Measuring Top-Quark Polarization in Top-Pair + Missing-Energy Events

Reference:
E. L. Berger, Q.-H. Cao, J.-H. Yu, H. Zhang,

Phys. Rev. Lett. 109, 152004 (2012), arXiv:1207.1101

Why top-quark?

- Electroweak triangle
H

$$
W^{ \pm}
$$

Why top-quark?

- Electroweak triangle

Top-quark pair plus missing energy

- Typical collider signature in several NP models
- Minimal Supersymmetric extension of the Standard Model (MSSM)

spin 0

- Little Higgs Model with T-parity (LHT)
- Universal Extra Dimension Model (UED)

spin $1 / 2$

Our goal

- is to find a method to measure top-quark polarization without reconstructing top-quark kinematics.
- Advantages of our method:
\checkmark It is sensitive to the top-quark polarization.
\checkmark It is not sensitive to the mass splitting between a heavy resonance parent and the DM candidate, provided that this splitting is not too small.
\checkmark The difference between t_{L} and t_{R} is not sensitive to the spin of a heavy parent resonance or to the collider energy.

Top quark is very special

- Large mass: $173 \mathrm{GeV} \sim \operatorname{VEV}(246 \mathrm{GeV}) y_{t} \sim O(1)$
- Short lifetime:

- "bare" quark:
spin info well kept among its decay products

Measuring t-polarization

- Traditional method of measuring top-polarization is through the angle between the charged lepton and top-quark spin.

The charged-lepton tends to follow the top-quark spin direction.

Charged lepton distribution

- In the rest frame of the top-quark

$$
\frac{d \Gamma}{d x d \cos \theta}=\frac{\alpha_{W}^{2} m_{t}}{32 \pi A B} x(1-x) \operatorname{Arctan}\left[\frac{A x}{B-x}\right] \frac{1+s_{t} \cos \theta}{2}
$$

$x \equiv 2 E_{\ell} / m_{t}$

$$
\vec{s}_{t}\left(\vec{p}_{t}\right)
$$

$\lambda_{t}=+$ right-handed
$\lambda_{t}=-$ left-handed
Top-quark momentum has to be known.

Top-quark reconstruction

- The charged leptons produced always in association with an invisible neutrino

$$
\begin{aligned}
& p_{x}^{\nu}=E_{T}(x) \quad p_{y}^{\nu}=E_{T}(y) \quad m_{\nu}=0 \\
& p_{z}^{\nu} \text { unknown }
\end{aligned}
$$

- W-boson on-shell condition

$$
m_{W}^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}
$$

$$
\begin{gathered}
\rightarrow p_{z}^{\nu}=\frac{1}{2\left(p_{T}^{e}\right)^{2}}\left[A p_{z}^{e} \pm E_{e} \sqrt{A^{2}-4\left(p_{T}^{e}\right)^{2} झ_{T}^{2}}\right] \\
A=m_{W}^{2}+2 \vec{p}_{T}^{e} \cdot \vec{H}_{T}
\end{gathered}
$$

Difficulty in $t \bar{t}+E_{T}$ events

- It is impossible to reconstruct a top-quark in the leptonic-decay mode. Angular distribution of the charged-lepton cannot be used.

Masses and spins of T_{-}and A_{H} are unknown.

Charged lepton distribution

- In the rest frame of the top-quark

$$
\frac{d \Gamma}{d x d \cos \theta}=\frac{\alpha_{W}^{2} m_{t}}{32 \pi A B} x(1-x) \operatorname{Arctan}\left[\frac{A x}{B-x}\right] \frac{1+s_{t} \cos \theta}{2}
$$

$\lambda_{t}=+$ right-handed
$\lambda_{t}=-$ left-handed
The energy and angle are correlated once top is boosted.

Lepton energy and top-quark polarization

\star Lepton energy distribution is sensitive to top quark polarization.

$$
\begin{aligned}
\frac{d \Gamma\left(\hat{s}_{t}\right)}{d x}= & \frac{\alpha_{W}^{2} m_{t}}{64 \pi A B} \int_{z_{\min }}^{z_{\max }} x \gamma^{2}\left[1-x \gamma^{2}(1-z \beta)\right] \\
& \times\left(1+\hat{s}_{t} \frac{z-\beta}{1-z \beta}\right) \operatorname{Arctan}\left[\frac{A x \gamma^{2}(1-z \beta)}{B-x \gamma^{2}(1-z \beta)}\right] d z
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{\Gamma_{W}}{m_{W}} \quad B=\frac{m_{W}^{2}}{m_{t}^{2}} \approx 0.216 \\
& \gamma=\frac{E_{t}}{m_{t}} \quad \beta=\sqrt{1-1 / \gamma^{2}} \\
& z_{\min }=\max \left[\left(1-1 / \gamma^{2} x\right) / \beta,-1\right] \\
& z_{\max }=\min \left[\left(1-B / \gamma^{2} x\right) / \beta, 1\right]
\end{aligned}
$$

Lepton energy and top-quark polarization

- Define a variable \mathcal{R} to quantify the difference between t_{L} and t_{R}

$$
\mathcal{R}\left(x_{c}\right) \equiv \frac{\operatorname{Area}\left(x_{\ell}<x_{c}\right)}{\operatorname{Area}(\text { tot })}=\operatorname{Area}\left(x_{\ell}<x_{c}\right)
$$

R distribution

$$
\begin{aligned}
\mathcal{R}\left(x_{c}\right)=\frac{3 x_{c}\left(1-\lambda_{t}\right)}{2(1+2 B)}-\frac{3 \lambda_{t} x_{c}^{2}(1-B+\ln B)}{2(1+2 B)(1-B)^{2}} & \mathcal{R}\left(x_{c}\right)
\end{aligned}=\frac{B^{2}(2 B-3)}{(1+2 B)(1-B)^{2}}+\frac{3 x_{c}\left(1-\lambda_{t}\right)}{2(1-B)^{2}(1+2 B)}, ~\left(\frac{3 x_{c}^{2}\left[1+2 \lambda_{t} \ln \left(x_{c} / 2\right)\right]}{4(1-B)^{2}(1+2 B)}+\frac{x_{c}^{3}\left(1+3 \lambda_{t}\right)}{8(1-B)^{2}(1+2 B)}\right.
$$

Lepton energy and top-quark polarization

- Identical decay chains

$$
x_{\ell}^{\prime}=2 E_{\ell+} / E_{\bar{t}}
$$

Toy model mimicking MSSM

- MSSM like:

$$
\mathcal{L}_{\tilde{t} t \tilde{\chi}}=g_{\mathrm{eff}} \tilde{t} \tilde{\chi}\left(\cos \theta_{\mathrm{eff}} P_{L}+\sin \theta_{\mathrm{eff}} P_{R}\right) t
$$

Collider signature

$$
b \bar{b} j j \ell^{+} E_{T}
$$

- Major SM backgrounds

Collider simulation

- Basic selection cuts

$$
m_{\tilde{t}}=360 \mathrm{GeV} \quad m_{\tilde{\chi}}=50 \mathrm{GeV}
$$

$$
\begin{array}{ll}
p_{T}^{\ell}>20 \mathrm{GeV} & p_{T}^{j}>25 \mathrm{GeV} \\
\Xi_{T}>25 \mathrm{GeV} & \Delta R_{j j, \ell j}>0.4 \\
\left|\eta_{\ell, j}\right|<2.5 &
\end{array}
$$

- Hard cuts

$\Phi_{T}>100 \mathrm{GeV} \quad H_{T}>500 \mathrm{GeV}$

$$
H_{T}=p_{T}^{\ell}+p_{T}^{j_{1}}+p_{T}^{j_{2}}+p_{T}^{b}+p_{T}^{\bar{b}}+\not E_{T}
$$

- $\bar{t} \rightarrow 3 j$ reconstruction (Minimal- χ^{2} theme)

Loop over all jet combinations and pick up the one minimize

$$
\chi^{2}=\frac{\left(m_{W}-m_{j j}\right)^{2}}{\Delta m_{W}^{2}}+\frac{\left(m_{t}-m_{j j j}\right)^{2}}{\Delta m_{t}^{2}}
$$

Signal versus Backgrounds

- Cross section (fb) of signal and backgrounds at 14 TeV LHC

	Basic	$t_{\text {had }}$ recon.	Hard	\mathbb{Z}_{T} sol.	$\epsilon_{\text {cut }}$
signal	22.26	18.46	8.87	6.51	11.6%
$t \bar{t}$	4347.08	3596.75	154.47	0.91	0.00556%
$t \bar{t} Z$	1.25	1.03	0.34	0.22	5.9%

- E_{T} solution cut

Top-quark reconstruction

- The charged leptons produced always in association with an invisible neutrino

$$
\begin{aligned}
& p_{x}^{\nu}=\boldsymbol{E}_{T}(x) \quad p_{y}^{\nu}=\boldsymbol{E}_{T}(y) \quad m_{\nu}=0 \\
& p_{z}^{\nu} \text { unknown }
\end{aligned}
$$

- W-boson on-shell condition

$$
m_{W}^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}
$$

$$
\begin{gathered}
\rightarrow p_{z}^{\nu}=\frac{1}{2\left(p_{T}^{e}\right)^{2}}\left[A p_{z}^{e} \pm E_{e} \sqrt{A^{2}-4\left(p_{T}^{e}\right)^{2} झ_{T}^{2}}\right] \\
A=m_{W}^{2}+2 \vec{p}_{T}^{e} \cdot \vec{H}_{T}
\end{gathered}
$$

Signal versus Backgrounds

- Cross section (fb) of signal and backgrounds at 14 TeV LHC

	Basic	$t_{\text {had }}$ recon.	Hard	E_{T} sol.	$\epsilon_{\text {cut }}$
signal	22.26	18.46	8.87	6.51	11.6 \%
$t \bar{t}$	4347.08	3596.75	154.47	0.91	0.00556\%
$t \bar{t} Z$	1.25	1.03	0.34	0.22	5.9 \%

- E_{T} solution cut

$$
\begin{gathered}
p_{z}^{\nu}=\frac{1}{2\left(p_{T}^{c}\right)^{2}}\left[A p_{z}^{e} \pm E_{e} \sqrt{A^{2}-4\left(p_{T}^{e}\right)^{2} \bar{F}_{T}^{2}}\right] \\
A \equiv m_{N}^{2}+2 \vec{p}_{T}^{e} \cdot \vec{\nexists}_{T} \\
A^{2}-4\left(p_{T}^{e}\right)^{2} \not \#_{T}^{2} \leq 0
\end{gathered}
$$

$\mathcal{R}\left(x_{c}\right)$ versus $\mathcal{R}^{\prime}\left(x_{c}\right)$

$$
x_{\ell}=2 E_{\ell^{+}} / E \quad x_{\ell}^{\prime}=2 E_{\ell^{+}} / E
$$

\mathcal{R}^{\prime} distribution

- t_{L} and t_{R} are separated

LHC: $14 \mathrm{TeV}, 100 \mathrm{fb}^{-1}$

Final remark

- Our method is also good for discovering new physics.

Summary

- Conventional method of measuring top-quark polarization in the charged lepton angle distribution failed in $t \bar{t}+\#_{T}$ events.
- The long ignored lepton energy could also be used to measure top-quark polarization without reconstructing the top-quark kinematics.
- The information of the mass and spin of new heavy particles in the intermediate state is no longer needed.

Probe the interaction before mass and spin

THANK YOU!

