粒子物理 9. 正负电子湮没过程 (Trace Technique)

北京大学物理学院

Quantum Electrodynamics (QED) 2014/11/2 $\tilde{\mathcal{K}}(n)$ $\tilde{\mathcal$ Jet (喷油) - 夸克或胶的实验观测物理量 ile Zem

Feynman Rules for Feynman diagrams 3) Vertex: Propagator -i Juv An Xmix AV 92+iZ, e→ot e+ (-ie/µ) i(p+m)Ψ p²m²ti2 其り $P^2 = P_\mu P^M$, $p = \delta_\mu P^M$ External Particle's wave functions S (P3) 海着 U'Cli) $\sim \varepsilon_{K_2}^{*}(K_2)$ 爱彩线 $E_{\mu^{(k_i)}}$,写播幅 $\sim e^+ V^{S}(P_4)$ P4 -e+ final initia

 $\overline{\mathcal{A}}(3): e^+e^- \longrightarrow \mu^+\mu^-$ 散射 $g = P_1 + P_2$ $= P_3 + P_4$ 教射振畅为 $-iM = \left[U(P_3) (ieQ P^3) U(P_4) \right] \frac{-if_{x\beta}}{g^2 + i\epsilon} \left[\overline{U}(P_2) (-ieP^3) U(P_1) \right]$ $= \left(\frac{-e^{2}Q_{e}Q_{\mu}}{q_{2}}\right) \left[\overline{U}(P_{3}) \gamma^{\vee} V(P_{4}) \right] \left[\overline{U}(P_{2}) \gamma_{\vee} U(P_{1}) \right]$

在QED、QCD和弱相互作用顶点都可以写作为 $\overline{u}(p)\Gamma u(p')$

$\overline{u}(p) \Gamma u(p') = \overline{u}(p)_j \Gamma_{ji} u(p')_i$

指标意味着求和。注意:上式仅仅是个复数。

If this is not immediately obvious, consider the 2×2 case of $\mathbf{c}^{\mathrm{T}}\mathbf{B}\mathbf{a}$, where the equivalent product can be written as

$$(c_1, c_2) \begin{pmatrix} B_{11} & B_{12} \\ B_{22} & B_{22} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = c_1 B_{11} a_1 + c_1 B_{12} a_2 + c_2 B_{21} a_1 + c_2 B_{22}$$
$$= c_j B_{ji} a_i,$$

which is just the sum over the product of the components of **a**, **c** and **B**.

童动学程老听我们, 散射脑。像教子教射振畅模才

 $|\mathcal{M}|^2 = \mathcal{M}^+ \mathcal{M}$ $= \left[\frac{-e^{2} Q_{e} Q_{\mu}}{g^{2}}\right]^{2} \left[\overline{U}(P_{3}) \mathcal{X}^{\beta} \mathcal{V}(P_{3})\right]^{\dagger} \left[\overline{U}(P_{3}) \mathcal{X}^{\nu} \mathcal{V}(P_{4})\right]$ $= \left[\frac{-e^{2} Q_{e} Q_{\mu}}{g^{2}}\right]^{2} \left[\overline{U}(P_{3}) \mathcal{X}^{\beta} \mathcal{V}(P_{3})\right]^{\dagger} \left[\overline{U}(P_{3}) \mathcal{X}^{\nu} \mathcal{V}(P_{4})\right]$ $[A] \mathcal{F} \left[\overline{\mathcal{U}}(P_3) \gamma^{\beta} \mathcal{V}(P_4) \right]^{\dagger} = \left[u^{\dagger} \gamma^{\circ} \gamma^{\beta} \mathcal{V} \right]^{\dagger} = v^{\dagger} (\gamma^{\beta})^{\dagger} (\gamma^{\circ})^{\dagger} (u^{\dagger})^{\dagger}$ $(\gamma)^{+} = \gamma^{\circ}$ $= \mathcal{V}^{\dagger} \mathcal{F}^{\circ} \mathcal{F}^{\circ} (\mathcal{F}^{\circ})^{\dagger} \mathcal{F}^{\circ} \mathcal{U}$

$$(\chi_{j})^{\dagger} = -\chi_{j}$$

 $(\chi^{\circ})^{2} = |$

$$[\overline{3}]\overline{3}\overline{3}\overline{2}\left[\overline{V}(P_{2})\mathcal{X}_{B}U(P_{1})\right]^{\dagger}=\overline{U}(P_{1})\mathcal{X}_{B}V(P_{2})$$

 $= \overline{v} \gamma \beta u$

オテ設有ね(いら) e⁺ 和 e⁻ 入射彩速度, 茂(江宮室) たっ奈純
求和幼. 对来怎自旋求和2, 则有

$$\boxed{\operatorname{Im}_{1}^{2} = \frac{1}{2} \times \frac{1}{2} \times \sum_{\text{spin}} |\mathsf{m}|^{2}}_{\text{Spin}}$$

 $\underbrace{\sum_{p \in \mathbb{N}} |\mathsf{m}|^{2} = \sum_{p \in \mathbb{N}} \left(\frac{e^{4} Q_{\mu}^{2}}{S^{2}} \right) \left[\overline{\nu}(p_{4}) \, \mathcal{Y}^{\beta} \, u(p_{3}) \, \overline{\nu}(p_{1}) \, \mathcal{Y}^{\nu} \, \nu(p_{4})} \right]}_{\text{Spin}}$
 $\left[\overline{\nu}(p_{1}) \, \mathcal{Y}_{\beta} \, \nu(p_{2}) \, \overline{\nu}(p_{2}) \, \mathcal{Y}_{\alpha} \, u(p_{1})} \right]$

我们可得

 $\sum_{spin} \left[\overline{V}_{a}(P_{4}) \delta_{ab} \mathcal{U}_{b}(P_{3}) \mathcal{U}_{c}(P_{3}) \delta_{cd} \mathcal{V}_{d}(P_{4}) \right]$ $= \sum_{\text{Spin}} \left[V_{d}(P_{4}) \overline{V}_{a}(P_{4}) \gamma_{ab}^{\beta} U_{b}(P_{3}) \overline{U}_{c}(P_{3}) \gamma_{cd}^{\alpha} \right]$ $= \left[V \left[\left(\mathcal{Y}_{4} - m_{\mu} \right) \mathcal{Y}^{\beta} \left(\mathcal{Y}_{3} + m_{\mu} \right) \mathcal{Y}^{\alpha} \right] \right]$ $\frac{13}{12}, \sum_{\text{spin}} \left[\overline{U}(P_1) \delta_{\text{p}} V(P_2) \overline{U}(P_2) \delta_{\alpha} U(P_1) \right] = Tr(P_1 \delta_{\text{p}} P_2 \delta_{\alpha})$ $|m|^{2} = \left(\frac{1}{2}x_{2}^{1}\right) \operatorname{Tr}\left(\mathcal{P}_{1}\mathcal{P}_{\beta}\mathcal{P}_{2}\mathcal{V}_{\alpha}\right) \operatorname{Tr}\left(\mathcal{P}_{4}-m_{\mu}\right) \mathcal{V}^{\beta}\left(\mathcal{P}_{3}+m_{\mu}\right) \mathcal{V}^{\prime}\left(\frac{e^{4}\mathcal{Q}_{\mu}}{s^{2}}\right)$

Trace Theorems

 $\operatorname{Tr}(A + B) \equiv \operatorname{Tr}(A) + \operatorname{Tr}(B)$ $\operatorname{Tr}(AB \dots YZ) \equiv \operatorname{Tr}(ZAB \dots Y)$

 $\mathrm{Tr}\left(\gamma^{\mu}\gamma^{\nu}\right) = 4g^{\mu\nu}$

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} \equiv 2g^{\mu\nu}I,$$

 $\mathrm{Tr}\left(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\right)=0$

$$\operatorname{Tr}\left(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\right) = \operatorname{Tr}\left(\gamma^{5}\gamma^{5}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\right) = \operatorname{Tr}\left(\gamma^{5}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{5}\right)$$

$$= -\mathrm{Tr}\left(\gamma^5\gamma^5\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\right)$$

Trace Theorems

$$\operatorname{Tr}\left(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\right) = 4g^{\mu\nu}g^{\rho\sigma} - 4g^{\mu\rho}g^{\nu\sigma} + 4g^{\mu\sigma}g^{\nu\rho}.$$

$$\gamma^a \gamma^b = 2g^{ab} - \gamma^b \gamma^a$$

$$\begin{split} \gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma} &= 2g^{\mu\nu}\gamma^{\rho}\gamma^{\sigma} - \gamma^{\nu}\gamma^{\mu}\gamma^{\rho}\gamma^{\sigma} \\ &= 2g^{\mu\nu}\gamma^{\rho}\gamma^{\sigma} - 2g^{\mu\rho}\gamma^{\nu}\gamma^{\sigma} + \gamma^{\nu}\gamma^{\rho}\gamma^{\mu}\gamma^{\sigma} \\ &= 2g^{\mu\nu}\gamma^{\rho}\gamma^{\sigma} - 2g^{\mu\rho}\gamma^{\nu}\gamma^{\sigma} + 2g^{\mu\sigma}\gamma^{\nu}\gamma^{\rho} - \gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{\mu} \end{split}$$

$$\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma} + \gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\gamma^{\mu} = 2g^{\mu\nu}\gamma^{\rho}\gamma^{\sigma} - 2g^{\mu\rho}\gamma^{\nu}\gamma^{\sigma} + 2g^{\mu\sigma}\gamma^{\nu}\gamma^{\rho}$$

Trace Theorems

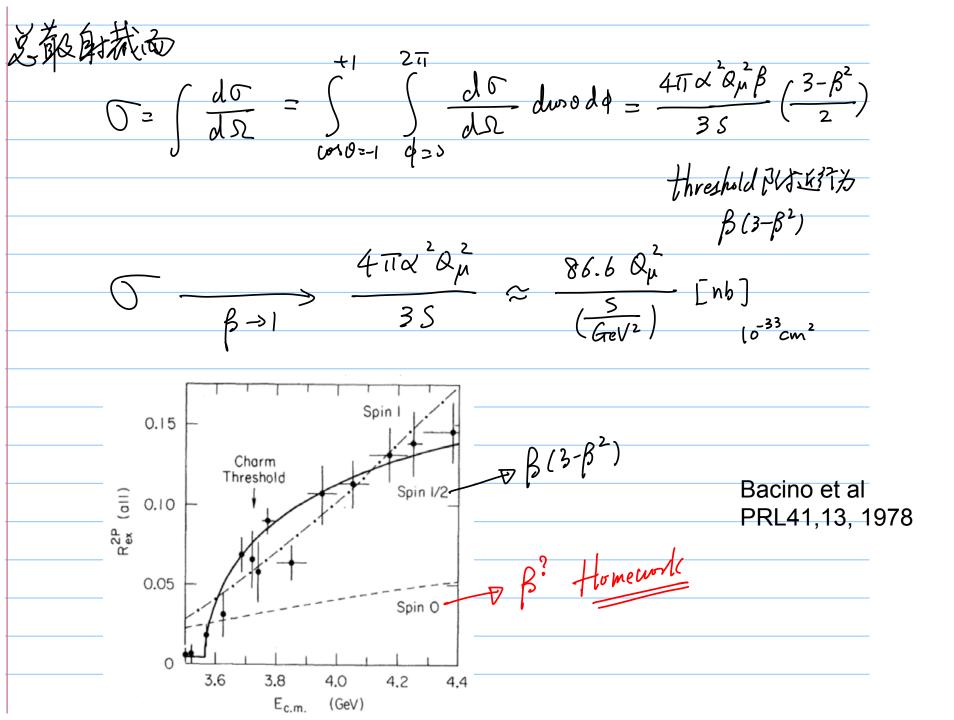
(a) Tr(I) = 4;

- (b) the trace of any odd number of γ -matrices is zero;
- (c) $\operatorname{Tr}(\gamma^{\mu}\gamma^{\nu}) = 4g^{\mu\nu};$
- (d) Tr $(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 4g^{\mu\nu}g^{\rho\sigma} 4g^{\mu\rho}g^{\nu\sigma} + 4g^{\mu\sigma}g^{\nu\rho};$
- (e) the trace of γ^5 multiplied by an odd number of γ -matrices is zero; (f) $\operatorname{Tr}(\gamma^5) = 0$;
- (g) $\operatorname{Tr}\left(\gamma^{5}\gamma^{\mu}\gamma^{\nu}\right) = 0$; and
- (h) $\text{Tr}\left(\gamma^5\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\right) = 4i\varepsilon^{\mu\nu\rho\sigma}$, where $\varepsilon^{\mu\nu\rho\sigma}$ is antisymmetric under the interchange of any two indices.

$$\frac{1}{|m|^{2}} = \frac{1}{2} \times \frac{1}{2} \times \sum_{spin} |m|^{2}} e^{-\frac{1}{2} \sqrt{\frac{1}{2}}} \frac{1}{2} \frac{1}{\sqrt{\frac{1}{p_{1}}}} \frac{1}{2} + \sum_{spin} |m|^{2}} e^{-\frac{1}{2} \sqrt{\frac{1}{p_{1}}}} \frac{1}{\sqrt{\frac{1}{p_{1}}}} \frac{1}{p_{1}} \frac{1}{p_{1}}$$

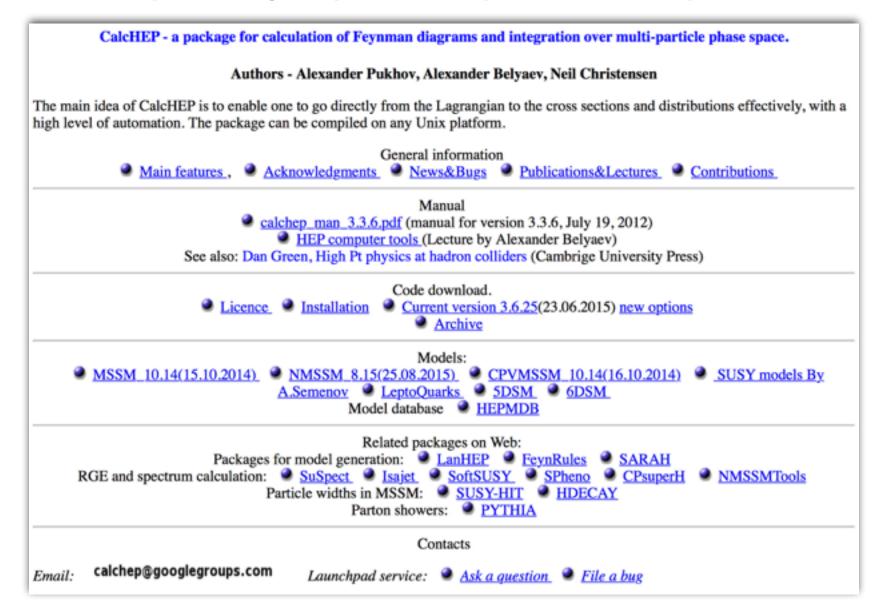
 $\overline{|m|^2} = \left(\frac{e^{4}Q_{\mu}}{z^{2}}\right) \left(\frac{1}{z} \times \frac{1}{z}\right) (4)(4)$ $\times \left\{ (P_{i} \cdot P_{4})(P_{2} \cdot P_{3}) - (P_{1} \cdot P_{2})(P_{3} \cdot P_{4}) + (P_{1} \cdot P_{3})(P_{2} \cdot P_{4}) \right\}$ + $(P_1 \cdot P_4)(P_2 \cdot P_3) - (P_3 \cdot P_4)(P_1 \cdot P_2) + (P_2 \cdot P_4)(P_1 \cdot P_3)$ $+ 4 (P_1 P_2)(P_3 P_4) - (P_1 P_2)(P_3 P_4) - (P_1 P_2)(P_3 P_4)$ $-m_{\mu}^{2}\left[(P_{1},P_{2})-4(P_{1},P_{2})+(P_{1},P_{2})\right]^{2}$ $= \left(\frac{e^{4}R_{\mu}}{2}\right)\left(\frac{1}{2}\times\frac{1}$

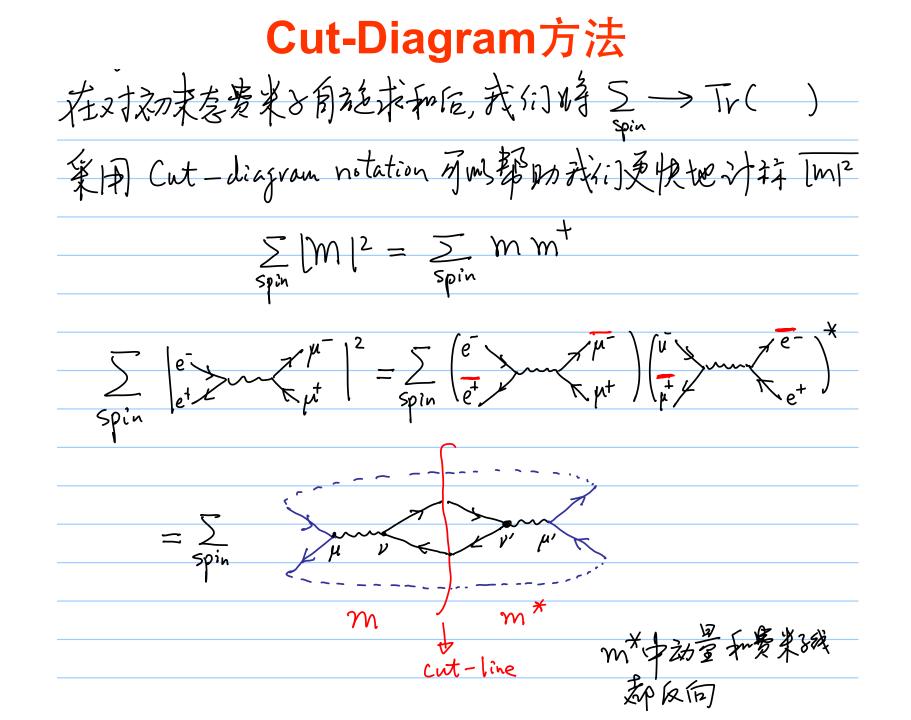
微分散射截面。 $\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\cos\theta \, d\phi} = \frac{1}{64\pi^2 s} \frac{|\vec{P}_s|}{|\vec{P}_l|} - \frac{1}{64\pi^2 s} \frac{|\vec{P}_s|}{|\vec{P}_l|}$ $|m|^2$ ATWS $= \frac{d\sigma}{d\cos\theta \, d\phi} = \frac{\chi^2 \partial \tilde{\mu}}{45} \beta \left(1 + \beta^2 \cos^2\theta + \frac{M_{\mu}^2}{E^2}\right)$ do dΩ $= \frac{\chi^2 \partial_{\mu}^2}{1.5} \beta \left(2 - \beta^2 + \beta^2 \cos^2 \theta \right)$ $\alpha' = \frac{c^2}{4\pi}$ 和端根护的情况下, My << E, β→1 $\frac{d\sigma}{d\Omega} \xrightarrow{\beta \to 1} \frac{Q_{\mu}^{2} \alpha^{2} \beta}{4s} (1 + \omega s^{2} \theta)$



CalcHEP - 高能蒙特卡洛模拟软件

http://theory.sinp.msu.ru/~pukhov/calchep.html





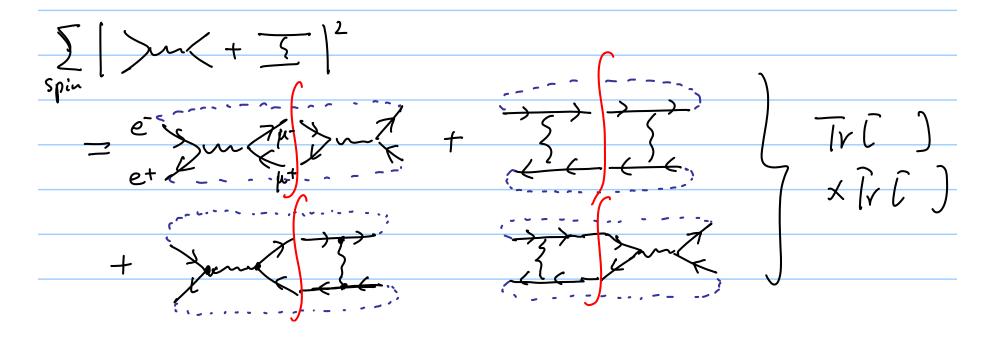
Feynman Rule for Cut-diagrams
() fermion Line

$$i,\alpha$$
 for $(2\pi)\delta^{+}(p^{2}m^{2})(p^{\ell}m)_{pv}\delta_{ij}$
 i,α for j,β
($2\pi)\delta^{+}(p^{2}m^{2})\Theta(p_{0})$
($2gluan$ Line
 $igluan$ Line
 $igluan$ ine
 $igluan$ $igluan$ ine
 $igluan$ ine
 $igluan$ $iglua$

 $\rightarrow \mu^{\top} \mu^{\neg}$ $f_{\mu}^{\dagger} = \sum_{\text{spin}} \left(\frac{e}{e^{\dagger}} \right)^{m}$ 西个封闭的资料图 itz iti * m M $\overline{I_{V}\left[P_{1} \otimes_{\mu} (-P_{2}) \otimes_{\mu}\right] T_{V}\left[\left(P_{3}+m_{\mu}\right) \otimes_{V} (-P_{4}+m_{\mu}) \otimes_{V'}\right] }$ $\times \frac{-g\mu\nu}{q^2} \times \frac{-g\mu'\nu'}{q^2}$ 和客间因子另外计杯) 21

 $= \operatorname{Tr}\left[\mathcal{P}_{1} \mathcal{S}_{\mu'}(-\mathcal{P}_{2}) \mathcal{S}_{\mu}\right] \operatorname{Tr}\left[(\mathcal{A}_{3}+m_{\mu}) \mathcal{S}_{\nu}(-\mathcal{A}_{4}+m_{\mu}) \mathcal{S}_{\nu'}\right]$ $\times \frac{-g\mu\nu}{q^2} \times \frac{-g\mu\nu}{q^2}$ (和客间因子多外计标) $= T_{V}\left[p_{1} \mathcal{X}_{\mu}, p_{2} \mathcal{X}_{\mu} \right] T_{V}\left[(p_{3} + m_{\mu}) \mathcal{X}_{\mu} (p_{4} - m_{\mu}) \mathcal{X}_{\mu'} \right] \frac{1}{g_{4}}$ $= \operatorname{Tr}\left[\mathcal{B}_{1}\mathcal{S}_{\mu}\mathcal{P}_{2}\mathcal{S}_{\mu}\right]\operatorname{Tr}\left[(\mathcal{P}_{4}-m_{\mu})\mathcal{S}^{\mu'}(\mathcal{P}_{3}+m_{\mu})\mathcal{S$ $= \frac{1}{24} \operatorname{Tr} \left[\mathcal{P}_{1} \mathcal{P}_{\beta} \mathcal{P}_{2} \mathcal{V}_{\alpha} \right] \operatorname{Tr} \left[(\mathcal{P}_{4} - m_{\mu}) \mathcal{V}^{\beta} (\mathcal{P}_{3} + m_{\mu}) \mathcal{V}^{\alpha} \right]$

22



FeynCalc - 高能物理符号计算软件

http://www.feyncalc.org

FeynCalc

	•
ocumentation orum	Tools and Tables for Quantum Field Theory Calculations
	⊢ Download ———
	Download releases or check out the code at our Github page.
elated oftware:	
eynArts	r About
popTools prmCalc prm	FeynCalc is a Mathematica package for algebraic calculations in elementary particle physics.
	Some of the features of FeynCalc are:
	 Passarino-Veltman reduction of one-loop amplitudes to standard scalar integrals
	 Tools for frequently occuring tasks like Lorentz index contraction, color factor calculation, Dirac matrix manipulation and traces, etc.
	 Tensor and Dirac algebra manipulations (including traces) in 4 or D dimensions
	Generation of Feynman rules from a lagrangian
	 Tools for non-commutative algebra

Search this site with

Google

Go

Do Fo

R

SU(N) algebra

FeynCalc - 高能物理符号计算软件

Loading the package FeynCalc

<< HighEnergyPhysics`fc`

Loading FeynCalc from /Users/cao/Library/Mathematica/Applications/HighEnergyPhysics **FeynCalc** 8.2.0 For help, type ?FeynCalc, open FeynCalcRef8.nb or visit www.feyncalc.org Loading FeynArts, see www.feynarts.de for documentation

输入散射振幅模方

```
\texttt{term1} = \texttt{Tr}[\texttt{GS}[\texttt{p1}].\texttt{GA}[\beta].\texttt{GS}[\texttt{p2}].\texttt{GA}[\alpha]]
```

```
4\left(-g^{\alpha\,\beta}\,\mathrm{p1}\cdot\mathrm{p2}+\mathrm{p1}^{\beta}\,\mathrm{p2}^{\alpha}+\mathrm{p1}^{\alpha}\,\mathrm{p2}^{\beta}\right)
```

```
\texttt{term2} = \texttt{Tr}[(\texttt{GS}[\texttt{p3}] - \texttt{mf}).\texttt{GA}[\beta].(\texttt{GS}[\texttt{p4}] + \texttt{mf}).\texttt{GA}[\alpha]]
```

```
4\left(\mathrm{mf}^{2}\left(-g^{\alpha\,\beta}\right)-g^{\alpha\,\beta}\,\mathrm{p3}\cdot\mathrm{p4}+\mathrm{p3}^{\beta}\,\mathrm{p4}^{\alpha}+\mathrm{p3}^{\alpha}\,\mathrm{p4}^{\beta}\right)
```

```
numsq = Calc[term1 term2]
```

```
32 \text{ mf}^2 \text{ p1} \cdot \text{p2} + 32 \text{ p1} \cdot \text{p4} \text{ p2} \cdot \text{p3} + 32 \text{ p1} \cdot \text{p3} \text{ p2} \cdot \text{p4}
```

```
spin = (1 / 2) * (1 / 2);
prefactor = (e^4 Q^2 / s^2);
matsq = spin * prefactor * numsq // Simplify
```

```
\frac{8 e^4 Q^2 \left(\mathrm{mf}^2 \mathrm{p1} \cdot \mathrm{p2} + \mathrm{p1} \cdot \mathrm{p4} \mathrm{p2} \cdot \mathrm{p3} + \mathrm{p1} \cdot \mathrm{p3} \mathrm{p2} \cdot \mathrm{p4}\right)}{2 e^4 Q^2 \left(\mathrm{mf}^2 \mathrm{p1} \cdot \mathrm{p2} + \mathrm{p1} \cdot \mathrm{p3} \mathrm{p2} \cdot \mathrm{p4}\right)}
```

 s^2

定义洛伦兹不变量: replace rule #1 $rr1 = {$ Pair[Momentum[p1], Momentum[p1]] $\rightarrow 0$, Pair[Momentum[p2], Momentum[p2]] $\rightarrow 0$, $Pair[Momentum[p3], Momentum[p3]] \rightarrow mf$, $Pair[Momentum[p4], Momentum[p4]] \rightarrow mf,$ $Pair[Momentum[p1], Momentum[p2]] \rightarrow s / 2,$ Pair[Momentum[p1], Momentum[p3]] \rightarrow (mf^2-t) / 2, $Pair[Momentum[p1], Momentum[p4]] \rightarrow (mf^2 - u) / 2,$ $Pair[Momentum[p2], Momentum[p3]] \rightarrow (mf^2 - u) / 2,$ Pair[Momentum[p2], Momentum[p4]] \rightarrow (mf²-t) / 2, Pair[Momentum[p3], Momentum[p4]] \rightarrow (s - 2 mf^2) / 2 $\left\{ p1^2 \rightarrow 0, p2^2 \rightarrow 0, p3^2 \rightarrow mf, p4^2 \rightarrow mf, p1 \cdot p2 \rightarrow \frac{s}{2}, p1 \cdot p3 \rightarrow \frac{1}{2} (mf^2 - t), \right\}$ $p1 \cdot p4 \rightarrow \frac{1}{2}(mf^2 - u), p2 \cdot p3 \rightarrow \frac{1}{2}(mf^2 - u), p2 \cdot p4 \rightarrow \frac{1}{2}(mf^2 - t), p3 \cdot p4 \rightarrow \frac{1}{2}(s - 2mf^2)$

FeynCalc - 高能物理符号计算软件

选取质心系:

In the frame of center of mass of e + and e -

metric = {{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -1, 0}, {0, 0, 0, -1}};
p1 = {
$$\frac{\sqrt{s}}{2}$$
, 0, 0, $\frac{\sqrt{s}}{2}$ };
p2 = { $\frac{\sqrt{s}}{2}$, 0, 0, $-\frac{\sqrt{s}}{2}$ };
p3 = $\frac{\sqrt{s}}{2}$ {1, $\beta \sin[\theta]$, 0, $\beta \cos[\theta]$ };
p4 = $\frac{\sqrt{s}}{2}$ {1, $-\beta \sin[\theta]$, 0, $-\beta \cos[\theta]$ };
rr2 = {t > (p1 - p3).metric.(p1 - p3) // Simplify,
u > (p1 - p4).metric.(p1 - p4) // Simplify}
rr3 = {mf > $\sqrt{1 - \beta^2} * \sqrt{s} / 2$ }

总散射截面

```
\begin{aligned} \text{XSEC}[\text{dsdzfunc}] &:= \text{Module}\Big[\{\text{z}, \text{tmp, integral, result}\}, \\ \text{tmp} &= \text{dsdzfunc} /. \text{ Cos}[\theta] \rightarrow \text{z}; \\ \text{integral} &= \int \text{tmp} \text{dz}; \\ \text{result} &= (\text{integral} /. \text{z} \rightarrow 1) - (\text{integral} /. \text{z} \rightarrow -1); \\ \text{Return}[\text{result}] \\ \Big] \\ \\ \text{XSEC}[\text{dsdz}] // \text{Simplify} \\ &- \frac{2\pi \alpha^2 \beta (\beta^2 - 3) Q^2}{3 s} \end{aligned}
```

微分散射截面

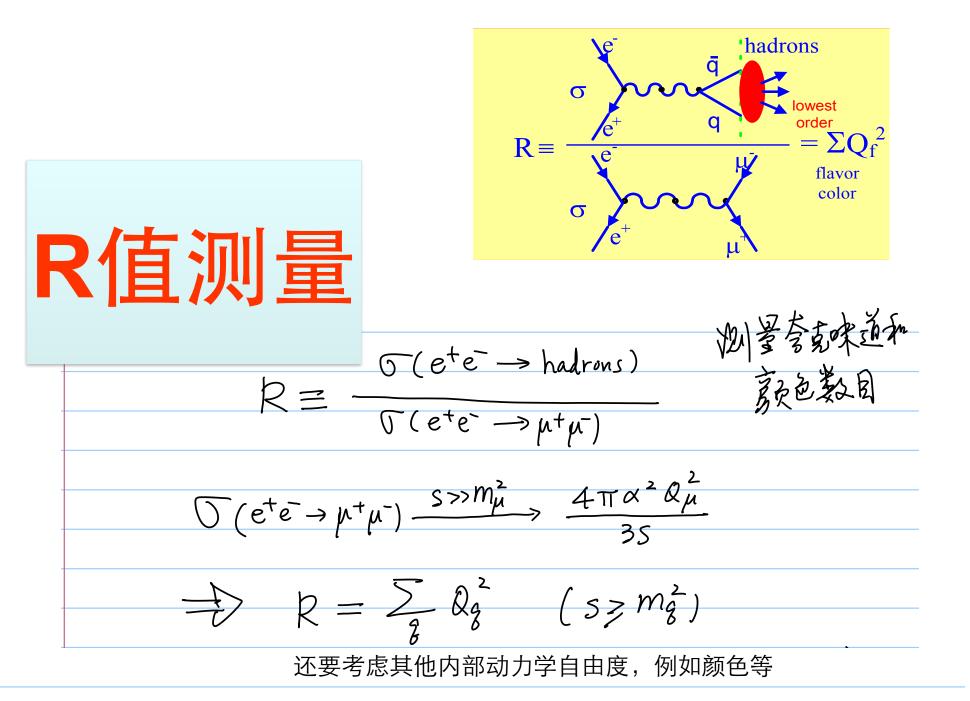
$$dsd\Omega = \frac{1}{64 \pi^2 s} *\beta * matsq / . rr1 / . \{e \rightarrow Sqrt[4 \pi \alpha]\}$$

$$\frac{2 \alpha^2 \beta Q^2 \left(\frac{mf^2 s}{2} + \frac{1}{4} (mf^2 - t)^2 + \frac{1}{4} (mf^2 - u)^2\right)}{s^3}$$

$$dsd\Omega = dsd\Omega / . rr2 / . rr3 / / Expand$$

$$\frac{\alpha^2 \beta^3 Q^2 \cos^2(\theta)}{4s} - \frac{\alpha^2 \beta^3 Q^2}{4s} + \frac{\alpha^2 \beta Q^2}{2s}$$

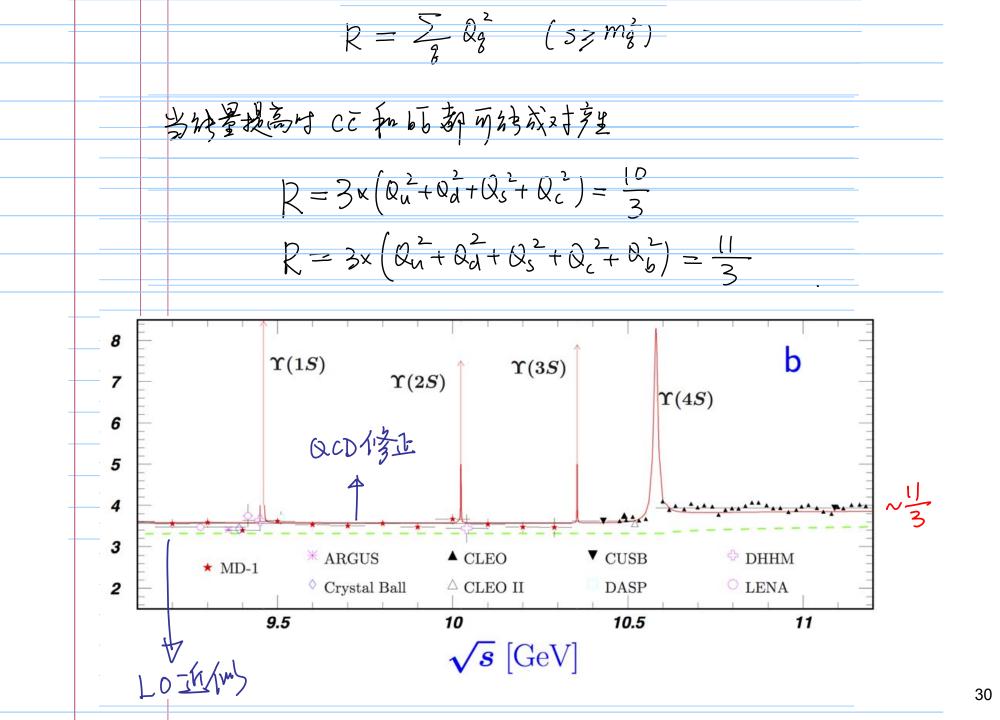
 $\mathbf{dsdz} = \mathbf{dsd}\Omega \star (\mathbf{2} \pi);$



 $R = \sum_{q} Q_{q}^{2} \quad (s \ge m_{q}^{2})$ 当 1.5Gev < Q < 3.6Gev mJ, UI, da fass 河州波教对学生 如果夸克没有颜色, $k = Q_u^2 + Q_d^2 + Q_s^2 = \frac{2}{3}$ 如果夸克有3种颜色 $R = 3 \times (Q_u^2 + Q_d^2 + Q_s^2) = \frac{2}{3} \times 3 = 2 \quad ()$ 10² u, d, s 3 loop pQCD Naive quark model 10 ρ Maring and a start and a start 1 Sum of exclusive Inclusive measurements measurements -1 10 1.5 0.5 2.5 1 2 3

28

 $R = \sum_{q} Q_{q} \left(s \ge m_{q}^{2} \right)$ 当线量提高时 CC 和版都可游戏对产生 $R = 3 \times \left(Q_u^2 + Q_d^2 + Q_s^2 + Q_c^2 \right) = \frac{10}{3}$ $R = 3x \left(Q_u^2 + Q_d^2 + Q_s^2 + Q_c^2 + Q_b^2 \right) = \frac{11}{2}$ 7 $\psi(2S)$ J/ψ $\psi_{\scriptscriptstyle 4160}$ 6 Mark-I Mark-I + LGW $\psi_{\scriptscriptstyle 4415}$ Mark-II $\psi_{\scriptscriptstyle 4040}$ $\psi_{\scriptscriptstyle 3770}$ 5 PLUTO R O DASP D 🕸 Crystal Ball 4 ★ BES 3 3 2 3.5 4.5 3 4 5



$$R = 3\kappa \left(Q_{u}^{2} + Q_{d}^{2} + Q_{s}^{2} + Q_{c}^{2} \right) = \frac{10}{3}$$

$$R = 3\kappa \left(Q_{u}^{2} + Q_{d}^{2} + Q_{s}^{2} + Q_{c}^{2} + Q_{b}^{2} \right) = \frac{11}{3}$$

$$V_{3} = \frac{1}{5} \frac{1}{5} \left(Q_{u} + Q_{d}^{2} + Q_{s}^{2} + Q_{c}^{2} + Q_{b}^{2} \right) = \frac{11}{3}$$

$$V_{3} = \frac{1}{5} \frac{1}{5} \left(Q_{u} + Q_{d}^{2} + Q_{s}^{2} + Q_{c}^{2} + Q_{b}^{2} \right)$$

$$R = 3 \sum_{i} Q_{i}^{2} \left(1 + \frac{\alpha_{s}(R^{2})}{\pi} \right)$$

$$R = 3 \sum_{i} Q_{i}^{2} \left(1 + \frac{\alpha_{s}(R^{2})}{\pi} \right)$$

$$R = 3 \sum_{i} Q_{i}^{2} \left(1 + \frac{\alpha_{s}(R^{2})}{\pi} \right)$$

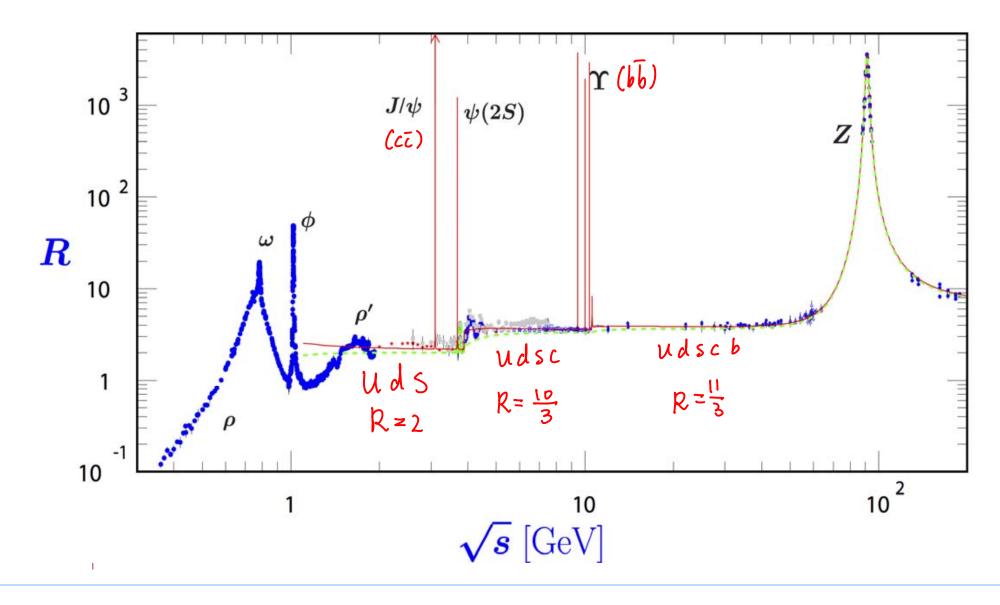
$$R = 3 \sum_{i} Q_{i}^{2} \left(1 + \frac{\alpha_{s}(R^{2})}{\pi} \right)$$

$$R = 3 \sum_{i} Q_{i}^{2} \left(1 + \frac{\alpha_{s}(R^{2})}{\pi} \right)$$

$$R = 3 \sum_{i} Q_{i}^{2} \left(1 + \frac{\alpha_{s}(R^{2})}{\pi} \right)$$

$$R = 3 \sum_{i} Q_{i}^{2} \left(1 + \frac{\alpha_{s}(R^{2})}{\pi} \right)$$

$$R = 3 \sum_{i} Q_{i}^{2} \left(1 + \frac{\alpha_{s}(R^{2})}{\pi} \right)$$



1) QED散射截面: 自旋求和

1.1) Completion Relations

$$\sum_{s=1}^2 u_s \overline{u}_s = (\gamma^\mu p_\mu + mI) = p + m,$$

$$\sum_{r=1}^2 v_r \bar{v}_r = (\gamma^\mu p_\mu - mI) = \not p - m,$$

1.2) Trace Theorems

(a) Tr(I) = 4;

(b) the trace of any odd number of γ -matrices is zero;

(c)
$$\operatorname{Tr}(\gamma^{\mu}\gamma^{\nu}) = 4g^{\mu\nu};$$

(d) Tr
$$(\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}) = 4g^{\mu\nu}g^{\rho\sigma} - 4g^{\mu\rho}g^{\nu\sigma} + 4g^{\mu\sigma}g^{\nu\rho};$$

- (e) the trace of γ^5 multiplied by an odd number of γ -matrices is zero;
- (f) $\operatorname{Tr}(\gamma^5) = 0;$
- (g) $\operatorname{Tr}\left(\gamma^{5}\gamma^{\mu}\gamma^{\nu}\right) = 0$; and
- (h) $\operatorname{Tr}(\gamma^5 \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}) = 4i\varepsilon^{\mu\nu\rho\sigma}$, where $\varepsilon^{\mu\nu\rho\sigma}$ is antisymmetric under the interchange of any two indices.

