Electroweak Theory of the Standard Model

Qing-Hong Cao

Peking University

20世纪基础物理学

－源于1895年伦琴射线，止于2012年希格斯粒子发现
量子力学 相对论

量子场论
规范场论
标准模型
电弱理论

Want to be a great physicist? Piece of Cake!

 http://particle-clicker.web.cern.ch/particle-clicker/

粒子物理的标准模型

Quarks集百年物理之大成

$u c$	t	
d	s	b

e $\mu \tau$

新＂元素周期表＂
20世纪自然科学的卓越成就之

宇宙万物可以用一个简单公式描述

Standard Model of Particle Physics

Maxwell Equations

1864年10月27日，麦克斯韦写下方程组： 283种符号， 20 个变量， 20 个方程

$$
\begin{aligned}
\partial_{\mu} F^{\mu v} & =-\frac{4 \pi}{c} j^{v} \\
\partial_{\mu} \widetilde{F}^{\mu v} & =0
\end{aligned}
$$

Einstein

Standard Model of Particle Physics

Four Forces in Nature

I Gravity

2 Electromagnetism

$\stackrel{\text { Faraday }}{\Longleftrightarrow}$

3 Weak Interaction

Beta－decay
Muon－decay
II
Time scale： $10^{-12} \sim 10^{3} \mathrm{~s}$

4 Strong Interaction
将核子紧紧
结合起来
Time scale： $10^{-23} \mathrm{~s}$

爱因斯坦的统一之梦

－Einstein dreamed to come up with a unified description
－But he failed to unify electromagnetism and gravity（GR）

Maxwell: Electromagnetism

$$
\begin{array}{ll}
\vec{\nabla} \times \vec{D}=\rho & \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \times \vec{B}=0 & \vec{\nabla} \times \vec{H}=\vec{j}+\frac{\partial \vec{D}}{\partial t}
\end{array}
$$

Unification

The Magic of Constants

自然单位制：微观世界语言

高能物理中大部分情形下，基本粒子间的相互作用仅仅发生在极高能量和极短距离

$$
\begin{gathered}
\hbar=c=k_{B}=1 \\
{[\text { 长度 }]=[\text { 时间 }]=[\text { 质量 }]^{-1}=[\text { 温度 }]^{-1}=[\text { 能量 }]^{-1}}
\end{gathered}
$$

え 量子性质
c 相对论性质
k_{B} 热力学性质
需要仔细处理微观世界的理论结论推广到
宏观世界的观测量

The Magic of Units

$$
\begin{aligned}
& {[c]=m / s} \\
& {[\hbar]=J \cdot s=\mathrm{MeV} \cdot s=\frac{[\text { mass }][\text { length }]}{[\text { time }]}}
\end{aligned}
$$

$\hbar c=197.3 \mathrm{MeV} \cdot \mathrm{fb}$

$$
\begin{aligned}
& {[e]=\text { Coulomb }=\sqrt{\frac{[\text { mass }][\text { length }]^{3}}{[t i m e]^{2}}} \quad \frac{e^{2}}{r}=m a} \\
& \alpha=\frac{e^{2}}{\hbar c}=\frac{1}{137.036}
\end{aligned}
$$

$\hbar=c=1$

$$
\begin{aligned}
& c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \hbar c=197.3 \mathrm{MeV} \cdot \mathrm{fm}=3 \times 10^{8} \mathrm{~m} \\
& 1 \mathrm{fm} \sim \frac{1}{200 \mathrm{MeV}}
\end{aligned}
$$

$$
[\text { length }]=[\text { time }] \sim \frac{1}{\mathrm{MeV}}
$$

The History of Electroweak Theory

The Birth: Beta Decay

$A \rightarrow B+e^{-}$
$(Z, N) \rightarrow(Z+1, N-1)+e^{-}$
(N) $m_{n}=939.5656 \mathrm{MeV}$

The conservation of Energy and momentum requires the electron have a single value of energy.

Beta Decay
 1914, Chadwick

What is Wrong?

Something to loose

or

Something to add

Neil Bohr

－ready to abandon the law of conservation of energy
－propose a statistical version of the conservation laws of energy，momentum，angular momentum

1924，Borh，Kramers，Slater，＂辐射的量子理论＂：能量和动量在单个微观相互作用过程中不必守恒，而只需要在统计意义上守恒。

1925年，康普顿电子－光子散射验证了微观散射过程中能动量守恒。

Neutrino

Wolfgang Pauli 1930

Letter to the physical Institute of the
 Federal Institute of Technology, Zurich

The Desperate Remedy
4 December 1930
Gloriastr. Zürich

```
Physical Institute of the
Federal Institute of Technology (ETH)
Zürich
Dear radioactive ladies and gentlemen,
```

```
to save the "exchange theorem"* of statistics and the energy
theorem. Namely [there is] the possibility that there could
exist in the nuclei electrically neutral particles that I
wish to call neutrons,** which have spin 1/2 and obey the
exclusion principle, and additionally differ from light quan-
```


Neutrino

In 1932 Chadwick discovered a neutral nuclear constituent．By studying the properties of the neutral radiation n emitted in the process

$$
{ }^{9} \mathrm{Be}+\alpha \rightarrow{ }^{12} \mathrm{C}+\mathrm{n}
$$

He found out that n was a deeply penetrating neutral particle slightly heavier than the proton，quite distinct from gamma－rays．

Pauli 说的＂neutron＂被Fermi改成＂little neutral one＂，成为今天常说的＂Neutrino＂

Neutrino

Solvay 1933 Physics Conference（Brussels，Belgium）
Pauli 报告了他的中微子设想

Fermi Theory

Loosely like QED, but zero range and non-diagonal
The interaction behind beta decay remains unknown in Fermi's time.

It took some 20 years of work to figure out a detailed model fitting the observation.

In Fermi theory the transition probability per unit time is given by:

$$
W=\frac{2 \pi}{\hbar} G^{2}|M|^{2} \frac{d n}{d E_{0}}
$$

if $\quad J$ (leptons) $=0$
$|M|^{2}=1$
if $J($ leptons $)=1$
$|M|^{2}=3$
Fermi transition
Gamow-Teller transition

T, E, E_{ν} kinetic energies of proton, electron, antineutrino

Energy and momentum

$$
\begin{aligned}
& \vec{P}+\vec{p}+\vec{q}=0 \\
& T+E_{v}+E=E_{0}
\end{aligned}
$$ conservation

$$
E_{0}=m_{n}-m_{p}-m_{e} \approx 0.8 \mathrm{MeV}
$$

Parity (reflection) Violation

Parity conservation had been assumed, almost without question

$$
\begin{gathered}
\theta-\tau \text { puzzle (1950's) } \\
\theta^{+} \rightarrow \pi^{+} \pi^{0} \quad P=+1 \\
\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-}, \pi^{+} \pi^{0} \pi^{0} \\
P=-1
\end{gathered}
$$

Two particles with same mass, charge, spin, lifetime,
but different decay modes and

Lee, Yang (1956)
 parity
Need a pseudo-scalar to measure the parity violation effects.

$$
\vec{\sigma} \cdot \vec{p}
$$

Parity Violation in Decay of

Polarized Nuclei

$\vec{\sigma}_{\mathrm{Co}} \cdot \vec{p}_{e}$

$$
{ }_{27}^{60} C o\left(J=5^{+}\right) \rightarrow{ }_{28}^{60} N i^{*}\left(J=4^{+}\right) e^{-} \bar{v}_{e}
$$

Gamow-Teller transition

Wu, et al PRL 105, 1414 (1957)

Parity Violation in Beta Decay

T~0.01k

$$
\begin{array}{cc}
I(\theta)=1+\frac{\alpha \sigma_{\mathrm{Co}} \cdot \mathbf{p}_{e}}{E_{e}}=1+\alpha \frac{v_{e}}{c} \cos \theta & \Lambda=\frac{I_{+}-I_{-}}{I_{+}+I_{-}}=\alpha \frac{v}{c} \\
e^{-}: \Lambda=-v_{e} / c & e^{+}: \Lambda=+v_{e} / c \\
\text { left-handed } & \text { right-handed }
\end{array}
$$

Two-Component Neutrino Theory

Goldhaber et al (1958)
Neutrino: Left-handed; Anti-neutrino: Right-handed

$$
\mathbf{p}_{v} \uparrow \Downarrow \sigma_{v} \quad \mathbf{p}_{\bar{v}} \uparrow \Uparrow \sigma_{\bar{v}}
$$

particle
$\begin{array}{llll}\nu_{e} & \bar{v}_{e} & e^{-} & e^{+}\end{array}$ helicity probability $-1+1-v / c+v / c$
${ }^{60} \mathrm{Co}\left(J^{P}=5^{+}\right) \Uparrow \rightarrow{ }^{60} \mathrm{Ni}^{* *}\left(J^{P}=4^{+}\right) \Uparrow+e^{-}+\bar{v}_{e}$

Charged Pion Decay

Garwin, Lederman, Weinrich, PRL 1415 (1957)
a

b

b

99.9%

10^{-4}

V-A Theory

(maximal violation of parity and charge conjugation) Feynman \& Gell-man; Sudarshan, Marshak (1958)

$$
\begin{aligned}
\mathcal{H} & =\frac{G_{F}}{\sqrt{2}} J_{\mu}^{\dagger} J^{\mu} \quad J_{\mu}=\underbrace{J_{\mu}^{\ell}}_{\text {leptonic }}+\underbrace{J_{\mu}^{h}}_{\text {hadronic }} \\
J_{\mu}^{\ell} & =\bar{e}^{-} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{e}+\bar{\mu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\mu} \\
& =2\left[\bar{e}_{L} \gamma_{\mu} \nu_{e L}+\bar{\mu}_{L} \gamma_{\mu} \nu_{\mu L}\right] \\
-\psi_{L} & =P_{L} \psi=\frac{1-\gamma^{5}}{2} \psi \text { (vector - axial) }
\end{aligned}
$$

- $G_{F} \simeq 1.17 \times 10^{-5} \mathrm{GeV}^{-2}$ (Fermi constant)
- Can extend third family, neutrino masses
- Hadronic current

$$
J_{\mu}^{h \dagger} \sim \bar{p} \gamma_{\mu}\left(1-\gamma^{5}\right) n \cos \theta_{c}+\text { pion, strangeness, etc }
$$

P, C and CP

- $V-A \Rightarrow$ maximal violation of P, C
- WCC acts of e_{L}^{-}and e_{R}^{+}(not on e_{R}^{-}or e_{L}^{+})
$-\psi_{L, R} \equiv \frac{1 \mp \gamma^{5}}{2} \psi$: spin opposite (along) momentum (helicity $=\mp \frac{1}{2}$)
- Under space reflection (P):

$$
\begin{aligned}
J_{\mu}^{\ell} & \rightarrow \bar{e}^{-} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu_{e}+\bar{\mu} \gamma^{\mu}\left(1+\gamma^{5}\right) \nu_{\mu} \\
& =2\left[\bar{e}_{R} \gamma^{\mu} \nu_{e R}+\bar{\mu}_{R} \gamma^{\mu} \nu_{\mu R}\right]
\end{aligned}
$$

- i.e., $J_{\mu L}^{\ell}(t, \vec{x}) \rightarrow J_{R}^{\ell \mu}(t,-\vec{x})$
- P violated maximally

P, C and CP

- Under charge conjugation (C):

$$
\begin{aligned}
& \qquad J_{\mu}^{\ell} \rightarrow-\bar{\nu}_{e} \gamma_{\mu}\left(1+\gamma^{5}\right) e^{-}-\bar{\nu}_{\mu} \gamma_{\mu}\left(1+\gamma^{5}\right) \mu^{-} \\
& \text {- i.e., } J_{\mu L}^{\ell} \rightarrow-J_{\mu R}^{\ell \dagger} \\
& \text { - } C \text { violated maximally } \\
& \text { - However, } H=\int d^{3} \vec{x} \mathcal{H} \text { invariant under } C P
\end{aligned}
$$

'V-A' Theory: SM Picture

$$
\mathcal{H}=\frac{G_{F}}{\sqrt{2}} J_{\mu}^{\dagger} J^{\mu} \quad J_{\mu}=\underbrace{J_{\mu}^{\ell}}_{\text {leptonic }}+\underbrace{J_{\mu}^{h}}_{\text {hadronic }}
$$

- Leptonic current

$$
J_{\mu}^{\ell}=\bar{e}^{-} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{e}+\bar{\mu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{\mu}
$$

- Quark form ($p \sim u u d, n \sim u d d$)

$$
J_{\mu}^{h \dagger}=\bar{u} \gamma_{\mu}\left(1-\gamma^{5}\right) d^{\prime}=2 \bar{u}_{L} \gamma_{\mu} d_{L}^{\prime}
$$

Fermi Theory Violates Unitarity at High Energy

$$
\begin{aligned}
& -\sigma\left(\nu_{e} e^{-} \rightarrow e^{-} \nu_{e}\right) \rightarrow \frac{G_{F}^{2} s}{\pi} \\
& \quad\left(s \equiv E_{C M}^{2}\right)
\end{aligned}
$$

- pure S-wave unitarity: $\sigma<\frac{16 \pi}{s}$
- fails for $\frac{E_{C M}}{2} \geq \sqrt{\frac{\pi}{G_{F}}} \sim 500 \mathrm{GeV}$

Fermi theory: divergent integrals

$$
\int d^{4} k\left(\frac{\nvdash}{k^{2}}\right)\left(\frac{\nvdash k}{k^{2}}\right)
$$

Intermediate Vector Boson Theory Yukawa (1935); Schwinger (1957)

- introduce W^{0} to cancel
- fixes $W^{0} W^{+} W^{-} \quad$ and $e^{+} e^{-} W^{0}$ vertices
- requires $\left[J, J^{\dagger}\right] \sim J^{0}$
(like $S U(2)$)

- not realistic

Glashow model (1961) (W,Z,gamma, but no mass term)

Lepton universality

$e-\mu$ universality

$\Gamma\left(\tau^{-} \rightarrow \mu^{-} \bar{v}_{\mu} v_{\tau}\right) \propto \frac{g_{\tau}^{2}}{M_{W}^{2}} \frac{g_{\mu}^{2}}{M_{W}^{2}} m_{\tau}^{5}$
$\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} \nu_{\tau}\right) \propto \frac{g_{\tau}^{2}}{M_{W}^{2}} \frac{g_{e}^{2}}{M_{W}^{2}} m_{\tau}^{5}$
$\frac{\Gamma\left(\tau^{-} \rightarrow \mu^{-} \bar{v}_{\mu} v_{\tau}\right)}{\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}\right)}=\frac{\operatorname{BR}\left(\tau^{-} \rightarrow \mu^{-} \bar{v}_{\mu} v_{\tau}\right)}{\operatorname{BR}\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}\right)}=\frac{g_{\mu}^{2}}{g_{e}^{2}} \frac{\rho_{\mu}}{\rho_{e}}$
$\frac{\operatorname{BR}\left(\tau^{-} \rightarrow \mu^{-} \bar{v}_{\mu} \nu_{\tau}\right)}{\operatorname{BR}\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}\right)}=\frac{(17.36 \pm 0.05) \%}{(17.84 \pm 0.05) \%}=0.974 \pm 0.004$
Phase
space factor

$$
g_{\mu} / g_{e}=1.001 \pm 0.002
$$

Lepton universality

$\mu-\tau$ universality

$\frac{\Gamma\left(\mu^{-} \rightarrow e^{-} \bar{v}_{e} v_{\mu}\right)}{\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}\right)}=\frac{1}{\tau_{\mu}} \frac{\tau_{\tau}}{\operatorname{BR}\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}\right)}$
$\frac{\Gamma\left(\mu^{-} \rightarrow e^{-} \bar{v}_{e} v_{\mu}\right)}{\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}\right)}=\frac{g_{e}^{2} g_{\mu}^{2}}{g_{e}^{2} g_{\tau}^{2}} \frac{m_{\mu}^{5}}{m_{\tau}^{5}} \frac{\rho_{\mu}}{\rho_{\tau}}=\frac{g_{\mu}^{2}}{g_{\tau}^{2}} \frac{m_{\mu}^{5}}{m_{\tau}^{5}} \frac{\rho_{\mu}}{\rho_{\tau}}$

$$
\begin{aligned}
& \frac{g_{\mu}^{2}}{g_{\tau}^{2}}=\frac{1}{\tau_{\mu}} \frac{\tau_{\tau}}{\operatorname{BR}\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}\right)} \frac{m_{\tau}^{5}}{m_{\mu}^{5}} \frac{\rho_{\tau}}{\rho_{\mu}} \\
& g_{\mu} / g_{\tau}=1.001 \pm 0.003
\end{aligned}
$$

Quark Mixing

Charged current is universal in lepton sector but not in quark sector

Universality requires

$$
M \propto G_{\mathrm{F}} \cdot \bar{v}_{e L} \gamma_{a} e_{e L} \cdot \bar{d}_{L} \gamma^{a} u_{L} \quad M \propto G_{\mathrm{F}} \cdot \bar{v}_{e L} \gamma_{a} e_{e L} \cdot \bar{s}_{L} \gamma^{a} u_{L}
$$

BUT

$$
\Delta S=0
$$

$\Delta S=1$

Cabibbo Mixing

Introducing a mixing

$$
d^{\prime}=d \cos \theta_{\mathrm{C}}+s \sin \theta_{\mathrm{C}}
$$

$$
M \propto G_{\mathrm{F}} \cdot \bar{e}_{L} \gamma_{a} v_{e L} \cdot \bar{d}_{L}^{\prime} \gamma^{a} u_{L}
$$

$M \propto G_{\mathrm{F}} \cos \theta_{\mathrm{C}} \cdot \bar{e}_{L} \gamma_{a} v_{e L} \cdot \bar{d}_{L} \gamma^{a} u_{L} \quad$ for $\Delta S=0$ $M \propto G_{\mathrm{F}} \sin \theta_{\mathrm{C}} \cdot \bar{e}_{L} \gamma_{a} v_{e L} \cdot \bar{s}_{L} \gamma^{a} u_{L} \quad$ for $\Delta S=1$.
suppression factor $\sin \theta_{\mathrm{C}}=0.221$
The charged weak interaction are also universal in quark sector, provided quark-mixing.

Drawback of Cabibbo mixing

Flavor changing neutral current

$$
\begin{aligned}
\bar{d}_{L}^{\prime} \gamma_{a} d_{L}^{\prime} & =\cos ^{2} \theta_{\mathrm{C}} \bar{d}_{L} \gamma_{a} d_{L}+\sin ^{2} \theta_{\mathrm{C}} \bar{s}_{L} \gamma_{a} s_{L} \\
& +\cos \theta_{\mathrm{C}} \sin \theta_{\mathrm{C}}\left[\bar{d}_{L} \gamma_{a} s_{L}+\bar{s}_{L} \gamma_{a} d_{L}\right]
\end{aligned}
$$

$\mathrm{Br} \sim 10^{-2}$

$\mathrm{Br} \sim 10^{-10}$
$G_{F} \cos \theta_{c} \sin \theta_{c}$

GIM Mechanism

Glashow, Illipoulos, Maiani

$$
\begin{gathered}
\binom{u}{d^{\prime}}\binom{c}{s^{\prime}} \quad s^{\prime}=-d \sin \theta_{\mathrm{C}}+s \cos \theta_{\mathrm{C}} \\
\binom{d^{\prime}}{s^{\prime}}=\left(\begin{array}{cc}
\cos \theta_{\mathrm{C}} & \sin \theta_{\mathrm{C}} \\
-\sin \theta_{\mathrm{C}} & \cos \theta_{\mathrm{C}}
\end{array}\right)\binom{d}{s} \\
\bar{s}_{L}^{\prime} \gamma_{a} s_{L}^{\prime}=\sin ^{2} \theta_{\mathrm{C}} \bar{d}_{L} \gamma_{a} d_{L}+\cos ^{2} \theta_{\mathrm{C}} \bar{s}_{L} \gamma_{a} s_{L}-\cos \theta_{\mathrm{C}} \sin \theta_{\mathrm{C}}\left[\bar{d}_{L} \gamma_{a} s_{L}+\bar{s}_{L} \gamma_{a} d_{L}\right] \\
\bar{d}_{L}^{\prime} \gamma_{a} d_{L}^{\prime}=\cos ^{2} \theta_{\mathrm{C}} \bar{d}_{L} \gamma_{a} d_{L}+\sin ^{2} \theta_{\mathrm{C}} \bar{s}_{L} \gamma_{a} s_{L}+\cos \theta_{\mathrm{C}} \sin \theta_{\mathrm{C}}\left[{ }_{d} \gamma_{a} s_{L}+\bar{s}_{L} \gamma_{a} d_{L}\right] \\
\text { blavor changing neutral currents cancel out, } \\
\text { but Flavor conserving neutral currents remains. CERN } \\
\bar{s}_{L}^{\prime} \gamma_{a} s_{L}^{\prime}+\bar{d}_{L}^{\prime} \gamma_{a} d_{L}^{\prime}=\bar{d}_{L} \gamma_{a} d_{L}+\bar{s}_{L} \gamma_{a} s_{L} \\
\text { Fl973 }
\end{gathered}
$$

Gauge Theories

Standard Model is remarkably successful gauge theory of the microscopic interactions

Symmetry

－A symmetry follows from the assumption that a certain quantity is not measurable．
－That implies the existence of conserved quantities．
－Noether＇s theorem

I）不可观测
无法观测的物理量
绝对位置 \vec{p}
绝对时间 E
绝对方位 $\vec{L}=\vec{r} \times \vec{p}$
绝对左右 P
绝对未来 T
绝对电荷 C

2）无法区分
一个物体变换为另一个物体
整体对称性：同位旋
时空对称性 等价性
3）无序

Quantum Mechanics

- Group operations represented by unitary operators (u) in a linear vector space of state vector $|\alpha\rangle$

$$
\begin{array}{lc}
\text { vector transformation: } & |\alpha\rangle \rightarrow\left|\alpha^{\prime}\right\rangle=u|\alpha\rangle \\
\text { operator transformation: } & \theta \rightarrow \theta^{\prime}=u \theta u^{-1}
\end{array}
$$

- If system is symmetric under group, $[H, u]=0$
- Of particular interest are symmetry groups with representation like

- Connection through 'charge’ \& conserved 'current'

$$
Q \equiv \int d^{3} x j^{0}(x) \quad \partial_{\mu} j^{\mu}(x)=0
$$

Quantum Field Theory

$\phi(x)$ is an operator

$$
\begin{aligned}
\phi \rightarrow \phi^{\prime} & =u \phi u^{-1} \\
& =\left(1-i \sum_{j} \epsilon^{j} Q^{j}\right) \phi\left(1+i \sum_{j} \epsilon^{j} Q^{j}\right) \\
& =\cdots=\phi+i \sum_{j} \epsilon^{j}\left[Q^{j}, \phi(x)\right]
\end{aligned}
$$

so $\left[Q^{j}, \phi(x)\right]=0$ symmetry \longrightarrow conservation law
Note: often $u \phi u^{-1}=\exp \left(i \sum_{j} \epsilon^{j} q^{j}\right) \phi(x)$
eigenvalues of Q^{j}

Internal Symmetry

- Symmetries whose transformation parameters do not affect the point of space and time x
- It is more natural in QM and QFT. For example, the phase of the wave function. Equation of Motion (Dirac or Schrodinger), normalization condition are invariant under the transformation:

$$
\Psi(x) \rightarrow e^{i \theta} \Psi(x)
$$

- It implies the conservation of the probability current.

Heisenberg Isospin Theory

- Assume the strong interaction are invariant under a group of $S U(2)$ transformation in which the proton and neutron form a doublet $\mathrm{N}(\mathrm{x})$

$$
N(x)=\binom{p(x)}{n(x)} \quad ; \quad N(x) \rightarrow e^{i \vec{r} \cdot \vec{\theta}} N(x)
$$

$\vec{\tau}$ are proportional to Pauli matrices
$\vec{\theta}$ are the three angles of a general rotation in a three dimensional Euclidean space

Global Symmetry

A is trajectory of a free particle in the (x, y, z) system A^{\prime} is also a possible trajectory of a free particle in the new system
The dynamics of free particles is invariant under space translations by a constant vector

Gauge Transformation

The transformation parameters are functions of the space-time point x

A free particle dynamics is not invariant under translations in which \vec{a} is replaced by $\vec{a}(x)$.

For A" to be a trajectory, the particle must be subject to external forces

Weyl's Gauge Transformation

- Soon after GR was written by Einstein, Weyl proposed a modification ...
He added invariance with respect to

$$
\begin{aligned}
& \text { a) } g_{\mu \nu}^{\prime}=\lambda(x) g_{\mu \nu} \\
& \text { b) } A_{\mu}^{\prime}=A_{\mu}-\frac{\partial \lambda(x)}{\partial x^{\mu}}
\end{aligned} \quad \text { same } \lambda(x) \text { phase }
$$

b) is the regular ambiguity required of EM potentials
a) is weird

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu} \rightarrow \lambda d s^{2}
$$

Lengths are re-'gauged'

Weyl's Gauge Transformation

- suggests an invariance even though space \& time can change over all space and time
- the mediator which holds the space-time structure together would be the electromagnetic field

An early attempt to unify gravitation with electromagnetism
The brilliant idea did not work but the name stuck.

In 1927 London revived the idea ... but the symmetry isn't the scale of space-time, rather the phase of the wave function.

Symmetry= Force

- Neither Dirac nor Schrodinger equation are $\theta(x)$ invariant under a local change of phase

Free Dirac Lagrangian

$$
\mathcal{L}=\bar{\Psi}(x)(i \not \partial-m) \Psi(x)
$$

is not invariant under the transformation

$$
\Psi(x) \rightarrow e^{i \theta(x)} \Psi(x) \longmapsto \partial_{\mu} \theta(x)
$$

In order to restore invariance, we must modify free Dirac Lagrangian such that it is no longer describe a free Dirac Field.

Invariance under gauge symmetry leads to the introduction of interactions.

QED Interaction

- Local $\mathrm{U}(1)$ symmetries $u(\theta)=e^{i \theta(x) Q}$

$$
\psi(x) \rightarrow \psi^{\prime}(x)=e^{i \theta(x) q} \psi(x)
$$

$$
\begin{aligned}
\mathcal{L}(\psi) \rightarrow \mathcal{L}\left(\psi^{\prime}\right) & =e^{-i \theta(x) q} \bar{\psi}(x)\left[i \gamma^{\mu} \partial_{\mu}-m\right] e^{i \theta(x) q} \psi(x) \\
& =\bar{\psi}(x)\left[i \gamma^{\mu} \partial_{\mu}-m\right] \psi(x)-q \partial_{\mu} \theta(x) \bar{\psi}(x) \gamma^{\mu} \psi(x) \\
& \neq \mathcal{L}(\psi)
\end{aligned}
$$

Derivative term causes trouble \longrightarrow define a new divergence operator to cancel the unwanted term!

$$
D_{\mu} \equiv \partial_{\mu}+X_{\mu}
$$

QED Interaction

- The goal is to get the gradient term to transform simply

$$
\left(D_{\mu} \psi\right) \rightarrow\left(D_{\mu} \psi\right)^{\prime}=e^{i q \theta(x)}\left(D_{\mu} \psi\right)
$$

Start out with

$$
\begin{aligned}
\mathcal{L} & =\bar{\psi}(x)\left[i \gamma^{\mu} D_{\mu}-m\right] \psi(x) \\
& =\bar{\psi}(x)\left[i \gamma^{\mu} \partial_{\mu}+i \gamma^{\mu} X_{\mu}-m\right] \psi(x)
\end{aligned}
$$

Transform $\psi \rightarrow \psi^{\prime}$
$\mathcal{L}(\psi) \rightarrow \mathcal{L}\left(\psi^{\prime}\right)=\bar{\psi}^{\prime}(x)\left\{i \gamma^{\mu}\left[\partial_{\mu}+X_{\mu}-i q \partial_{\mu} \theta(x)\right]-m\right\} \psi^{\prime}(x)$
Still not right!
One must simultaneously transform

$$
X_{\mu} \rightarrow X_{\mu}^{\prime}=X_{\mu}-i q \partial_{\mu} \theta(x)
$$

Bingo!

QED Interaction

- Denote $X_{\mu} \equiv i q A_{\mu}(x)$ so the gradient looks like

$$
D_{\mu} \equiv \partial_{\mu}+i q A_{\mu}
$$

and total transformation necessary to leave \mathcal{L} along is

$$
\begin{aligned}
\psi(x) & \rightarrow \psi^{\prime}(x)=e^{i Q \theta(x)} \psi(x) \\
A_{\mu}(x) & \rightarrow A_{\mu}^{\prime}(x)=A_{\mu}(x)-\partial_{\mu} \theta(x) \quad \text { gauge function }
\end{aligned}
$$

- Add free gauge field

$$
\begin{gathered}
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right)-q A_{\mu} \bar{\psi} \gamma^{\mu} \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
\text { free } \psi \quad \text { interaction } \\
\text { free } A_{\mu}
\end{gathered}
$$

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

Utilizing Symmetry

If invariance with respect to local $\mathrm{U}(1)$ symmetry is of paramount important ...
--> one is forced to invent the photon

Demand of a symmetry ... Get new fields AND dynamics!!

Other symmetries \longrightarrow New spin 1, 2, .. fields?
The intriguing research project in 1954 of Yang \& Mills ... and independently by Shaw

Local SU(2) symmetry $->$ isotriplet of spin-1 fields

Global versus Local

Global U(1) gauge transformation

Local U(1) gauge transformation

Non-Abelian Gauge Theory

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

Now $\psi=\binom{\psi_{1}}{\psi_{2}}$ as bases for $\operatorname{SU}(2)$ operators
Define a new covariant derivative

$$
D_{\mu} \equiv \partial_{\mu}+i g \vec{W}_{\mu} \cdot \frac{\vec{\tau}}{2}
$$

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-\frac{g}{2} \bar{\psi} \gamma^{\mu} \psi \cdot \vec{W}_{\mu}-\frac{1}{4} \vec{f}_{\mu \nu} \cdot \vec{f}^{\mu \nu}
$$

$$
\begin{aligned}
& \mathscr{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-g^{2} \gamma^{\mu} \vec{c} \psi \cdot \vec{b}_{\mu}-\underbrace{1 / 4 \vec{f}_{\mu \nu} \cdot \vec{f}^{\mu \nu}}_{\text {compricated }} \\
&-\vec{Z}_{L^{\prime}} \vec{b} \quad \\
&-1 / 4 \vec{f}^{\mu \nu} \cdot \vec{f}_{\mu \nu}=-\frac{1}{2}\left(\partial_{\nu} \vec{b}_{\mu}-\partial_{\mu} \vec{b}_{\nu}\right) \cdot \partial^{\nu} \vec{b}_{\mu} \\
&+g \vec{b}_{\nu} \times \vec{b}_{\mu} \cdot \partial^{\nu} \vec{b}^{\mu} \quad
\end{aligned}
$$

- get self-couplings for \vec{b} 's.
$b=\frac{5}{6}$
b

Non-Abelian Gauge Theory

$$
\mathcal{L}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi-\frac{g}{2} \bar{\psi} \gamma^{\mu} \psi \cdot \vec{W}_{\mu}-\frac{1}{4} \vec{f}_{\mu \nu} \cdot \vec{f}^{\mu \nu}
$$

- Gauge invariance implies:
- N (apparently) massless gauge bosons A_{μ}^{i}
- Specified interactions (up to gauge coupling g, group, representations), including self interactions

SU(2): Global versus Local

Global SU(2) gauge transformation

Local SU(2) gauge transformation

W and Z discovery

- UA1 experiment (1976, Rubbia, Cline, McIntyre)

W-boson Discovery (1983)

- UA1 experiment

W-boson Discovery (1983)

- UA1 experiment

W-boson Discovery (1983)

- UA1 experiment

Z-boson Discovery (1983)

- UA1 experiment

Z-boson Discovery (1983)

- UA1 experiment

Summary

- Beta decay; neutrino
- Fermi Theory
- Parity violation; two-component neutrino theory
- V-A theory; Quark mixing
- Gauge theory; QED; Non-Abelian SU(2)
- W-boson and Z-boson discovery

Next Lecture

The origin of W-boson and Z-boson masses

Afternoon Lecture

Confirming the W-boson and Z-boson event experimentally

