Some Old Thoughts of Higgs Physics

Qing-Hong Cao

Q.-H. Cao, S. Kanemura, C.-P. Yuan, Phys. Rev. D69 (2004) 115003

A. Belyaev, Q.-H. Cao, D. Nomura, K. Tobe, C.-P. Yuan, Phys. Rev. Lett. 100 (2008) 061801

Wednesday, May 23, 12

Outline

- AH⁺ associate production
 - A long ignored channel in "Higgs Hunter's Guide"

A demo for collider simulations

Collider Phenomenology

Mad-suite (MadGraph/Event/Analysis)

You MUST fully understand your results. You cannot simply say "I got them from Mad-..."

Higgs boson and heavy fermion

Motivation

 Physics predictions depend strongly on the details of SUSY parameters.

> A typical SUSY phenomenology study depends on at least two SUSY parameters, e.g. $\tan \beta$ and m_A , and various physics reach depends on other SUSY parameters as well.

Very often, the physics reach of a process is expressed in terms of bounds on $\sigma(\text{production}) \times \text{Br}(\text{decay branching ratio})$ where both σ and Br depend on SUSY parameters

In general detection efficiency also depends on SUSY parameters.

Our task is to find a SUSY process

- whose tree level σ_{prod} depends on only ONE SUSY parameter that can be determined by kinematic variable (e.g. invariant mass).
- that is not sensitive to the detailed SUSY parameters via radiative corrections.
- that can bound the SUSY models by (product of) $\frac{\text{Br (decay branching ratio)}}{\text{without convoluting with } \sigma_{\text{prod}}}.$
- that can be used to distinguish MSSM from its alternatives, e.g. 2HDM.
- whose final state particle kinematics can be properly modeled without specifying any SUSY parameters.

The detection efficiency can be accurately determined.

The promising process $pp \to W^{\pm} \to AH^{\pm}$

The production cross section in general depends on two masses: m_A and m_{H^+} , e.g. in 2HDM.

But in MSSM,

$$m_{H^+}^2 = m_A^2 + m_W^2$$

 $\rightarrow \sigma_{\text{prod}}$ only depends on g and m_A .

(m_A can be determined from its decay kinematics, (e.g. the invariant mass $m_{b\overline{b}}$ in $A \rightarrow b\overline{b}$.

Production rates

NLO QCD correction is about 20%
 Uncertainty due to PDF is about 5% at LHC for mA = 120GeV.
 The one-loop electroweak correction to the production rate is smaller

production rate is smaller than the PDF uncertainty.

 The MSSM mass relation between A and H⁺ holds well beyond tree level.

Signal and BKGD

Model parameters and basic

ASSET

• The model parameters, production rates and decay BRs

Sets	Α	В	С
m_A/Γ_A	101 /3.7	165.7 / 5.6	250 / 7.9
m_h/Γ_h	96.8 / 3.3	112 /0.04	112 /0.01
m_H/Γ_H	113 / 0.38	163 /5.5	247.8 /7.8
m_{H^+}/Γ_{H^+}	126 / 0.43	182 / 0.68	261.4 / 4.2
$\sigma(AH^+)$ [fb]	164	36	5.4
$\sigma(HH^+)$ [fb]	137.4	37.4	5.4
$Br(A \rightarrow b\overline{b})$	0.91	0.90	0.89
$Br(H o b\overline{b})$	0.90	0.90	0.89
$Br(H^+ \to \tau^+ \nu)$	0.98	0.90	0.00
$Br(H^+ \to t\bar{b})$	0.00	0.09	0.79
$Br(\tau^+ \to \pi^+ \nu)$	0.11	0.11	0.11

where $\tan \beta = 40, \mu = M = 500 \text{GeV}.$

Imposing basic cuts

 $p_T(b, \bar{b}, \pi^+) > 15 \text{ GeV}, \left|\eta(b, \bar{b}, \pi^+)\right| < 3.5, \Delta R(b, \bar{b}, \pi^+) > 0.4$

Set A (m_A=101GeV) Kinematics Distributions

Significance

- Numbers of signal and background events at LHC with 100fb⁻¹. The b-tagging efficiency (50%, for tagging both b and \overline{b} jets) is included, and the kinematic cuts listed in each column are applied sequentially.
- Signal: *AH*⁺

	Basic Cuts	$E_T > 50$	$P_{T}^{\pi} > 40$	$90 < M_{b\overline{b}} < 110$ [GeV]
AH^+	507	391	241	216
HH^+	48	38	24	0
$Wb\overline{b}$	11555	3111	864	67
$t\overline{b}$	1228	614	163	12
Wg	567	236	68	11
$t\overline{t}$	110	80	17	2
Signal (S)	507	391	241	216
Bckg (B)	13507	4078	1135	92
S/B	0.038	0.095	0.212	2.35
S/\sqrt{B}	4.36	6.12	7.14	22.5
$\sqrt{S+B}/S$	0.23	0.17	0.15	0.08

Constraint on MSSM Case A (X = $b\overline{b}$, Y = $\tau^+ v$) Case B (X = $b\overline{b}$, Y = $\tau^+ v$) 0.3 Case C (X = $b\overline{b}$, Y = $t\overline{b}$) 0.2 ∇ 0.1100 150 200 250 300 M_A [GeV] Constraints on the product of branching ratios $B(A \to b\bar{b}) \times B(H^+ \to \tau^+ \nu_{\tau})$ as a function of M_A for Case A and Case B, and $B(A \to b\bar{b}) \times B(H^+ \to t\bar{b})$ for Case C, at the LHC, where τ^+ decays into $\pi^+ \bar{\nu}_{\tau}$ channel.

So far so good, BUT

 Why are all the P_T distributions of the signal events much harder than those of the SM backgrounds?

Answer: Matrix element (spin correlations)

A quick question

• What does the matrix element square look like in the c.m. frame?

(a) $(1 + \cos \theta)^2$ (b) $(1 - \cos \theta)^2$ (c) $\sin^2 \theta$ (d) $\sin^2 \frac{\theta}{2}$ (e) $\cos^2 \frac{\theta}{2}$ (f) $\sin^2 \theta \cos^2 \theta$

Matrix element square

$$q \begin{array}{c} p_1 & A p_3 \\ W^{\pm} & H^{\pm} p_4 \end{array}$$

In the c.m. frame

$$p_1 = (E, 0, 0, E)$$

 $p_2 = (E, 0, 0, -E)$
 $p_3 = (E_3, Ps_{\theta}, 0, Pc_{\theta})$
 $p_4 = (E_4, -Ps_{\theta}, 0, -Pc_{\theta})$

$$\begin{split} |\mathcal{M}|^{2} &= \left(\frac{g}{\sqrt{2}}\right)^{2} \left(\frac{g}{2}\right)^{2} \frac{1}{(\hat{s} - m_{W}^{2})^{2} + M_{W}^{2} \Gamma_{W}^{2}} = \left(\frac{g}{\sqrt{2}}\right)^{2} \left(\frac{g}{2}\right)^{2} \frac{1}{(\hat{s} - m_{W}^{2})^{2} + M_{W}^{2} \Gamma_{W}^{2}} \\ &\times \operatorname{Tr}\left[\left(\not p_{3} - \not p_{4}\right) \not p_{1}\left(\not p_{3} - \not p_{4}\right) \not p_{2} P_{R}\right] &\times \left[4\hat{t}\hat{u} - 4m_{A}^{2}m_{H^{+}}^{2}\right] \\ &= \left(\frac{g}{\sqrt{2}}\right)^{2} \left(\frac{g}{2}\right)^{2} \frac{1}{(\hat{s} - m_{W}^{2})^{2} + M_{W}^{2} \Gamma_{W}^{2}} \left(4E^{2}\right) \times \left\{4P^{2} \sin^{2}\theta\right\} \end{split}$$

Matrix element square

$$q \begin{array}{c} p_1 & A p_3 \\ W^{\pm} & H^{\pm} p_4 \end{array}$$

In the c.m. frame

$$p_1 = (E, 0, 0, E)$$

 $p_2 = (E, 0, 0, -E)$
 $p_3 = (E_3, Ps_{\theta}, 0, Pc_{\theta})$
 $p_4 = (E_4, -Ps_{\theta}, 0, -Pc_{\theta})$

$$\begin{split} |\mathcal{M}|^{2} &= \left(\frac{g}{\sqrt{2}}\right)^{2} \left(\frac{g}{2}\right)^{2} \frac{1}{(\hat{s} - m_{W}^{2})^{2} + M_{W}^{2} \Gamma_{W}^{2}} = \left(\frac{g}{\sqrt{2}}\right)^{2} \left(\frac{g}{2}\right)^{2} \frac{1}{(\hat{s} - m_{W}^{2})^{2} + M_{W}^{2} \Gamma_{W}^{2}} \\ &\times \operatorname{Tr}\left[(\not p_{3} - \not p_{4}) \not p_{1}(\not p_{3} - \not p_{4}) \not p_{2} P_{R}\right] &\times \left[4\hat{t}\hat{u} - 4m_{A}^{2}m_{H^{+}}^{2}\right] \\ &= \left(\frac{g}{\sqrt{2}}\right)^{2} \left(\frac{g}{2}\right)^{2} \frac{1}{(\hat{s} - m_{W}^{2})^{2} + M_{W}^{2} \Gamma_{W}^{2}} \left(4E^{2}\right) \times \left\{4P^{2} \sin^{2} \theta\right\} \end{split}$$

VV

Can we get the angular dependence directly without any lengthy calculation?

PDG Book: d-Functions

Wednesday, May 23, 12

Angular momentum in QM

• Consider a vector |j,m
angle J^2 J_3

 $\overline{R_y(\theta)} = e^{i\theta J_y}$

Rotation matrices

$$d_{m \to m'}^{j}(\theta) \equiv d_{m,m'}^{j}(\theta) = \langle jm' | R_{y}(\theta) | jm \rangle$$

The modulus squared is the probability that a particle $J_3 = m$ will have $J_3 = m'$ after the rotation to the new frame.

Rotation matrices of spin-I

(1) Only longitudinal W-boson contributes. (2) A and H^+ stay in p-wave.

Rotation matrices of spin-I

(1) Only longitudinal W-boson contributes.
 (2) A and H⁺ stay in p-wave. What does that mean?

Rotation matrices of spin-I

$$J_y = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$d^1_{-1,0} = -\frac{1}{\sqrt{2}}\sin\theta$$

(1) Only longitudinalW-boson contributes.

(2) A and H^+ stay in p-wave.

Rotation matrices of spin-l

$$J_y = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$d^1_{-1,0} = -\frac{1}{\sqrt{2}}\sin\theta$$

(I) Only longitudinalW-boson contributes.

(2) A and H^+ stay in p-wave.

Large P_T's of A and H⁺ (and their decay products)

Tau is polarized

 Tau-lepton from H⁺ decay is left-handedly polarized

 W_r^+

Tau-lepton from W⁺ decay is right-handedly polarized

$$W_{Left}^{+}$$

$$W_{Left}^{+}$$

$$W_{Left}^{+}$$

$$W_{Left}^{+}$$

$$U_{Left}^{+}$$

$$M_{Left}^{+}$$

$$M_{L$$

$$\frac{\theta}{W} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$$

 $\sqrt{2}$

p_{π^+} depends on τ^+ polarization

• A left-handed τ^+ produces a harder π^+

Homework:

Verify the above angular dependence with the following effective interaction

 $\left(\overline{\partial^{\mu}\pi^{-}}\right)\overline{\tau^{+}}\gamma_{\mu}\overline{P_{L}\nu}$

Interim summary

• Spin correlations force the scalars and its decay products in the signal events being highly boosted while those of the backgrounds are anti-boosted.

Mass measurement of H⁺

• Experimental difficulty:

Given a measured MET, can we tell it is one or two neutrinos?

• Four exceptions:

on mass shell conditions

spin corr.

• $h : h \to W^+ W^- \to \ell^+ \ell'^- \nu \overline{\nu} \to \ell^+ \ell'^- \not E_T$ spin corr.

Transverse Mass

★ TM: measuring the mass of the W-boson in the leptonic decay channel

 $m_T^2 = 2 \left(E_T^{\ell} \not\!\!E_T - p_T^{\ell} \not\!\!p_T \right)$ $= 2 p_T^{\ell} \not\!\!E_T (1 - \cos \phi)$

★ The end point of the transverse mass distribution is the W boson mass.

 $\frac{\mathrm{d}\sigma}{\mathrm{d}m_T^2} \sim \frac{1}{\sqrt{1 - m_T^2/T}}$

H⁺ reconstruction

Spin correlation dominates

Neutrino from tau decay is anti-boosted such that it tends to be very soft.

$$m_T = \sqrt{2p_T(\pi^+) \not E_T(1 - \cos \Delta \phi)}$$

 $\Delta \phi$ is the azimuthal angle between π^+ and \mathbb{E}_T

• Transverse mass of π^+ and μ_{-} • Transverse mass of H+ after imposing the mass window cut on the two b-jets $|M(b\overline{b}) - 165| < 10 \text{ GeV}$

Constraint on MSSM

Auxiliary material (I) Two neutrinos

t-tbar in dilepton mode

\star Four unknowns and four on-shell conditions

Higgs search in WW dilepton mode

Spin correlation demands both leptons moving in parallel

Rainwater, Zeppenfeld, Phys. Rev. D61 (2000) 093005 Q.-H. Cao and C.-R. Chen, Phys. Rev. D76 (2007) 075007 • Transverse cluster mass

 $M_T = \sqrt{2p_T^{LL} \not\!\!E_T (1 - \cos \Delta \phi(p_T^{LL}, \not\!\!E_T))},$

Higgs search in tau-tau mode

Collinear approximation

$$p_{\tau^{+}} = xp_{\pi^{+}} + (1-x)p_{\nu_{1}}$$

$$p_{\tau^{-}} = yp_{\pi^{-}} + (1-y)p_{\nu_{2}}$$

$$\mathbb{E}_{x} = \left(\frac{1}{x} - 1\right)p_{\pi^{+}}^{x} + \left(\frac{1}{y} - 1\right)p_{\pi^{-}}^{x}$$

$$\mathbb{E}_{y} = \left(\frac{1}{x} - 1\right)p_{\pi^{+}}^{y} + \left(\frac{1}{y} - 1\right)p_{\pi^{-}}^{y}$$

 $\sqrt{9}$

further demands x > 0, y > 0

Plehn, Rainwater, Zeppenfeld, Phys. Rev. D61 (2000) 093005

Auxiliary material (II)

W-boson Helicity as a measure of the chirality structure of the W-t-b coupling

W-boson helicity

can be measured from the charged-lepton angular distribution

W Helicity from Top Decay

• A good probe of the handness of W-t-b coupling

$$\frac{1}{\Gamma_t} \frac{\mathrm{d}\Gamma_t}{\mathrm{d}\cos\theta} = \mathbf{f}_0 \frac{3}{4} \sin^2\theta + \mathbf{f}_- \frac{3}{8} (1 - \cos\theta)^2 + \mathbf{f}_+ \frac{3}{8} (1 + \cos\theta)^2$$

$$\cos\theta \simeq \frac{2m_{be}^2}{m_t^2 - m_W^2} - 1$$

In the SM at the tree level:

Quizzes

 \bullet Angular distribution of the Drell-Yan process $u\bar{d} \to e^+\nu$

Quizzes

 \bullet Angular distribution of the Drell-Yan process $u \overline{d} \to e^+ \nu$

$d_{1,1}^1 = 1 + \cos \theta$

Quizzes

 \bullet Angular distribution of the single-top process $ud \to tb$

 \mathcal{U}

b

 \overline{d}

$\begin{array}{c} \textbf{Quizzes} \\ \text{Angular distribution of the single-top process } u \overline{d} \rightarrow t \overline{b} \\ \hline u & & \\ \overline{d} & & \\ \hline d & & \\ \end{array}$

 \overline{d} .

 $d_{1,0}^1 = \sin\theta$

 \mathcal{U}

 θ

 \overline{d}

 \mathcal{U}

Quizzes Angular distribution of the single-top process $u\overline{d} \to t\overline{b}$

 \overline{d}

 $d_{1,0}^{1}$

 \mathcal{U}

θ

 \overline{d}

 \mathcal{U}

 θ

 $=\sin\theta$

 $\mathcal{M} \propto m_t$