
antiparallel to the momentum p. The value of ˛ was found to be equal to "1 for e!

." D "v=c) and equal to C1 for eC ." D Cv=c/.

8.9 The Two-Component Neutrino Theory

For a massless neutrino, v D c and (8.33) implies that the particle must be
completely polarized, i.e., " D C1 or " D "1. An experiment performed by
M. Goldhaber et al. in 1958 demonstrated that the neutrino helicity is negative, i.e.,
the neutrino spin #$ is antiparallel to its momentum p$ : schematically, .p$ "+ #$/.
The antineutrino is right-handed .p$ "* #$/; for example, the spin pattern in
polarized neutron decay is

n "! p C e! C $e

* * *LH +RH

where LH means left-handed, i.e., with the spin antiparallel to the momentum
direction ."+/; RH stands for right-handed, which means that the spin and
momentum are in the same direction ."*/. As a result of many experiments, the
helicity assignment of leptons and antileptons is (see also Appendix A.4)

particle $e $e e! eC

helicity probability " 1 C 1 " v=c C v=c: (8.34)

www.Atibook.ir

the next section the presence of the factor be, which is the speed of the electrons

divided by the speed of light.

Figure 7.9(b) shows the electron counting rates with the field direction upward

and downward, divided by the counting rate without polarisation. In the former

configuration the detectors count the electrons emitted at about 0!, in the latter at

about 180!. Both ratios decay following the curve of the polarisation. The fun-

damental observation is that the two rates are different: the electrons are emitted in

directions (almost) opposite to the field much more frequently than (almost) along

it. This was the experimental proof of parity violation. Moreover, the measurement

of a gave

a " #1 ð7:31Þ

which shows that the parity violation is, within the errors, maximal. If we assume

the interaction to be Vþ xA, the result is compatible with x¼# 1. Taking the

uncertainties of the measurement into account, the experiment gave

#1< x<# 0:7: ð7:32Þ

The conclusion of the analysis of the pion decay in Section 3.5 was that the space-

time structure of the charged-current weak interaction is V or A or any combination

of them. The Wu experiment chooses the combination V#A. We try to illustrate

the point in Fig. 7.10.

The thick arrows indicate the ‘directions’ of the spins; their lengths are such as to

satisfy the conservation of the third component of the angular momentum. The thin

arrows are the preferential directions of the motions. The result of the experiment is

that the preferential motion of the electron is opposite to the field, and consequently

of its spin. As the nuclei decay at rest, the preferential direction of the antineutrino

is opposite to that of the electron. Therefore, the antineutrino spin is in the pref-

erential direction of its velocity. The V#A structure of the charged-current weak

interaction implies that this behaviour is common to all fermions and to all anti-

fermions respectively. We have used imprecise language here; we shall make it

accurate in the next section.

5+
4+

1/2 1/2

νe e

Fig. 7.10. Schematic of the spin ‘directions’ in the decay

60Co JP ¼ 5þ
! "

* ! 60 Ni(( JP ¼ 4þ
! "

* þ e# þ !me:
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Charged Pion Decay
Garwin, Lederman, Weinrich, PRL 1415 (1957)
206 8 Weak Interactions and Neutrinos
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e+

νµ
u
d

PJ   =0+
H 

a b

Jπ+
P

=0–

Fig. 8.14 Feynman diagrams (a) for the !C ! "C#" and !C ! eC#e decays, and (b) for the
"C! eC#e#" decay

νµ

νµ

π+ π+µ+ µ+ νe νee+ e+

a b c

Fig. 8.15 Illustration of the momentum and spin of the particles in the decays (a) !C ! "C#",
(b) "C! eC#e#", and (c) !C! eC#e

decays: !C ! "C#", !C ! eC#e . The !C meson is made of ud quarks;
it annihilates into a virtual W C vector boson which then decays into "C#" or
eC#e. The momentum and spin assignments of the "C and of the #" in the !C

rest frame is shown in Fig. 8.15a. The #" and "C have equal momentum with
opposite directions: jp#" j D jp"C j D jpj. If #" is LH, that is, with helicity
$ D !1, its spin is antiparallel to the momentum, as shown in Fig. 8.15a. From
angular momentum conservation, also the "C must have negative helicity. In the
following "C ! eC#e#" decay in the "C rest frame, the momentum and spin
configurations must be as shown in Fig. 8.15b for the limit case where the #e and
#" are emitted in the same direction. The experiments carried out in 1957 verified
that the angular distribution of the positron is in agreement with that predicted
by the two-component neutrino theory with the spin configuration shown in
Fig. 8.15b.

In the following, we will study the ratio of branching ratios (see Sect. 4.5.2)

%
!
!C ! eC#e

"
=%
!
!C ! "C#"

"
; (8.36)

which gives important information on the mathematical structure of weak interac-
tion currents. On the basis of the Sargent rule (8.18), the decay ! ! e# should be
favored due to the larger energy available in the final state (m" " me). However,
the decay ! ! e#e is disfavored by a factor #104 compared to ! ! "#". The
reason is that the emitted charged lepton has, in both cases, the wrong helicity.
Neutrinos have negative helicity .$ D !1/ and antineutrinos have positive helicity
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V-A Theory
Feynman & Gell-man; Sudarshan, Marshak (1958)

(maximal violation of parity and charge conjugation)The Modern (V � A) Form of the Fermi Interaction
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H =
GFp
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J†

µJ
µ Jµ = J`

µ|{z}
leptonic

+ Jh
µ|{z}

hadronic

J`
µ = ē��µ

�
1 � �5

�
⌫e + µ̄�µ

�
1 � �5

�
⌫µ

= 2 [ēL�µ⌫eL + µ̄L�µ⌫µL]

•  L = PL = 1��5

2
 (vector - axial)

• GF ' 1.17 ⇥ 10�5 GeV�2 (Fermi constant)

• Can extend third family, neutrino masses

• Will display hadronic current later
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Semi-Leptonic Processes in the Fermi Theory
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• Hadronic current
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n cos ✓c + pion, strangeness, etc

• Quark form (p ⇠ uud, n ⇠ udd)
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P, C and CPSpace Reflection (P ), Charge Conjugation (C), and CP

• V � A ) maximal violation of P , C

– WCC acts of e�
L and e+

R (not on e�
R or e+

L)

–  L,R ⌘ 1⌥�5

2
 : spin opposite (along) momentum (helicity = ⌥1

2)

• Under space reflection (P ):

J`
µ ! ē��µ

�
1 + �5

�
⌫e + µ̄�µ

�
1 + �5

�
⌫µ

= 2 [ēR�
µ⌫eR + µ̄R�

µ⌫µR]

– i.e., J`
µL(t, ~x ) ! J`µ

R (t,�~x )

– P violated maximally

STIAS (January, 2011) Paul Langacker (IAS) 20
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P, C and CP
• Under charge conjugation (C):

J`
µ ! �⌫̄e�µ

�
1 + �5

�
e� � ⌫̄µ�µ

�
1 + �5

�
µ�

– i.e., J`
µL ! �J`†

µR

– C violated maximally

– However, H =
R
d3~xH invariant under CP

– CP can be violated by observable phases in coe↵ficients for 3
families
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‘V-A’ Theory: SM Picture

same in the two cases; the only difference is that in one case an s quark decays, in

the other a d quark.

Universality would require their matrix elements to be

M / GF ! !meLcaeeL ! !dLcauL M / GF ! !meLcaeeL ! !sLcauL ð7:67Þ

with the same coupling constant.

As a second example consider the DS¼ 0 decay of the pion

p% ! !%!m! ð7:68Þ

and the similar jDSj¼ 1 decay of the K meson

K% ! !%!m!: ð7:69Þ

Figure 7.18 shows their quark diagrams. Again the only difference is the decaying

quark: s or d.

The ‘universal’ matrix elements would be

M / GF ! !!Lcam!L ! !dLcauL M / GF ! !!Lcam!L ! !sLcauL: ð7:70Þ

Let us focus on the meson case, which is simpler. The measured partial decay

rates are

C p ! !mð Þ ¼ BR p ! !mð Þ=spþ ¼ 1= 2:6 · 10%8
! "

s%1

C K ! !mð Þ ¼ BR K ! !mð Þ=sKþ ¼ 0:64= 1:24· 10%8
! "

s%1
ð7:71Þ

giving the ratio
C K ! !mð Þ=C p ! !mð Þ ¼ 1:34: ð7:72Þ

However, if the coupling constants of the !us pair and of the !ud pair to the W are

the same as in (7.70), the ratio of the decay rates is equal to the ratio of the phase

Λ{ } { }d d d d
u u u u

s du u
p pn

e–
e–

W – W –

νe νe

Fig. 7.17. Strangeness-changing and non-changing beta decays.

K– π– {
u u

s

µ–
µ–

ν µ ν µ

W–
W–

d

 {

Fig. 7.18. Strangeness-changing and non-changing meson decays.
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Semi-Leptonic Processes in the Fermi Theory
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µ = ē��µ

�
1 � �5

�
⌫e + µ̄�µ

�
1 � �5

�
⌫µ

• Hadronic current

Jh†
µ ⇠ p̄�µ

�
1 � �5

�
n cos ✓c + pion, strangeness, etc

• Quark form (p ⇠ uud, n ⇠ udd)

Jh†
µ = ū�µ
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Fermi Theory Violates 
Unitarity at High Energy• Fermi theory violates unitarity at high energy (non-renormalizable)
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Intermediate Vector Boson Theory
Yukawa (1935); Schwinger (1957)• Intermediate vector boson theory (Yukawa, 1935; Schwinger, 1957)
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Glashow model (1961) (W,Z,gamma, but no mass term)



Lepton universality

Looking at (7.12) we see that the determination of the Fermi constant requires an

accurate measurement of the muon lifetime and an extremely precise measurement

of its mass. The present value is

GF= !hcð Þ3¼ 1:166 37$ 0:000 01· 10%5 GeV%2 ½9 ppm': ð7:13Þ

Question 7.1 Evaluate the distance between the vertices in Fig. 7.4.

Lepton universality

The charged weak interaction is universal, and is equal for all fermions. This

property is evident for leptons, but not at all for quarks. Let us see a few examples.

The e-l universality can be checked on the two leptonic decays of the s

sþ ! eþ!msme sþ ! !þ!msm!: ð7:14Þ

Let us neglect, for simplicity, the electron and muon masses. As we are searching

for possible differences, let us indicate the weak charges by different symbols, ge,

gl and gs (Fig. 7.5).

The two partial widths are, not mentioning constants that are the same for both
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where the last factor is the ratio of the phase space volumes, which can be

precisely calculated. Using the measured quantities (Yao et al. 2006) we have
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which gives

g!=ge ¼ 1:001" 0:002: ð7:18Þ

The l-s universality can be checked from the muon and tau beta decay rates

(Fig. 7.6). Taking into account that the l decays 100% of the time in this channel,

we have

C !% ! e%!mem!
! "

C s% ! e%!memsð Þ ¼ 1

s!

ss
BR s% ! e%!memsð Þ : ð7:19Þ

On the other hand the theoretical ratio is

C !% ! e%!mem!
! "

C s% ! e%!memsð Þ ¼
g2eg

2
!

g2eg
2
s

m5
!

m5
s

q!
qs

¼
g2!
g2s

m5
!

m5
s

q!
qs

ð7:20Þ

and we have

g2!
g2s

¼ 1

s!

ss
BR s% ! e%!memsð Þ

m5
s

m5
!

qs
q!

: ð7:21Þ

In conclusion we need to measure the two lifetimes, the two masses and the

branching ratio BR s% ! e%!memsð Þ. The measurements give

g!=gs ¼ 1:001" 0:003: ð7:22Þ

Consider now another important, purely leptonic process, sometimes called

‘quasi-elastic’ scattering namely

m! þ e% ! !% þ me: ð7:23Þ

The corresponding diagram is shown in Fig. 7.7(a). At values of %t much smaller

than MW (t is the four-momentum transfer), the diagram is well approximated by

the four-fermion point interaction in Fig. 7.7(b).

The centre of mass energy squared is s ¼ m2
e þ 2meEm ' 2meEm, where Em is

the neutrino energy in the laboratory frame. A consequence of the smallness

of the electron mass is that Hs(MW at all the available neutrino beam energies.

m– e–
e–

νe
νe

t–

νt

W –

gt

νm

W –

gm

ge ge

Fig. 7.6. Beta decay of the l and the s.
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Lepton universality
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Charged current is universal in lepton sector 
but not in quark sector

same in the two cases; the only difference is that in one case an s quark decays, in

the other a d quark.

Universality would require their matrix elements to be

M / GF ! !meLcaeeL ! !dLcauL M / GF ! !meLcaeeL ! !sLcauL ð7:67Þ

with the same coupling constant.

As a second example consider the DS¼ 0 decay of the pion

p% ! !%!m! ð7:68Þ

and the similar jDSj¼ 1 decay of the K meson

K% ! !%!m!: ð7:69Þ

Figure 7.18 shows their quark diagrams. Again the only difference is the decaying

quark: s or d.

The ‘universal’ matrix elements would be

M / GF ! !!Lcam!L ! !dLcauL M / GF ! !!Lcam!L ! !sLcauL: ð7:70Þ

Let us focus on the meson case, which is simpler. The measured partial decay

rates are

C p ! !mð Þ ¼ BR p ! !mð Þ=spþ ¼ 1= 2:6 · 10%8
! "

s%1

C K ! !mð Þ ¼ BR K ! !mð Þ=sKþ ¼ 0:64= 1:24· 10%8
! "

s%1
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Cabibbo Mixing

Introducing a mixing 

space volumes, namely

C K ! !mð Þ
C p ! !mð Þ

¼
mK 1$ m!=mK

! "2h i2

mp 1$ m!=mp
! "2h i2 ¼ 8:06: ð7:73Þ

Actually, the situation is not so simple, because the quarks decay inside the

hadrons. We discussed in Section 3.6, for the pion decay, how the effects of the

strong interaction can be factorised into the pion decay constant fp. The same can

be done for the K meson decay with another decay constant fK. These factors

cannot be measured directly and are very difficult to calculate, but we can say

something about their ratio, which is what we need. Actually if the SU(3)f
symmetry were exact, we would have fK

#
fp ¼ 1. It can be shown that the

observed symmetry breaking implies fK
#
fp>1. Therefore, the effect of the strong

interactions is to worsen the disagreement between the experiment and the uni-

versality. The ratio between the semileptonic decay rates of the K and the pion is

an order of magnitude smaller than expected.

The analysis of the semileptonic decays of the nucleons and the hyperons, with

and without change of strangeness, must also take into account the hadronic

structure and its approximate SU(3)f symmetry. We only say here that the con-

clusion is that, again, the jDSj¼ 1 decays are suppressed by about an order of

magnitude compared to the DS¼ 0 ones. Notice that it is the change in strangeness

that matters, not the strangeness itself. For example the decay "% !Ke%m is not
suppressed.

Another problem is that the value of the coupling constant in the beta decay of

the neutron is somewhat smaller than that of the muon decay.

All of this is explained if we assume, like Cabibbo, that the down-type quarks

entering the CC weak interactions are not d and s, but, say, d0 and s0. Each (d, s)

and (d0, s0) pair is an ortho-normal base. The latter is obtained from the former by

the rotation of a certain angle, called the ‘Cabibbo angle’ hC. This is shown

schematically in Fig. 7.19. In a formula, the down-type quark that couples to the

W is a quantum superposition of d and s, namely the state

d0 ¼ d cos hC þ s sin hC: ð7:74Þ

uC d

s

d!

s!

Fig. 7.19. The Cabibbo rotation.
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Indeed, the coefficients of d and s must satisfy the normalisation condition,

namely the sum of their square must be one. Therefore, they can be thought of as

the sine and the cosine of an angle.

In the Cabibbo theory there is only one matrix element for (7.65) and (7.66) in

which d0 appears, namely

M / GF ! !eLcameL ! !d0Lc
auL: ð7:75Þ

Using (7.74) we obtain for the two decays

M / GF cos hC ! !eLcameL ! !dLcauL for DS ¼ 0

M / GF sin hC ! !eLcameL ! !sLcauL for DS ¼ 1:
ð7:76Þ

Since the angle hC is small, the jDSj¼ 1 transition probabilities, which are pro-

portional to sin2hC are smaller than the DS¼ 0 ones that have the factor cos2hC by

about an order of magnitude. Moreover, the constant of the neutron decay is

G2
F cos2 hC, which is somewhat smaller than the pure G2

F of the muon decay.

If the theory is correct, a single value of the Cabibbo angle must agree with

the rates of all the semileptonic decays, of the nuclei, of the neutron, of the

hyperons and of the strange and non-strange mesons. Both experimental and

theoretical work is needed for this verification. Experiments must measure

decay rates and other relevant kinematic quantities with high accuracy. The-

oretical calculations must consider the fact that the elementary processes at the

quark level, such as those shown in Figs. 7.17 and 7.18, take place inside

hadrons. Consequently, the transition probabilities are not given simply by the

matrix elements in (7.76). The evaluation of the interfering strong interaction

effects is not easy because the QCD coupling constant as is large in the relevant

momentum transfer region.

We shall discuss the measurement of sin hC and cos hC in Section 7.9 on two

examples. We mention here that all the measurements give consistent results. The

values are

hC ¼ 12:9% cos hC ¼ 0:974 sin hC ¼ 0:221: ð7:77Þ

In conclusion, the CC weak interactions are also universal in the quark sector,

provided that the ‘quark mixing’ phenomenon is taken into account.

7.8 The Glashow, Iliopoulos and Maiani mechanism

An immediate consequence of the Cabibbo theory is the presence, in the

Lagrangian, of the term

!d0Lcad
0
L ¼ cos2hC!dLcadL þ sin2hC!sLcasL þ cos hC sin hC !dLcasL þ !sLcadL½ ( ð7:78Þ
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The charged weak interaction are also universal  
in quark sector, provided quark-mixing.
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Drawback of Cabibbo mixing
Flavor changing neutral current
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which describes neutral-current transitions. In particular, the last term implies

neutral currents that change strangeness (SCNC, strangeness-changing neutral

currents) because they connect s and d quarks. However, the corresponding

physical processes are strongly suppressed. For example, the two NC and CC

decays

Kþ ! pþ þ me þ !me Kþ ! p0 þ me þ eþ ð7:79Þ

should proceed with similar probabilities, as understood from the diagrams shown

in Fig. 7.20.

On the contrary, the former decay is strongly suppressed, the measured values

of the branching ratios (Yao et al. 2006) being

BR Kþ ! pþm!mð Þ ¼ 1:5þ1:3
%0:9

! "
· 10%10

BR Kþ ! p0eþme
! "

¼ 4:98& 0:07ð Þ · 10%2:
ð7:80Þ

S. Glashow, I. Iliopoulos and L. Maiani observed in 1970 (Glashow et al. 1970)

that the d0 and u states can be thought of as the members of the doublet u
d0

! "
. Now,

they thought, a fourth quark might exist, the ‘charm’ c as the missing partner of

s0, to form a second similar doublet c
s0

! "
.

Since s0 is orthogonal to d0 we have

s0 ¼ %d sin hC þ s cos hC: ð7:81Þ

We anticipated this situation in Fig. 7.19. Clearly, the relationship between the

two bases is the rotation

d0

s0

# $
¼ cos hC sin hC

% sin hC cos hC

# $
d
s

# $
: ð7:82Þ

From the historical point of view this was the prediction of a new flavour. We saw

in Section 4.9 how it was discovered.

Let us now see how the ‘GIM’ mechanism succeeds in suppressing the

strangeness-changing neutral currents. In addition to the terms (7.78) we now

u

u π0
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e+W+

u

s

d

u π+

K+
Z

u

s

νeνe

νe

Fig. 7.20. Strangeness-changing charged- and neutral-current decays.
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Let us now see how the ‘GIM’ mechanism succeeds in suppressing the

strangeness-changing neutral currents. In addition to the terms (7.78) we now
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Fig. 7.20. Strangeness-changing charged- and neutral-current decays.
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have

!s0Lcas
0
L ¼ sin2hC!dLcadL þ cos2hC!sLcasL # cos hC sin hC !dLcasL þ !sLcadL½ %: ð7:83Þ

Summing the two, we obtain

!s0Lcas
0
L þ !d0Lcad

0
L ¼ !dLcadL þ !sLcasL: ð7:84Þ

The SCNC cancel out. However, a NC term remains in the Lagrangian, namely

the NC between equal quarks or, in other words, the strangeness-conserving

neutral current. As we shall see in Section 7.10 the corresponding physical

processes were indeed discovered, in 1973. We observe here that the Cabibbo

rotation is irrelevant for the NC term. In other words this term is the same in the

two bases.

7.9 The quark mixing matrix

The GIM mechanism explains the suppression of the SCNC in the presence of

two families. Later on, the third family with its two additional quark flavours

was discovered, as we have seen. It was also found that the flavour-changing

neutral currents (FCNC) for all the flavours, not only for strangeness, are

suppressed. Therefore, we need to generalise the concepts of the preceding

sections.

Equation (7.82) is a transformation between two orthogonal bases. The doublet
d
s

! "
is the base of the down-type quarks with definite mass. These are the states,

let us say, that would be stationary if they could be free. The doublet ðd0s0Þ is the
base of down-type quarks that are the weak interaction eigenstates, namely the

states produced by such interaction. The two bases are connected by a unitary

transformation that we now call V, to develop a formalism suitable for general-

isation to three families. The elements of V are real in the two-family case, as we

shall soon show. We rewrite (7.82) as

d0

s0

# $
¼ Vud Vus

Vcd Vcs

# $
d
s

# $
¼ cos hC sin hC

# sin hC cos hC

# $
d
s

# $
: ð7:85Þ

The generalisation to three families was done by M. Kobaiashi and

K. Maskawa in 1973 (Kobaiashi & Maskawa 1973). The quark mixing transfor-

mation is

d0

s0

b0

0

@

1

A ¼
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

0

@

1

A
d
s
b

0

@

1

A: ð7:86Þ
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Flavor changing neutral currents cancel out, 
but Flavor conserving neutral currents remains.

Indeed, the coefficients of d and s must satisfy the normalisation condition,

namely the sum of their square must be one. Therefore, they can be thought of as

the sine and the cosine of an angle.

In the Cabibbo theory there is only one matrix element for (7.65) and (7.66) in

which d0 appears, namely

M / GF ! !eLcameL ! !d0Lc
auL: ð7:75Þ

Using (7.74) we obtain for the two decays

M / GF cos hC ! !eLcameL ! !dLcauL for DS ¼ 0

M / GF sin hC ! !eLcameL ! !sLcauL for DS ¼ 1:
ð7:76Þ

Since the angle hC is small, the jDSj¼ 1 transition probabilities, which are pro-

portional to sin2hC are smaller than the DS¼ 0 ones that have the factor cos2hC by

about an order of magnitude. Moreover, the constant of the neutron decay is

G2
F cos2 hC, which is somewhat smaller than the pure G2

F of the muon decay.

If the theory is correct, a single value of the Cabibbo angle must agree with

the rates of all the semileptonic decays, of the nuclei, of the neutron, of the

hyperons and of the strange and non-strange mesons. Both experimental and

theoretical work is needed for this verification. Experiments must measure

decay rates and other relevant kinematic quantities with high accuracy. The-

oretical calculations must consider the fact that the elementary processes at the

quark level, such as those shown in Figs. 7.17 and 7.18, take place inside

hadrons. Consequently, the transition probabilities are not given simply by the

matrix elements in (7.76). The evaluation of the interfering strong interaction

effects is not easy because the QCD coupling constant as is large in the relevant

momentum transfer region.

We shall discuss the measurement of sin hC and cos hC in Section 7.9 on two

examples. We mention here that all the measurements give consistent results. The

values are

hC ¼ 12:9% cos hC ¼ 0:974 sin hC ¼ 0:221: ð7:77Þ

In conclusion, the CC weak interactions are also universal in the quark sector,

provided that the ‘quark mixing’ phenomenon is taken into account.

7.8 The Glashow, Iliopoulos and Maiani mechanism

An immediate consequence of the Cabibbo theory is the presence, in the

Lagrangian, of the term

!d0Lcad
0
L ¼ cos2hC!dLcadL þ sin2hC!sLcasL þ cos hC sin hC !dLcasL þ !sLcadL½ ( ð7:78Þ
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Gauge Theories
Standard Model is remarkably successful 

gauge theory of the microscopic interactions



Symmetry
• A symmetry follows from the assumption that a 

certain quantity is not measurable.  
• That implies the existence of conserved quantities.

~p
E
~L = ~r ⇥ ~p

T
P

C

1) 不可观测
⽆无法观测的物理量
绝对位置   	


绝对时间	

绝对⽅方位	

绝对左右	

绝对未来	

绝对电荷

                                        ——   Noether’s theorem

2) ⽆无法区分
⼀一个物体变换为另⼀一个物体
整体对称性：同位旋	

时空对称性 等价性

3) ⽆无序



Quantum Mechanics
• Group operations represented by unitary operators (   ) in 

a linear vector space of state vector 
u

|↵i
vector transformation: |↵i ! |↵0i = u |↵i
operator transformation: ✓ ! ✓0 = u✓u�1

• If system is symmetric under group, [H,u] = 0

• Of particular interest are symmetry groups with representation like

u(✏) = e�i
P

j ✏jQj

• Connection through ‘charge’ & conserved ‘current’

Q ⌘
Z

d

3
xj

0(x) @µj
µ(x) = 0

infinitesimal 
parameters

Generators of the group 
& operators having quantum  

#’s as eigenvalues 



Quantum Field Theory
          is an operator
�(x)

� ! �0 = u�u�1

= (1� i
X

j

✏jQj)�(1 + i
X

j

✏jQj)

= · · · = �+ i

X

j

✏

j [Qj
,�(x)]

so [Qj
,�(x)] = 0 symmetry conservation 

law 
Note: often

u�u

�1
= exp(i

X

j

✏

j
q

j
)�(x)

Qjeigenvalues of



Internal Symmetry
• Symmetries whose transformation parameters do 

not affect the point of space and time x 

• It is more natural in QM and QFT. For example, the 
phase of the wave function. Equation of Motion 
(Dirac or Schrodinger), normalization condition are 
invariant under the transformation: 

!

• It implies the conservation of the probability current.

 (x) ! e

i✓ (x)



Heisenberg Isospin Theory 
• Assume the strong interaction are invariant under a 

group of SU(2) transformation in which the proton 
and neutron form a doublet N(x)

tury we were led to consider two abstractions, each one of which has had a
profound influence in our way of thinking the fundamental interactions. Re-
versing the chronological order, we shall introduce first the idea of internal
symmetries and, second, that of local or gauge symmetries.

3.2 Internal symmetries

We call internal symmetries those whose transformation parameters do not
affect the point of space and time x. The concept of such symmetries can
be presented already in classical physics, but it becomes natural in quantum
mechanics and quantum field theory. The simplest example is the phase of
the wave function. We know that it is not a measurable quantity, so the
theory must be invariant under a change of phase. This is true for both
relativistic or non-relativistic quantum mechanics. The equations of motion
(Dirac or Schrödinger), as well as the normalisation condition, are invariant
under the transformation:

Ψ(x) → eiθΨ(x) (6)

The transformation leaves the space-time point invariant, so it is an in-
ternal symmetry. Through Noether’s theorem, invariance under (6) implies
the conservation of the probability current.

The phase transformation (6) corresponds to the Abelian group U(1). In
1932 Werner Heisenberg enlarged the concept to a non-Abelian symmetry
with the introduction of isospin. The assumption is that strong interactions
are invariant under a group of SU(2) transformations in which the proton
and the neutron form a doublet N(x):

N(x) =

(

p(x)
n(x)

)

; N(x) → eiτ⃗ ·θ⃗N(x) (7)

where τ⃗ are proportional to the Pauli matrices and θ⃗ are the three angles
of a general rotation in a three dimensional Euclidean space. Again, the
transformations do not apply on the points of ordinary space.

Heisenberg’s iso-space is three dimensional, isomorphic to our physical
space. With the discovery of new internal symmetries the idea was gen-
eralised to multi-dimensional internal spaces. The space of Physics, i.e.
the space in which all symmetry transformations apply, became an abstract
mathematical concept with non-trivial geometrical and topological proper-
ties. Only a part of it, the three-dimensional Euclidean space, is directly
accessible to our senses.

7

~⌧ are proportional to Pauli matrices

~✓ are the three angles of a general rotation  
in a three dimensional Euclidean space



Global Symmetry

x

y

z

x’

y’

z’

A

a

x x + a

a

A’

Figure 1: A space translation by a constant vector a⃗

3.3 Gauge symmetries

The concept of a local, or gauge, symmetry was introduced by Albert Ein-
stein in his quest for the theory of General Relativity1. Let us come back to
the example of space translations, as shown in Figure 1.

The figure shows that, if A is the trajectory of a free particle in the
(x,y,z) system, its image, A’, is also a possible trajectory of a free particle
in the new system. The dynamics of free particles is invariant under space
translations by a constant vector. It is a global invariance, in the sense that
the parameter a⃗ is independent of the space-time point x. Is it possible to
extend this invariance to a local one, namely one in which a⃗ is replaced by
an arbitrary function of x; a⃗(x)? One calls usually the transformations in
which the parameters are functions of the space-time point x gauge transfor-
mations2. There may be various, essentially aesthetic, reasons for which one
may wish to extend a global invariance to a gauge one. In physical terms,
one may argue that the formalism should allow for a local definition of the
origin of the coordinate system, since the latter is an unobservable quantity.
From the mathematical point of view local transformations produce a much
richer and more interesting structure. Whichever one’s motivations may be,
physical or mathematical, it is clear that the free particle dynamics is not
invariant under translations in which a⃗ is replaced by a⃗(x). This is shown
schematically in Figure 2.

1It is also present in classical electrodynamics if one considers the invariance under
the change of the vector potential Aµ(x) → Aµ(x)− ∂µθ(x) with θ an arbitrary function,
but before the introduction of quantum mechanics, this aspect of the symmetry was not
emphasised.

2This strange terminology is due to Hermann Weyl. In 1918 he attempted to enlarge
diffeomorphisms to local scale transformations and he called them, correctly, gauge trans-

formations. The attempt was unsuccessful, but, when in 1929 he developed the theory for
the Dirac electron, although the theory is no more scale invariant, he still used the term
gauge invariance, a term which has survived ever since.

8

A is trajectory of a free particle in the (x,y,z) system 
A’ is also a possible trajectory of a free particle  
        in the new system 
The dynamics of free particles is invariant under space 

translations by a constant vector



Gauge Transformation
The transformation parameters are functions of the 
space-time point x

A free particle dynamics is not invariant under translations 
in which    is replaced by        .~a

~a(x)

x

y

z

x’

y’

z’

A

a

x x + a (x,t)

A’’

Figure 2: A space translation by a vector a⃗(x)

We see that no free particle, in its right minds, would follow the trajec-
tory A”. This means that, for A” to be a trajectory, the particle must be
subject to external forces. Can we determine these forces? The question
sounds purely geometrical without any obvious physical meaning, so we ex-
pect a mathematical answer with no interest for Physics. The great surprise
is that the resulting theory which is invariant under local translations turns
out to be Classical General Relativity, one of the four fundamental forces
in Nature. Gravitational interactions have such a geometric origin. In fact,
the mathematical formulation of Einstein’s original motivation to extend the
Principle of Equivalence to accelerated frames, is precisely the requirement
of local invariance. Historically, many mathematical techniques which are
used in today’s gauge theories were developed in the framework of General
Relativity.

The gravitational forces are not the only ones which have a geometrical
origin. Let us come back to the example of the quantum mechanical phase.
It is clear that neither the Dirac nor the Schrödinger equation are invariant
under a local change of phase θ(x). To be precise, let us consider the free
Dirac Lagrangian:

L = Ψ̄(x)(i∂/ −m)Ψ(x) (8)

It is not invariant under the transformation:

Ψ(x) → eiθ(x)Ψ(x) (9)

The reason is the presence of the derivative term in (8) which gives rise
to a term proportional to ∂µθ(x). In order to restore invariance, one must
modify (8), in which case it will no longer describe a free Dirac field; invari-
ance under gauge transformations leads to the introduction of interactions.
Both physicists and mathematicians know the answer to the particular case

9

For A’’ to be a trajectory, the particle must be subject to 
external forces



Weyl’s Gauge 
Transformation

• Soon after GR was written by Einstein, Weyl 
proposed a modification …
He added invariance with respect to 

a)

b)

g

0
µ⌫ = �(x)gµ⌫

A

0
µ = Aµ � @�(x)

@x

µ

same         phase
�(x)

b) is the regular ambiguity required of EM potentials
a) is weird ds

2 = gµ⌫dx
µ
dx

⌫ ! �ds

2

Lengths are  
re-‘gauged’



Weyl’s Gauge Transformation
• suggests an invariance even though space & time 

can change over all space and time 

• the mediator which holds the space-time structure 
together would be the electromagnetic field

An early attempt to unify gravitation with electromagnetism

The brilliant idea did not work but the name stuck.

In 1927 London revived the idea … but the symmetry isn’t 
the scale of space-time, rather the phase of the wave function. 



Symmetry= Force
• Neither Dirac nor Schrodinger equation are 

invariant under a local change of phase 
✓(x)

Free Dirac Lagrangian 
!
!
is not invariant under the transformation
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@µ✓(x)

In order to restore invariance, we must modify free 
Dirac Lagrangian such that it is no longer describe a 
free Dirac Field. 
    Invariance under gauge symmetry 

leads to the introduction of interactions.



QED Interaction
• Local U(1) symmetries

 (x) !  

0(x) = e

i✓(x)q
 (x)

u(✓) = ei✓(x)Q

L( ) ! L( 0) = e

�i✓(x)q
 ̄(x) [i�µ@

µ

�m] ei✓(x)q (x)

=  ̄(x) [i�µ@µ �m] (x)� q@µ✓(x) ̄(x)�
µ
 (x)

6= L( )

Derivative term causes trouble  —> define a new divergence  
                                     operator to cancel the unwanted term!

Dµ ⌘ @µ +Xµ

as-yet unnamed vector operator



QED Interaction
• The goal is to get the gradient term to transform simply

(D
µ

 ) ! (D
µ

 )0 = eiq✓(x) (D
µ

 )

Start out with
L =  ̄(x) [i�µDµ �m] (x)

=  ̄(x) [i�µ@µ + i�

µ
Xµ �m] (x)

Transform  !  0

L( ) ! L( 0) =  ̄

0(x) {i�µ [@µ +Xµ � iq@µ✓(x)]�m} 0(x)

Still not right!
One must simultaneously transform

Xµ ! X

0
µ = Xµ � iq@µ✓(x) Bingo!



QED Interaction
• Denote                         so the gradient looks like          Xµ ⌘ iqAµ(x)

Dµ ⌘ @µ + iqAµ

and total transformation necessary to leave     along is L

 (x) !  

0(x) = e

iQ✓(x)
 (x)

Aµ(x) ! A

0
µ(x) = Aµ(x)� @µ✓(x)

• Add free gauge field 
L =  ̄ (i�µ@µ �m)� qAµ ̄�

µ � 1

4
Fµ⌫F

µ⌫

free  interaction free Aµ

Fµ⌫ = @µA⌫ � @⌫Aµ

gauge function



Utilizing Symmetry 
If invariance with respect to local U(1) symmetry is of 
paramount important …

—->  one is forced to invent the photon

Demand of a symmetry …  Get new fields AND dynamics!!

Other symmetries —>  New spin 1, 2, .. fields?
The intriguing research project in 1954 of  
Yang & Mills … and independently by Shaw
Local SU(2) symmetry —> isotriplet of spin-1 fields



Global versus Local
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Global U(1) gauge
transformation

Local U(1) gauge
transformation

Fig. 7.4 Global and local gauge transformations. Left panel: in a global
gauge transformation, the quantum phase change is the same at all space-
time points. Right panel: in a local gauge transformation, the quantum
phase can have arbitrary independent values at different space-time points,
but it is correlated with the gauge field, whose gauge function (position on
its fiber) keeps track of the phase.

For example, suppose there were no electromagnetic coupling.
Then, we are free to call the electron charge negative or positive
on Earth, but the same convention must be adhered to on Mars.

With local gauge invariance, which requires the presence of a
gauge field, the convention for charge becomes a purely local mat-
ter. An observer on Mars can define an electron as positive, while
on Earth we continue to regard it as negative. When the Mars ob-
server sends us an electron, it interacts with ours correctly, because
the interaction occurs through the gauge field, which keeps track of
the local protocols.

Local gauge invariance frees us from the last vestige of “action at
a distance”.



Non-Abelian Gauge Theory
L =  ̄(i�µ@µ �m) 

Now                       as bases for SU(2) operators =

✓
 1

 2

◆

Define a new covariant derivative
Dµ ⌘ @µ + ig ~Wµ · ~⌧

2

L =  ̄(i�µ@µ �m) � g

2
 ̄�µ · ~Wµ � 1

4
~fµ⌫ · ~fµ⌫





Non-Abelian Gauge Theory
L =  ̄(i�µ@µ �m) � g

2
 ̄�µ · ~Wµ � 1

4
~fµ⌫ · ~fµ⌫

• Gauge invariance implies:

– N (apparently) massless gauge
bosons Ai

µ

– Specified interactions (up to gauge
coupling g, group, representations),
including self interactions

Ai
µ

⇤b

⇤a

�igLi
ab�

µ

– Typeset by FoilTEX – 1

g g2

– Typeset by FoilTEX – 1

• Generalize to other groups, representations, chiral (L 6= R)

– Chiral Projections:  L(R)

⌘ 1

2

(1 ⌥ �
5

) (independent fields)

(Chirality = helicity up to O(m/E))

STIAS (January, 2011) Paul Langacker (IAS) 63



SU(2): Global versus Local
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Global SU(2) gauge
transformation

Local SU(2) gauge
transformation

Fig. 9.3 In a global SU(2) gauge transformation, symbolic gyroscopes
attached to points of space-time rotate in unision. In a local transformation,
they rotate independently, but three gauge fields undergo correlated gauge
transformations. The latter is indicated by the positions of three beads on
a fiber. Compare with Fig. 7.4.

not gauge invariant. In fact, there is no gauge-invariant field tensor.
The next best thing is to consider the “gauge covariant” quantity

Fµν = ∂µAµ − ∂νAµ + ig [Aµ, Aµ] ,

where Fµν = Fµν
a La. By gauge covariant we mean that it transforms

according to the adjoint representation of the gauge group. This turns
out to be the correct choice for field tensor.

Yang had searched for this tensor without success since his student
days in 1947. As he recalls3:

I was clearly focusing on a very important problem. Unfortu-
nately the mathematical calculations always ended in more and
more complicated formulas and total frustration. It was only in
1953–1954, when Bob Mills and I revisited the problem and tried
adding quadratic terms to the field strength Fµν that an elegant
theory emerged. For Mills and me it was many years later that
we realized the quadratic terms were in fact natural from the
mathematical point of view.

3C. N. Yang, in 50 Years of Yang–Mills Theory, ed. G. ’t Hooft (World Scientific,
Singapore, 2005), p. 7.



W and Z discovery
• UA1 experiment (1976, Rubbia, Cline, McIntyre)

large number of antiprotons had to be produced, concentrated in a dense beam

and collided with an intense proton beam. Let us evaluate the necessary

luminosity.

We can think of the proton and the antiprotons as two groups of partons,

quarks, antiquarks and gluons, travelling in parallel directions, as shown in

Fig. 9.11, neglecting, in a first approximation, the transverse momentum of the

partons. Let us consider the valence quarks and antiquarks respectively. They

carry the largest fraction of the total momentum, about 1/6 on average, with a

rather broad distribution (see Fig. 6.14). It is important to notice that the width of

the Hŝ distribution is much larger than the widths of the W and Z resonances.

Therefore, the W and Z production cross sections grow with collision energy

because the largerHs the greater the probability of finding a quark–antiquark pair

with Hŝ close to resonance. In conclusion, the higher the energy the better.

The initial design centre of mass energy at CERN was Hs¼ 540 GeV, to reach

630 GeV later on.

The calculation of the proton–antiproton cross sections starts from those at the

quark level and takes into account the quark distribution functions and the effects

of the colour field. The evaluation made in the design phase gave the values

r !pp ! W ! emeð Þ $ 530 pb r !pp ! Z ! eeð Þ $ 35 pb: ð9:62Þ

To be precise, both the valence and the sea quarks contribute to the process,

however at Hs¼ 540 GeV the average momentum fraction at the W and Z

resonances is hxiW
!p

s $ 0:15. Therefore, the process is dominated by the

valence quarks, while the sea quarks have momentum fractions that are too small.

We thus know that the annihilating quark is in the proton, the antiquark in the

antiproton. This information is lost at higher collision energies.

As we have mentioned in Section 1.10, the stochastic cooling technique had

been developed at CERN to increase the density of particles within bunches at the

collision point. Starting from this experience, an advanced accelerator physics

programme was launched, under the guidance of S. Van der Meer, which made it
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Fig. 9.11. W and Z production in a !pp collider. Upper left indices label the
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large number of antiprotons had to be produced, concentrated in a dense beam

and collided with an intense proton beam. Let us evaluate the necessary

luminosity.

We can think of the proton and the antiprotons as two groups of partons,

quarks, antiquarks and gluons, travelling in parallel directions, as shown in

Fig. 9.11, neglecting, in a first approximation, the transverse momentum of the

partons. Let us consider the valence quarks and antiquarks respectively. They

carry the largest fraction of the total momentum, about 1/6 on average, with a

rather broad distribution (see Fig. 6.14). It is important to notice that the width of

the Hŝ distribution is much larger than the widths of the W and Z resonances.

Therefore, the W and Z production cross sections grow with collision energy

because the largerHs the greater the probability of finding a quark–antiquark pair

with Hŝ close to resonance. In conclusion, the higher the energy the better.

The initial design centre of mass energy at CERN was Hs¼ 540 GeV, to reach

630 GeV later on.

The calculation of the proton–antiproton cross sections starts from those at the

quark level and takes into account the quark distribution functions and the effects

of the colour field. The evaluation made in the design phase gave the values

r !pp ! W ! emeð Þ $ 530 pb r !pp ! Z ! eeð Þ $ 35 pb: ð9:62Þ

To be precise, both the valence and the sea quarks contribute to the process,

however at Hs¼ 540 GeV the average momentum fraction at the W and Z

resonances is hxiW
!p

s $ 0:15. Therefore, the process is dominated by the

valence quarks, while the sea quarks have momentum fractions that are too small.

We thus know that the annihilating quark is in the proton, the antiquark in the

antiproton. This information is lost at higher collision energies.

As we have mentioned in Section 1.10, the stochastic cooling technique had

been developed at CERN to increase the density of particles within bunches at the

collision point. Starting from this experience, an advanced accelerator physics

programme was launched, under the guidance of S. Van der Meer, which made it
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Figure 9.12 shows an artist’s view of theUA1 experiment, when open. Figure 9.13

shows the UA1 logic structure. The two beams travelling in the vacuum pipe enter

the detector from the left and the right respectively, colliding at the centre of the

detector. A particle produced in the collision meets in series the following elements:

1. The central detector, which is a large cylindrical time-projection chamber

providing electronic images of the charged tracks, and is immersed in a

horizontalmagnetic field in the plane of the drawing, perpendicular to the beams.

2. The electromagnetic calorimeters, made up of a sandwich of lead plates

alternated with plastic scintillator plates. In the calorimeter electrons and

photons lose all their energy, which is measured.

Fig. 9.12. Artist’s view of the UA1 experiment, shown in its open configuration.
The labels indicate the components: (a) tracking central detector, (c) magnetic
field coil, (d) hadronic calorimeters, (e) drift chambers for m detection, (h) Fe
absorber. (Albajar et al. 1989)

central detector

electromagnetic
calorimeters

hadronic
calorimeters

Fe absorbers

m chambers

Fig. 9.13. Simplified horizontal cross section of UA1.
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W-boson Discovery (1983)
• UA1 experiment

large number of antiprotons had to be produced, concentrated in a dense beam

and collided with an intense proton beam. Let us evaluate the necessary

luminosity.

We can think of the proton and the antiprotons as two groups of partons,

quarks, antiquarks and gluons, travelling in parallel directions, as shown in

Fig. 9.11, neglecting, in a first approximation, the transverse momentum of the

partons. Let us consider the valence quarks and antiquarks respectively. They

carry the largest fraction of the total momentum, about 1/6 on average, with a

rather broad distribution (see Fig. 6.14). It is important to notice that the width of

the Hŝ distribution is much larger than the widths of the W and Z resonances.

Therefore, the W and Z production cross sections grow with collision energy

because the largerHs the greater the probability of finding a quark–antiquark pair

with Hŝ close to resonance. In conclusion, the higher the energy the better.

The initial design centre of mass energy at CERN was Hs¼ 540 GeV, to reach

630 GeV later on.

The calculation of the proton–antiproton cross sections starts from those at the

quark level and takes into account the quark distribution functions and the effects

of the colour field. The evaluation made in the design phase gave the values

r !pp ! W ! emeð Þ $ 530 pb r !pp ! Z ! eeð Þ $ 35 pb: ð9:62Þ

To be precise, both the valence and the sea quarks contribute to the process,

however at Hs¼ 540 GeV the average momentum fraction at the W and Z

resonances is hxiW
!p

s $ 0:15. Therefore, the process is dominated by the

valence quarks, while the sea quarks have momentum fractions that are too small.

We thus know that the annihilating quark is in the proton, the antiquark in the

antiproton. This information is lost at higher collision energies.

As we have mentioned in Section 1.10, the stochastic cooling technique had

been developed at CERN to increase the density of particles within bunches at the

collision point. Starting from this experience, an advanced accelerator physics

programme was launched, under the guidance of S. Van der Meer, which made it
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Fig. 9.11. W and Z production in a !pp collider. Upper left indices label the
colour.
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3. The other particles penetrate the hadronic calorimeter, which is a sandwich of

iron and plastic scintillator plates. The iron plates on the left and right sides of the

beams also act as the yoke of the magnet driving the magnetic return flux. In the

calorimeter the hadrons lose all (or almost all) of their energy, which is measured.

4. In practice the highest-energy hadronic showers, especially in the forward

directions, are not completely contained in the calorimeters, as ideally they

should be. They are absorbed in iron absorbers.

5. The particles that survive after the iron absorbers are neutrinos and muons.

Large tracking drift and streamer chambers detect the latter.

The detector is hermetic but at small angles with the beams; the response of the

calorimeters is made as homogeneous as possible.

9.7 The discovery of W and Z

Figure 9.14 shows the reconstruction of one of the first W! em events observed

by UA1. We observe many tracks that make the picture somewhat confused.

These are particles pertaining to the ‘rest of the event’, i.e. coming from the

interaction of partons different from those that produced the W. They are soft,

because the strong coupling constant is large at small momentum transfers, and

can be easily eliminated simply by neglecting all tracks with pT smaller than a

few times kQCD, in practice with pT <1 GeV, as shown in Fig. 9.14(b).

With this simple ‘cut’ we are left with a clean picture of a single charged track

with the characteristics of an electron. Its momentum, measured from its

curvature, and its energy, measured in the calorimeter, are equal within the errors.

We also find that the transverse momentum is not balanced. The transverse

missing momentum is shown in Fig. 9.14(a).

(a) (b)

Fig. 9.14. A W! em event. (a) The tracks, the hit calorimeter cells and the
missing transverse momentum are shown; (b) only tracks with pT> 1 GeV.
(Rubbia 1985 ª Nobel Foundation 1984)
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W-boson Discovery (1983)
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large number of antiprotons had to be produced, concentrated in a dense beam

and collided with an intense proton beam. Let us evaluate the necessary

luminosity.

We can think of the proton and the antiprotons as two groups of partons,

quarks, antiquarks and gluons, travelling in parallel directions, as shown in

Fig. 9.11, neglecting, in a first approximation, the transverse momentum of the

partons. Let us consider the valence quarks and antiquarks respectively. They

carry the largest fraction of the total momentum, about 1/6 on average, with a

rather broad distribution (see Fig. 6.14). It is important to notice that the width of

the Hŝ distribution is much larger than the widths of the W and Z resonances.

Therefore, the W and Z production cross sections grow with collision energy

because the largerHs the greater the probability of finding a quark–antiquark pair

with Hŝ close to resonance. In conclusion, the higher the energy the better.

The initial design centre of mass energy at CERN was Hs¼ 540 GeV, to reach

630 GeV later on.

The calculation of the proton–antiproton cross sections starts from those at the

quark level and takes into account the quark distribution functions and the effects

of the colour field. The evaluation made in the design phase gave the values

r !pp ! W ! emeð Þ $ 530 pb r !pp ! Z ! eeð Þ $ 35 pb: ð9:62Þ

To be precise, both the valence and the sea quarks contribute to the process,

however at Hs¼ 540 GeV the average momentum fraction at the W and Z

resonances is hxiW
!p

s $ 0:15. Therefore, the process is dominated by the

valence quarks, while the sea quarks have momentum fractions that are too small.

We thus know that the annihilating quark is in the proton, the antiquark in the

antiproton. This information is lost at higher collision energies.

As we have mentioned in Section 1.10, the stochastic cooling technique had

been developed at CERN to increase the density of particles within bunches at the

collision point. Starting from this experience, an advanced accelerator physics

programme was launched, under the guidance of S. Van der Meer, which made it
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The electron transverse momentum distribution for the W events is shown in

Fig. 9.17, where the Jacobian peak is clearly seen. From this distribution UA1

measured MW¼ 83 GeV, with "3 GeV uncertainty, substantially determined by

the systematic uncertainty on the energy calibration. UA2 measured MW¼ 80GeV

with an uncertainty of "1.5 GeV.

A further test of the electroweak theory is the measurement of the electron

helicity in the decay W! em. Consider the process in the W rest frame as in

Fig. 9.18.
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Fig. 9.17. Electron pT distribution for W events. (Adapted from Albajar et al.
1989)
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Fig. 9.18. (a) Kinematics of the W production and decay. (b) Angular
distribution measured by UA1. (Adapted from Albajar et al. 1989)
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momentum is known. However, we can measure MW with the ‘Jacobian peak’

method.

Figure 9.16(a) gives a scheme of the W decay kinematic in the laboratory

frame. The W momentum component transverse to the beam is very small in

general. Neglecting it in a first approximation, the flight direction of the W is the

direction of the beams. Consider the electron momentum, which is measured. Its

component normal to the W motion, pT is equal in the laboratory frame and in the

centre of mass frame (Fig. 9.16(b))

pT ¼ MW

2
sin h": ð9:69Þ

Let dn=dh" be the decay angular distribution in the rest frame of the W. The

transverse momentum distribution is then given by

dn

dpT
¼ dn

dh"
dh"

dpT
: ð9:70Þ

The quantity dh"=dpT is called the Jacobian of the variable transformation. Its

expression is

dn

dpT
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MW=2ð Þ2%p2T

q dn

dh"
: ð9:71Þ

The essential point is that the Jacobian diverges for

pT ¼ MW=2: ð9:72Þ

Consequently, the pT distribution has a sharp maximum at MW /2. Notice that the

conclusion does not depend on the longitudinal momentum of the W, which may

be large. The position of the maximum does, on the other hand, depend on the

transverse momentum of the W, which, as we have said, is small but not com-

pletely negligible. Its effect is a certain broadening of the peak.

W
W

e e
pT

e pT
e

ne ne

(b)(a)

θ θ∗

Fig. 9.16. The momenta (a) in the laboratory frame and (b) in the centre of mass
frame of the W.
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W-boson Discovery (1983)
• UA1 experiment

large number of antiprotons had to be produced, concentrated in a dense beam

and collided with an intense proton beam. Let us evaluate the necessary

luminosity.

We can think of the proton and the antiprotons as two groups of partons,

quarks, antiquarks and gluons, travelling in parallel directions, as shown in

Fig. 9.11, neglecting, in a first approximation, the transverse momentum of the

partons. Let us consider the valence quarks and antiquarks respectively. They

carry the largest fraction of the total momentum, about 1/6 on average, with a

rather broad distribution (see Fig. 6.14). It is important to notice that the width of

the Hŝ distribution is much larger than the widths of the W and Z resonances.

Therefore, the W and Z production cross sections grow with collision energy

because the largerHs the greater the probability of finding a quark–antiquark pair

with Hŝ close to resonance. In conclusion, the higher the energy the better.

The initial design centre of mass energy at CERN was Hs¼ 540 GeV, to reach

630 GeV later on.

The calculation of the proton–antiproton cross sections starts from those at the

quark level and takes into account the quark distribution functions and the effects

of the colour field. The evaluation made in the design phase gave the values

r !pp ! W ! emeð Þ $ 530 pb r !pp ! Z ! eeð Þ $ 35 pb: ð9:62Þ

To be precise, both the valence and the sea quarks contribute to the process,

however at Hs¼ 540 GeV the average momentum fraction at the W and Z

resonances is hxiW
!p

s $ 0:15. Therefore, the process is dominated by the

valence quarks, while the sea quarks have momentum fractions that are too small.

We thus know that the annihilating quark is in the proton, the antiquark in the

antiproton. This information is lost at higher collision energies.

As we have mentioned in Section 1.10, the stochastic cooling technique had

been developed at CERN to increase the density of particles within bunches at the

collision point. Starting from this experience, an advanced accelerator physics

programme was launched, under the guidance of S. Van der Meer, which made it
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The electron transverse momentum distribution for the W events is shown in

Fig. 9.17, where the Jacobian peak is clearly seen. From this distribution UA1

measured MW¼ 83 GeV, with "3 GeV uncertainty, substantially determined by

the systematic uncertainty on the energy calibration. UA2 measured MW¼ 80GeV

with an uncertainty of "1.5 GeV.

A further test of the electroweak theory is the measurement of the electron

helicity in the decay W! em. Consider the process in the W rest frame as in

Fig. 9.18.
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Fig. 9.17. Electron pT distribution for W events. (Adapted from Albajar et al.
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W-boson spin is one.



Z-boson Discovery (1983)
• UA1 experiment

large number of antiprotons had to be produced, concentrated in a dense beam

and collided with an intense proton beam. Let us evaluate the necessary

luminosity.

We can think of the proton and the antiprotons as two groups of partons,

quarks, antiquarks and gluons, travelling in parallel directions, as shown in

Fig. 9.11, neglecting, in a first approximation, the transverse momentum of the

partons. Let us consider the valence quarks and antiquarks respectively. They

carry the largest fraction of the total momentum, about 1/6 on average, with a

rather broad distribution (see Fig. 6.14). It is important to notice that the width of

the Hŝ distribution is much larger than the widths of the W and Z resonances.

Therefore, the W and Z production cross sections grow with collision energy

because the largerHs the greater the probability of finding a quark–antiquark pair

with Hŝ close to resonance. In conclusion, the higher the energy the better.

The initial design centre of mass energy at CERN was Hs¼ 540 GeV, to reach

630 GeV later on.

The calculation of the proton–antiproton cross sections starts from those at the

quark level and takes into account the quark distribution functions and the effects

of the colour field. The evaluation made in the design phase gave the values

r !pp ! W ! emeð Þ $ 530 pb r !pp ! Z ! eeð Þ $ 35 pb: ð9:62Þ

To be precise, both the valence and the sea quarks contribute to the process,

however at Hs¼ 540 GeV the average momentum fraction at the W and Z

resonances is hxiW
!p

s $ 0:15. Therefore, the process is dominated by the

valence quarks, while the sea quarks have momentum fractions that are too small.

We thus know that the annihilating quark is in the proton, the antiquark in the

antiproton. This information is lost at higher collision energies.

As we have mentioned in Section 1.10, the stochastic cooling technique had

been developed at CERN to increase the density of particles within bunches at the

collision point. Starting from this experience, an advanced accelerator physics

programme was launched, under the guidance of S. Van der Meer, which made it
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Fig. 9.11. W and Z production in a !pp collider. Upper left indices label the
colour.
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For the V!A structure of the CC weak interactions the leptons are left, and, if

their energy is much larger than their masses as in the present case, their helicity

is !1; the antileptons are right, with helicity þ1. We take z, the direction of the

beams, as the quantisation axis for the angular momenta in the initial state, as in

Fig. 9.18. The total angular momentum is J¼ 1. As already seen, since the W

production is due to valence quarks, we know that the initial quark has the

direction of the proton, the antiquark that of the antiproton. Therefore, the third

component of the angular momentum is Jz¼ !1.

We take the electron direction z0 as the quantisation axis in the final state. By

the same token the third component is Jz0 ¼!1. Therefore, the angular depend-

ence of the differential cross section is given by

dr
dX

/ d1!1;!1

h i2
¼ 1

2
1þ cos h$ð Þ

! "2
: ð9:73Þ

The distribution measured by UA1 is shown in Fig. 9.18(b); the curve is

Eq. (9.73), which is in perfect agreement with the data. The dotted line is the

prediction for W spin J¼ 0. In this way we measure the W spin.

Notice that the observed asymmetry shows that parity is violated but does not

prove that the CC structure is V!A. The VþA structure predicts the same angular

distribution. Only polarisation measurements can distinguish the two cases.

Question 9.1 Prove the last statement.

We now consider the discovery of the Z. Figure 9.19 shows the UA1 tracking

view of a typical Z! e!eþ event. Again, the confused view becomes clear with

(a) (b)

Fig. 9.19. (a) A Z! e!eþevent; (b) only tracks with pT> 1 GeV. (Rubbia 1985
ª Nobel Foundation 1984)
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Z-boson Discovery (1983)
• UA1 experiment

large number of antiprotons had to be produced, concentrated in a dense beam

and collided with an intense proton beam. Let us evaluate the necessary

luminosity.

We can think of the proton and the antiprotons as two groups of partons,

quarks, antiquarks and gluons, travelling in parallel directions, as shown in

Fig. 9.11, neglecting, in a first approximation, the transverse momentum of the

partons. Let us consider the valence quarks and antiquarks respectively. They

carry the largest fraction of the total momentum, about 1/6 on average, with a

rather broad distribution (see Fig. 6.14). It is important to notice that the width of

the Hŝ distribution is much larger than the widths of the W and Z resonances.

Therefore, the W and Z production cross sections grow with collision energy

because the largerHs the greater the probability of finding a quark–antiquark pair

with Hŝ close to resonance. In conclusion, the higher the energy the better.

The initial design centre of mass energy at CERN was Hs¼ 540 GeV, to reach

630 GeV later on.

The calculation of the proton–antiproton cross sections starts from those at the

quark level and takes into account the quark distribution functions and the effects

of the colour field. The evaluation made in the design phase gave the values

r !pp ! W ! emeð Þ $ 530 pb r !pp ! Z ! eeð Þ $ 35 pb: ð9:62Þ

To be precise, both the valence and the sea quarks contribute to the process,

however at Hs¼ 540 GeV the average momentum fraction at the W and Z

resonances is hxiW
!p

s $ 0:15. Therefore, the process is dominated by the

valence quarks, while the sea quarks have momentum fractions that are too small.

We thus know that the annihilating quark is in the proton, the antiquark in the

antiproton. This information is lost at higher collision energies.

As we have mentioned in Section 1.10, the stochastic cooling technique had

been developed at CERN to increase the density of particles within bunches at the

collision point. Starting from this experience, an advanced accelerator physics

programme was launched, under the guidance of S. Van der Meer, which made it
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the selection pT> 1GeV. Only two tracks remain. One of them is positive, the

other negative; for both, the energy as measured in the electronic calorimeter is

equal to the momentum measured from curvature.

Figure 9.20 shows the calorimetric view of a Z! e!eþ event: two localised,

isolated energy deposits appear in the electromagnetic calorimeter.

The mass of Z is obtained by measuring the energies of both electrons in

the electromagnetic calorimeters and the angle between their tracks in the

central detector. Figure 9.21 is the MZ distribution of the first 24 UA1 events.

The average is MZ¼ 93 GeV with a systematic uncertainty of $ 3 GeV; the

UA2 measurement gave MZ¼ 91.5 GeV with a systematic uncertainty of

$1.7 GeV.

In conclusion, by 1983 the UA1 and UA2 experiments had confirmed that the

vector mesons predicted by the electroweak theory exist and have exactly the

predicted characteristics.

Particularly important is the ratio of the two masses, experimentally because

it is not affected by the energy scale calibration and theoretically because it

directly provides the weak angle. Indeed, Eq. (9.28) valid at the tree-level,

gives

cos2 hW ¼ 1! MW=MZð Þ2: ð9:74Þ

The ratio of the masses measured by UA1 and UA2 gives

UA1 : sin2 hW ¼ 0:211$ 0:025 UA2 : sin2 hW ¼ 0:232$ 0:027: ð9:75Þ
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Fig. 9.20. Lego plot of a Z! ee event in the UA1 electromagnetic calorimeter.
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These values are in agreement with the low-energy measurements we

mentioned in Section 9.4. We shall come back to this point in Section 9.8 for a

more accurate discussion.

Question 9.2 Does the Z decay into two equal pseudoscalar mesons? And into

two scalar mesons?

Question 9.3 In their first data-taking period, UA1 and UA2 collected !300 W

and !30 Z each. What is the principal source of uncertainty on the W mass? On

the Z mass? On their ratio?

Before closing this section, let us see how the quarks appear in a hadronic

collider. As we know, to observe a quark we should not try to break a nucleon in

order to extract one of them, rather we must observe the hadronic energy flux in a

high-energy collision at high momentum transfer. One of the first observations of

UA2 (Banner et al. 1982) and UA1 was that of events with two hadronic jets in

back-to-back directions. They are violent collisions between two quarks, which in

the final state hadronise into jets. More rarely a third jet was observed, due to the

radiation of a gluon.

The lego plot of a two-jet event as seen in the UA1 calorimeter is shown in

Fig. 9.22. Comparing it with Fig. 9.20 we see that the two quarks, as seen in the

calorimeter, are very similar to electrons, with some differences: the peaks are
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Fig. 9.21. Distribution of m (eþe# ) for the first 24 UA1 events. (Adapted from
Albajar et al. 1989)
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Summary
• Beta decay; neutrino 

• Fermi Theory 

• Parity violation; two-component neutrino theory 

• V-A theory; Quark mixing 

• Gauge theory; QED; Non-Abelian SU(2) 

• W-boson and Z-boson discovery



Next Lecture

Confirming the W-boson and Z-boson event experimentally 
 

Afternoon Lecture

The origin of W-boson and Z-boson masses


