Electroweak Precision at CHF and SppC

Testing the consistence of the SM
 Indirect search of NP beyond the SM

Qing-Hong Cao (曹庆宏) Peking University

On behalf of Chong Sheng Li, Zhao Li, Li-Lin Yang, Shou-Hua Zhu

Top discovery: EW theory tests at Loop level

W-boson, Top-quark and Higgs boson

• Highly correlated at the quantum level

Top quark and 125GeV Higgs boson

Higgs boson couplings

• New set of reference SM parameters $m_H \sim 126 \text{ GeV}$ $\Gamma_H = 4.2 \text{ MeV}$ $\lambda = (m_H/v)^2/2 = 0.131$

$Br(H \to WW^*) = 23\%$	*	-2lnλ(μ)<1 Intervals	2011 - 2012 Data
$Br(H \to ZZ^*) = 2.9\%$	*	ATLAS Preliminary W,Z H → bb √s = 7 TeV: ∫Ldt = 4.6-4.7 fb ⁻¹	
$Br(H \to bb) = 56\%$	*	$H \rightarrow \tau\tau$ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.7 \text{ fb}^{-1}$ $H \rightarrow WW^{(*)} \rightarrow IvIv$	
$Br(H \to cc) = 2.8\%$		$\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.7 \text{ fb}^{-1}$ $H \longrightarrow \gamma \gamma$ $\sqrt{s} = 8 \text{ TeV}: (1 dt = 5.9 \text{ fb}^{-1})$	
$Br(H \to \tau \tau) = 6.2\%$	*	$\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.8 \text{ fb}^{-1}$ H $\rightarrow ZZ^{\binom{n}{2}} \rightarrow IIII$	
$Br(H \to \mu\mu) = 0.021\%$		√s = 8 TeV: ∫Ldt = 5.8 fb ⁻¹ √s = 7 TeV: ∫Ldt = 4.8 fb ⁻¹	-
$Br(H \to gg) = 8.5\%$		Combined (8 = 8 TeV: fLdt = 5.8 - 5.9 fb ⁻¹ (8 = 7 TeV: fLdt = 4.6 - 4.8 fb ⁻¹	• $\mu = 1.2^{+0.3}_{-0.3}$
$Br(H \to \gamma \gamma) = 0.23\%$	*	-1	0 1
$\operatorname{Br}(H \to \gamma Z) = 0.16\%$	*	S	ignal strength (μ)

Higgs boson couplings at LC Peskin, 1208.5152

e⁺e⁻ collider at 250 GeV

- The LHC 7-8TeV results imply no need for a LEP above 500 GeV.
- If the simple scalar Higgs model is correct, the Higgs couplings to each particle is proportional to its mass.

We can test this hypothesis to high accuracy.

Higgs effective coupling

CHF at 250 GeV

Test the notorious
 3 sigma deviation
 in the A_{FB} of
 bottom quark

 Measure threegauge-boson coupling

7 effective couplings

	Measurement	Pull	Pull -3 -2 -1 0 1 2 3
m _z [GeV]	91.1875 ± 0.0021	.04	
Г _Z [GeV]	2.4952 ± 0.0023	46	-
$\sigma_{hadr}^{0}\left[nb ight]$	41.540 ± 0.037	1.62	
R _I	20.767 ± 0.025	1.09	
A ^{0,I} _{fb}	0.01714 ± 0.00095	.79	-
A _e	0.1498 ± 0.0048	.41	-
Α _τ	0.1439 ± 0.0041	96	-
$sin^2 \theta_{eff}^{lept}$	0.2322 ± 0.0010	.78	-
m _w [GeV]	80.446 ± 0.040	1.32	
R _b	0.21664 ± 0.00068	1.32	
R _c	0.1729 ± 0.0032	.20	•
A ^{0,b}	0.0982 ± 0.0017	-3.20	
A ^{0,c} _{fb}	0.0689 ± 0.0035	-1.48	
A _b	0.921 ± 0.020	68	-
A _c	0.667 ± 0.026	05	
A _l	0.1513 ± 0.0021	1.68	
sin ² θ _W	0.2255 ± 0.0021	1.20	
m _w [GeV]	80.452 ± 0.062	.95	
m _t [GeV]	174.3 ± 5.1	27	-
$\Delta lpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	36	
			-3 -2 -1 0 1 2 3

50 TeV versus 14 TeV

Parton distribution function

Gluon induced channels are highly suppressed, while the quark-antiquark channels are less suppressed.

 For heavy resonance production, the quark-(anti)quark initial states dominate.

Proton-Proton at 50⁺ TeV

The cross sections of quark-quark initial state increase by a factor of 3-5 while the cross sections of gluon-gluon initial state increase by a factor 5-10.

Qing-Hong Cao

NLO QCD corrections to heavy quark production

• QQ production via the QCD Interaction

PDF uncertainties

Berger and QHC, Phys. Rev. D81 (2010) 035006

Pros and Cons of 50 TeV SppC

 The effective (x) is lowered by a factor of 3.5 when machine energy increases from 14TeV to 50TeV. For a TeV resonance,

 $\langle x \rangle_{14} \sim \frac{\text{TeV}}{14 \text{ TeV}} \sim 0.07$ $\langle x \rangle_{50} \sim \frac{\text{TeV}}{50 \text{ TeV}} \sim 0.02$ The gluon PDF exhibits a larger uncertainty.

New Data \longrightarrow Proton structure in small x

The cross section of New physics resonance (in the large \large \large x \rangle region) production increases less than the cross section of the SM backgrounds (in the small \large x \rangle region).

What is not measured yet • One last not-measured fermion gauge coupling $g_Z t \bar{t}$

It always comes together with W-t-b coupling.

• Neutrino: Dirac or Majorana

• Higgs self interaction coupling

EWPT: Bottom-Up approach

- Effective Field Theory
 - Gauge invariant (less model independent)
 - Easy to track the origin and order of NP
 - Too many operators

- Effective Lagrangian (effective coupling)
 More general (Lorentz invariant)
 - Tree and loop effects messed up.

Tree-level induced dim-6 operators

$$\begin{array}{rcl}
\mathcal{O}_{\phi q}^{(1)} &=& i \left(\phi^{\dagger} D_{\mu} \phi\right) \left(\bar{q} \gamma^{\mu} q\right), \\
\mathcal{O}_{\phi q}^{(3)} &=& i \left(\phi^{\dagger} \tau^{I} D_{\mu} \phi\right) \left(\bar{q} \gamma^{\mu} \tau^{I} q\right), \\
\mathcal{O}_{\phi t} &=& i \left(\phi^{\dagger} D_{\mu} \phi\right) \left(\bar{t}_{R} \gamma^{\mu} t_{R}\right), \\
\mathcal{O}_{\phi b} &=& i \left(\phi^{\dagger} D_{\mu} \phi\right) \left(\bar{b}_{R} \gamma^{\mu} b_{R}\right), \\
\mathcal{O}_{\phi \phi} &=& \left(\phi^{\dagger} \epsilon D_{\mu} \phi\right) \left(\bar{t}_{R} \gamma^{\mu} b_{R}\right), \\
\end{array}$$

Effective wtb, ztt and zbb couplings

Effective Wtb, Ztt, Zbb couplings

• New parameterization of couplings

$$\mathcal{O}_{Wtb} = \frac{g}{\sqrt{2}} \mathcal{F}_L W^+_\mu \bar{t}_L \gamma^\mu b_L + h.c. ,$$

$$\mathcal{O}_{Zt\bar{t}} = \frac{g}{2c_w} Z_\mu \left(2\mathcal{F}_L \bar{t}_L \gamma^\mu t_L + \mathcal{F}_R \bar{t}_R \gamma^\mu t_R \right)$$

• The coefficients of the left-handed neutral and charged currents are related,

which is predicted by the EW gauge symmetry after the stringent constraint on Zb_Lb_L imposed.

How to probe such a correlation

$$\mathcal{O}_{Wtb} = \frac{g}{\sqrt{2}} \mathcal{F}_L W^+_\mu \bar{t}_L \gamma^\mu b_L + h.c. ,$$

$$\mathcal{O}_{Zt\bar{t}} = \frac{g}{2c_w} Z_\mu \left(2\mathcal{F}_L \bar{t}_L \gamma^\mu t_L + \mathcal{F}_R \bar{t}_R \gamma^\mu t_R \right)$$

• At the Hadron Collider

 U. Baur, A. Juste, L.H. Orr, D. Rainwater Phys.Rev.D71:054013,2005; Phys. Rev.D73:034016,2006

How to probe such a correlation

$$\mathcal{O}_{Wtb} = \frac{g}{\sqrt{2}} \mathcal{F}_L W^+_\mu \bar{t}_L \gamma^\mu b_L + h.c. ,$$

$$\mathcal{O}_{Zt\bar{t}} = \frac{g}{2c_w} Z_\mu \left(2\mathcal{F}_L \bar{t}_L \gamma^\mu t_L + \mathcal{F}_R \bar{t}_R \gamma^\mu t_R \right)$$

• At the Linear Collider

P. Batra, T. Tait, Phys.Rev.D74:054021,2006 QHC, J. Wudka, Phys.Rev.D74: 094015, 2006

 \overline{b}

Impact of anomalous couplings on σ_t and $\sigma_{t\bar{t}}$

• Inclusive cross sections of single-t and Ztt productions:

$$\sigma_t = \sigma_t^0 \left[1 + 2\mathcal{F}_L + 2\delta V_{tb} + \mathcal{O}\left(\mathcal{F}_L^2, \delta V_{tb}^2\right) \right],$$

$$\sigma_{Zt\bar{t}} = \sigma_{Zt\bar{t}}^0 \left[1 + 4.4\mathcal{F}_L - 1.5\mathcal{F}_R + \mathcal{O}\left(\mathcal{F}_L^2, \mathcal{F}_R^2, \mathcal{F}_L\mathcal{F}_R\right) \right]$$

$$\delta\sigma = (\sigma - \sigma^0)/\sigma^0 \quad \delta V_{tb} = |V_{tb}|^{(\text{exp})} - |V_{tb}|^{(\text{SM})}$$

 $\delta V_{tb} = -0.23\delta\sigma_{Zt\bar{t}} + 0.5\delta\sigma_t - 0.34\mathcal{F}_R$

Ed L. Berger, QHC, Ian Low, Phys.Rev.D80: 074020 (2009)

Note: Vtb cannot be extracted out from single top production alone.

Experiments versus Theories

• Physics is associated with many scales

