Measuring Top-Quark Polarization in Top-Pair + Missing-Energy Events

Qing-Hong Cao Peking University

Reference:

E. L. Berger, Q.-H. Cao, J.-H. Yu, H. Zhang, Phys. Rev. Lett. 109, 152004 (2012), arXiv:1207.1101

• Electroweak triangle

t

Qing-Hong Cao

• Electroweak triangle

Qing-Hong Cao

Flavor breaking t

 W^{\pm}

• Electroweak triangle

Qing-Hong Cao

Flavor breaking

Symmetry breaking t

 W^{\pm}

H

?)

 W^+

 \mathcal{U}

 W^{-}

×

 g^2

Seminar @ Huazhong Normal University

Seminar @ Huazhong Normal University

Seminar @ Huazhong Normal University

Top-quark pair plus missing energy

• Typical collider signature in several NP models

 Minimal
 Supersymmetric extension of the Standard Model (MSSM)

spin 0

- Little Higgs Model with T-parity (LHT)
- Universal Extra Dimension Model (UED)

spin 1/2

Our goal

- is to find a method to measure top-quark polarization without reconstructing top-quark kinematics.
- Advantages of our method:
 - \checkmark It is sensitive to the top-quark polarization.
 - ✓ It is not sensitive to the mass splitting between a heavy resonance parent and the DM candidate, provided that this splitting is not too small.
 - ✓ The difference between t_L and t_R is not sensitive to the spin of a heavy parent resonance *or* to the collider energy.

Top quark is very special

• Large mass: 173 GeV ~ VEV (246GeV) $y_t \sim O(1)$

ss W+

b

 $\Lambda_{
m QCD}$

 $3 \times 10^{-24} \text{ s}$

• Short lifetime:

Top

 $egin{array}{cccc} 1 & 1 \ \overline{m_t} & \overline{\Gamma_t} \ 5 imes 10^{-27} \ {
m s} & 5 imes 10^{-25} \ {
m s} \end{array}$

hadronization

"bare" quark: spin info well kept among its decay products

Measuring *t*-polarization

• Traditional method of measuring top-polarization is through the angle between the charged lepton and top-quark spin.

The charged-lepton tends to *follow* the top-quark spin direction.

Qing-Hong Cao

Charged lepton distribution

• In the rest frame of the top-quark

Qing-Hong Cao

Top-quark reconstruction

• The charged leptons produced always in association with an invisible neutrino

$$p_x^{\nu} = E_T(x) \quad p_y^{\nu} = E_T(y) \quad m_{\nu} = 0$$

 p_z^{ν} unknown

• W-boson on-shell condition

$$m_W^2 = (p_\ell + p_\nu)^2$$

$$> p_z^{\nu} = \frac{1}{2(p_T^e)^2} \left[A \, p_z^e \pm E_e \sqrt{A^2 - 4 \, (p_T^e)^2 \, \not\!\!\!E_T^2} \right]$$

$$A = m_W^2 + 2\,\vec{p}_T^{\ e}\cdot\vec{E}_T$$

Qing-Hong Cao

Difficulty in $t\bar{t} + \not E_T$ events

It is impossible to reconstruct a top-quark in the leptonic-decay mode.
 Angular distribution of the charged-lepton cannot be used.

Masses and spins of T_{-} and A_{H} are unknown.

Qing-Hong Cao

Charged lepton distribution

• In the rest frame of the top-quark

Qing-Hong Cao

Lepton energy and top-quark polarization

\star Lepton energy distribution is sensitive to top quark polarization.

Qing-Hong Cao

Lepton energy and top-quark polarization

• Define a variable \mathcal{R} to quantify the difference between t_L and t_R

Qing-Hong Cao

R distribution

Qing-Hong Cao

Seminar @ Huazhong Normal University

Lepton energy and top-quark polarization

• Identical decay chains

$$x'_{\ell} = 2E_{\ell^+} / \underline{E_{\bar{t}}}$$

Qing-Hong Cao

Toy model mimicking MSSM

• MSSM like:

$$\mathcal{L}_{\tilde{t}t\tilde{\chi}} = g_{\text{eff}}\tilde{t}\tilde{\chi}(\cos\theta_{\text{eff}}P_L + \sin\theta_{\text{eff}}P_R)t$$

Collider signature $b\bar{b}jj\ell^+E_T$

• Major SM backgrounds

Qing-Hong Cao

Collider simulation

Basic selection cuts
p^ℓ_T > 20 GeV p^j_T > 25 GeV
𝔅_T > 25 GeV ΔR_{jj,ℓj} > 0.4
|η_{ℓ,j}| < 2.5
Hard cuts

 $\overline{m_{\tilde{t}}} = 360 \text{ GeV} \ m_{\tilde{\chi}} = 50 \text{ GeV}$

 $\mathbb{E}_T > 100 \text{ GeV} \quad H_T > 500 \text{ GeV}$

• $\bar{t} \rightarrow 3j$ reconstruction (Minimal- χ^2 theme) Loop over all jet combinations and pick up the one minimize

$$\chi^{2} = \frac{(m_{W} - m_{jj})^{2}}{\Delta m_{W}^{2}} + \frac{(m_{t} - m_{jjj})^{2}}{\Delta m_{t}^{2}}$$

Qing-Hong Cao

Signal versus Backgrounds

• Cross section (fb) of signal and backgrounds at 14TeV LHC

	Basic	t_{had} recon.	Hard	$\not\!$	$\epsilon_{ m cut}$
signal	22.26	18.46	8.87	6.51	11.6 %
$t\overline{t}$	4347.08	3596.75	154.47	0.91	0.00556%
$t\overline{t}Z$	1.25	1.03	0.34	0.22	5.9~%

• E_T solution cut -

17/24

Qing-Hong Cao

Top-quark reconstruction

• The charged leptons produced always in association with an invisible neutrino

$$p_x^{\nu} = E_T(x) \quad p_y^{\nu} = E_T(y) \quad m_{\nu} = 0$$

 p_z^{ν} unknown

• W-boson on-shell condition

$$m_W^2 = (p_\ell + p_\nu)^2$$

$$> p_z^{\nu} = \frac{1}{2(p_T^e)^2} \left[A \, p_z^e \pm E_e \sqrt{A^2 - 4 \, (p_T^e)^2 \, \not\!\!E_T^2} \right]$$

$$A = m_W^2 + 2\,\vec{p}_T^{\ e}\cdot\vec{E}_T$$

Qing-Hong Cao

Signal versus Backgrounds

 Cross section (fb) of signal and backgrounds at 14TeV LHC

	Basic	t_{had} recon.	Hard	$\not\!$	$\epsilon_{ m cut}$
signal	22.26	18.46	8.87	6.51	11.6 %
$t\overline{t}$	4347.08	3596.75	154.47	0.91	0.00556%
$t\bar{t}Z$	1.25	1.03	0.34	0.22	5.9~%

• E_T solution cut -

$$p_{z}^{\nu} = \frac{1}{2(p_{T}^{e})^{2}} \left[A \, p_{z}^{e} \pm E_{e} \sqrt{A^{2} - 4 \, (p_{T}^{e})^{2} \not\!\!{E}_{T}^{2}} \right]$$
$$A \equiv m_{W}^{2} + 2 \, \vec{p}_{T}^{e} \cdot \not\!\!{E}_{T}^{e}$$

$$A^2 - 4 \, (p_T^e)^2 \, E_T^2 \le 0$$

Qing-Hong Cao

Seminar @ Huazhong Normal University

\mathcal{R}' distribution

Qing-Hong Cao

Seminar @ Huazhong Normal University

Final remark

• Our method is also good for discovering new physics.

Qing-Hong Cao

Summary

- Conventional method of measuring top-quark polarization in the charged lepton angle distribution failed in t t + E_T events.
- The long ignored lepton energy could also be used to measure top-quark polarization without reconstructing the top-quark kinematics.

• The information of the mass and spin of new heavy particles in the intermediate state is no longer needed.

 \rightarrow

Probe the interaction before mass and spin

Qing-Hong Cao

THANK HANNE