粒子物理
 9．正负电子湮没过程 （Trace Technique）

曹庆宏
北京大学物理学院

Quantum Electrodynamics（QED）
任务：
－我们将讨论 $e^{t} e^{-} \rightarrow \mu^{+} \mu^{-}, e^{+} e^{-} \rightarrow q \bar{q}$
和 $R \equiv \frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}\binom{$前定 $Q 00 e^{-3}$ 的 }{ 数目 }

- Jet（喷注）—态克或胶子的实验观测物理量
- 测量 α em

3) Feynman Rules fri Feynman diagrams

Vertex: Propagator

$$
A_{\mu} \times n \stackrel{q}{\sim} A_{\nu} \frac{-i j_{\mu \nu}}{q^{2}+i \Sigma_{\& \varepsilon \rightarrow 0^{+}}}
$$

$\bar{\psi} \times \underset{\vec{p}}{ } \times \psi \frac{i(\phi+m)}{p^{2}-m^{2}+i \varepsilon}$
其中 $p^{2} \equiv P_{\mu} p^{\mu}, ~ \not \phi^{\prime} \equiv \gamma_{\mu} p^{\mu}$
External partide's wave functions

5）采例：$e^{+} e^{-} \longrightarrow \mu^{+} \mu^{-}$㒈射

散射据幅为

$$
\begin{aligned}
-i M & =\left[\bar{U}\left(p_{3}\right)\left(i e Q \gamma^{(}\right) V\left(p_{4}\right)\right] \frac{-i q_{\alpha \beta}}{q^{2}+i \varepsilon}\left[\bar{v}\left(p_{2}\right)\left(-i e \gamma^{\alpha}\right) U\left(p_{1}\right)\right] \\
Q_{0} Q_{\mu} & \left(\frac{-e^{2} Q_{e} Q_{\mu}}{q^{2}}\right)\left[\bar{U}\left(P_{3}\right) \gamma^{\alpha} v\left(p_{4}\right)\right]\left[\bar{v}\left(p_{2}\right) \gamma_{\alpha} U\left(p_{1}\right)\right]
\end{aligned}
$$

在QED，QCD和弱相互作用顶点都可以写作为 $\bar{u}(p) \Gamma u\left(p^{\prime}\right)$

$$
\bar{u}(p) \Gamma u\left(p^{\prime}\right)=\bar{u}(p)_{j} \Gamma_{j i} u\left(p^{\prime}\right)_{i}
$$

指标意味着求和。注意：上式仅仅是个复数。

If this is not immediately obvious，consider the 2×2 case of $\mathbf{c}^{\mathrm{T}} \mathbf{B a}$ ，where the equivalent product can be written as

$$
\begin{aligned}
\left(c_{1}, c_{2}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{22} & B_{22}
\end{array}\right)\binom{a_{1}}{a_{2}} & =c_{1} B_{11} a_{1}+c_{1} B_{12} a_{2}+c_{2} B_{21} a_{1}+c_{2} B_{22} \\
& =c_{j} B_{j i} a_{i}
\end{aligned}
$$

which is just the sum over the product of the components of \mathbf{a}, \mathbf{c} and \mathbf{B} ．

$$
\begin{aligned}
|m|^{2}= & m^{+} m \\
= & \left|\frac{-e^{2} \theta_{e} \theta_{\mu}}{q^{2}}\right|^{2}\left[\bar{u}\left(P_{3}\right) \gamma^{\beta} v\left(P_{3}\right)\right]^{+}\left[\bar{u}\left(P_{3}\right) \gamma^{\alpha} v\left(P_{4}\right)\right] \\
& {\left[\bar{v}\left(P_{2}\right) \gamma_{\beta} u\left(p_{1}\right)\right]^{+}\left[\bar{v}\left(P_{2}\right) \gamma_{\alpha} u\left(p_{1}\right)\right] }
\end{aligned}
$$

因为

$$
\begin{aligned}
& {\left[\bar{U}\left(P_{3}\right) \gamma^{\beta} v\left(P_{4}\right)\right]^{+}=\left[u^{+} \gamma^{0} \gamma^{\beta} v\right]^{+}=V^{+}\left(\gamma \beta^{+}\left(\gamma^{0}\right)^{+}\left(u^{+}\right)^{+}\right.} \\
&=V^{+} \gamma^{0} \gamma^{0}\left(\gamma^{\beta}\right)^{\dagger} \gamma^{0} u
\end{aligned} \quad \begin{array}{ll}
\left(\gamma^{\circ}\right)^{+}=\gamma^{0} \\
=\bar{V} \gamma \beta u & \left(\gamma^{j}\right)^{+}=-\gamma^{j} \\
\left(\gamma^{\circ}\right)^{2}=1
\end{array}
$$

同理 $\left[\bar{V}\left(p_{2}\right) \gamma_{\beta} U\left(p_{1}\right)\right]^{\dagger}=\bar{U}\left(p_{1}\right) \gamma_{\beta} V\left(p_{2}\right)$

对于没有极化的 e^{+}和 e^{-}入身䊉子来，我们需要对哿态的复求和均，对未态自施求和，期有

其中

$$
\begin{array}{r}
\left.\sum_{\text {spin }}|m|^{2}=\sum_{s p_{i n}} \frac{e^{4} Q_{\mu}^{2}}{s^{2}}\right)\left[\bar{v}\left(p_{p+1}\right) \gamma^{\beta} u\left(p_{3}\right) \bar{u}\left(\beta_{\beta}\right) \gamma^{\alpha} v\left(p_{+}\right)\right] \\
\left.\left[\bar{u}\left(p_{1}\right) \gamma_{\beta} v\left(p_{2}\right) \bar{v}\left(p_{2}\right) \gamma_{\alpha} u p_{1}\right)\right]
\end{array}
$$

因为

$$
\begin{aligned}
& \sum_{\text {spin }}\left[\bar{V}_{a}\left(p_{4}\right) \gamma_{a b}^{\beta} U_{b}\left(p_{3}\right) \bar{U}_{c}\left(p_{3}\right) \gamma_{c d}^{\alpha} V_{d}\left(p_{4}\right)\right] \\
= & \sum_{\text {spin }}\left[V_{d}\left(p_{4}\right) \bar{V}_{a}\left(p_{4}\right) \gamma_{a b}^{\beta} U_{b}\left(p_{3}\right) \bar{U}_{c}\left(p_{3}\right) \gamma_{c d}^{\alpha}\right]
\end{aligned}
$$

completeness relation

$$
\begin{aligned}
& \sum_{s=1}^{2} u_{s} \bar{u}_{s}=\left(\gamma^{\mu} p_{\mu}+m I\right)=\not p+m, \\
& \sum_{r=1}^{2} v_{r} \bar{v}_{r}=\left(\gamma^{\mu} p_{\mu}-m I\right)=\not p-m,
\end{aligned}
$$

我们可得

$$
\begin{aligned}
& \sum_{\text {spin }}\left[\bar{V}_{a}\left(p_{4}\right) \gamma_{a b}^{\beta} U_{b}\left(p_{3}\right) \bar{U}_{c}\left(p_{3}\right) \gamma_{c d}^{\alpha} V_{d}\left(p_{4}\right)\right] \\
= & \sum_{\text {spin }}\left[V_{d}\left(p_{4}\right) \bar{V}_{a}\left(p_{4}\right) \gamma_{a b}^{\beta} U_{b}\left(p_{3}\right) \bar{U}_{c}\left(p_{3}\right) \gamma_{c d}^{\alpha}\right] \\
= & \operatorname{Tr}\left[\left(\not \phi_{4}-m_{\mu}\right) \gamma^{\beta}\left(\not \phi_{3}+m_{\mu}\right) \gamma^{\alpha}\right]
\end{aligned}
$$

同理，$\sum_{S_{\text {pin }}}\left[\bar{u}\left(p_{1}\right) \gamma_{\beta} v\left(p_{2}\right) \bar{v}\left(p_{2}\right) \gamma_{\alpha} u\left(p_{1}\right)\right]=\operatorname{Tr}\left(\phi_{1} \gamma_{\beta} \not \phi_{2} \gamma_{\alpha}\right)$
故而

$$
\overline{|m|^{2}}=\left(\frac{1}{2} \times \frac{1}{2}\right) \operatorname{Tr}\left(\not \phi_{1} \gamma_{\beta} \not \phi_{2} Y_{\alpha}\right) \operatorname{Tr}\left(\left(\phi_{4}-m_{\mu}\right) \gamma^{\beta}\left(\phi_{3}+m_{\mu}\right) \gamma^{\alpha}\right)\left(\frac{e^{4} \theta_{\mu}^{2}}{s^{2}}\right)
$$

Trace Theorems

$\operatorname{Tr}(A+B) \equiv \operatorname{Tr}(A)+\operatorname{Tr}(B)$
$\operatorname{Tr}(A B \ldots Y Z) \equiv \operatorname{Tr}(Z A B \ldots Y)$
$\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}$

$$
\begin{gathered}
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu} \equiv 2 g^{\mu \nu} I \\
>\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)+\operatorname{Tr}\left(\gamma^{\nu} \gamma^{\mu}\right)=2 g^{\mu \nu} \operatorname{Tr}(I)
\end{gathered}
$$

$\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right)=0$

$$
\begin{aligned}
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right) & =\operatorname{Tr}\left(\gamma^{5} \gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right)=\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{5}\right) \\
& =-\operatorname{Tr}\left(\gamma^{5} \gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right)
\end{aligned}
$$

Trace Theorems

$$
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 g^{\mu \nu} g^{\rho \sigma}-4 g^{\mu \rho} g^{\nu \sigma}+4 g^{\mu \sigma} g^{\nu \rho} .
$$

$$
\begin{aligned}
& \gamma^{a} \gamma^{b}=2 g^{a b}-\gamma^{b} \gamma^{a} \\
& \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}=2 g^{\mu v} \gamma^{\rho} \gamma^{\sigma}-\gamma^{\nu} \gamma^{\mu} \gamma^{\rho} \gamma^{\sigma} \\
& =2 g^{\mu v} \gamma^{\rho} \gamma^{\sigma}-2 g^{\mu \rho} \gamma^{v} \gamma^{\sigma}+\gamma^{\nu} \gamma^{\rho} \gamma^{\mu} \gamma^{\sigma} \\
& =2 g^{\mu v} \gamma^{\rho} \gamma^{\sigma}-2 g^{\mu \rho} \gamma^{v} \gamma^{\sigma}+2 g^{\mu \sigma} \gamma^{v} \gamma^{\rho}-\gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\mu} \\
& \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}+\gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\mu}=2 g^{\mu v} \gamma^{\rho} \gamma^{\sigma}-2 g^{\mu \rho} \gamma^{\nu} \gamma^{\sigma}+2 g^{\mu \sigma} \gamma^{\nu} \gamma^{\rho}
\end{aligned}
$$

Trace Theorems

(a) $\operatorname{Tr}(I)=4$;
(b) the trace of any odd number of γ-matrices is zero;
(c) $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}$;
(d) $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 g^{\mu \nu} g^{\rho \sigma}-4 g^{\mu \rho} g^{\nu \sigma}+4 g^{\mu \sigma} g^{\nu \rho}$;
(e) the trace of γ^{5} multiplied by an odd number of γ-matrices is zero;
(f) $\operatorname{Tr}\left(\gamma^{5}\right)=0$;
(g) $\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu}\right)=0$; and
(h) $\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 i \varepsilon^{\mu \nu \rho \sigma}$, where $\varepsilon^{\mu \nu \rho \sigma}$ is antisymmetric under the interchange of any two indices.

$$
\begin{aligned}
& \overline{|m|^{2}}=\underbrace{\frac{1}{2} \times \frac{1}{2}}_{\text {自站种㘬 }} \times \sum_{\text {Spin }}|m|^{2} \\
& \overline{|m|^{2}}=\left(\frac{1}{2} \alpha_{2}^{1}\right) \operatorname{Tr}\left(\phi_{1} \gamma_{\beta} \phi_{2}^{\prime} \gamma_{\alpha}\right) \operatorname{Tr}\left(\left(\phi_{4}-m_{\mu}\right) \gamma^{\beta}\left(\phi_{3}+m_{\mu}\right) \gamma^{\alpha}\right)\left(\frac{e^{4} Q_{\mu}^{2}}{s^{2}}\right)
\end{aligned}
$$

其中 $\operatorname{Tr}\left(\phi_{1} \gamma_{\beta} P_{2} \gamma_{\alpha}\right)=4\left(P_{1 \beta} P_{2 \alpha}-\left(P_{1} \rho_{2}\right) g_{\alpha \beta}+P_{1 \alpha} P_{2 \beta}\right)$

$$
\begin{gathered}
\operatorname{Tr}\left(\left(p_{4}-m_{\mu}\right) \gamma^{\beta}\left(p_{3}^{\alpha}+m_{\mu}\right) \gamma^{\alpha}\right)=\operatorname{Tr}\left(P_{4} \gamma^{\beta} P_{3}^{\prime} \gamma^{\alpha}\right)-m_{\mu}^{2} \operatorname{Tr}\left(\gamma^{\beta} \gamma^{\alpha}\right) \\
\left.=4\left(P_{4}^{\beta} p_{3}^{\alpha}-\left(p_{3} P_{4}\right)\right)^{\alpha \beta}+P_{4}^{\alpha} P_{3}^{\beta}\right)-m_{\mu}^{2}\left(4 g^{\alpha \beta}\right)
\end{gathered}
$$

$$
\begin{aligned}
\overline{\operatorname{lm} l^{2}}= & \left(\frac{e^{4} Q_{\mu}^{2}}{\delta^{2}}\right)\left(\frac{1}{2} \times \frac{1}{2}\right)(4)(4) \\
\times & \left\{\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)-\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)\right. \\
& +\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)-\left(p_{3} \cdot p_{4}\right)\left(p_{1} \cdot p_{2}\right)+\left(p_{2} \cdot p_{4}\right)\left(p_{1} \cdot p_{3}\right) \\
& +4\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}\right)-\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}\right)-\left(p_{1} \cdot p_{2}\right)\left(p_{3} \cdot p_{4}\right) \\
& \left.-m_{\mu}^{2}\left[\left(p_{1} \cdot p_{2}\right)-4\left(p_{1} \cdot p_{2}\right)+\left(p_{1} \cdot p_{2}\right)\right]\right\} \\
= & \left(\frac{e^{4} Q_{\mu}^{2}}{\delta^{2}}\right)\left(\frac{1}{2} \times \frac{1}{2} \times 4 \times 4\right)(2)\left\{\left(p_{1} \cdot p_{4}\right)\left(p_{2} \cdot p_{3}\right)+\left(p_{1} \cdot p_{3}\right)\left(p_{2} \cdot p_{4}\right)+m_{\mu}^{2}\left(p_{1} \cdot p_{2}\right)\right\}
\end{aligned}
$$

If et e 质心系中

$$
\begin{aligned}
& p^{2}=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2}=s \\
& \sqrt{s}=2 \cdot(\text { bean energy })=2 E \quad(\text { 质, 系䌙量 }) \\
& P_{1}=(E, 0,0, E) \\
& P_{2}=(E, 0,0,-E) \\
& P_{3}=\left(E,\left|P_{3}\right| \sin \theta, 0,\left|\vec{p}_{3}\right| \cos \theta\right) \\
& P_{4}=\left(E,-\vec{P}_{3}\left|\sin \theta, 0,-\left|\vec{P}_{3}\right| \cos \theta\right)\right. \\
& L \vec{P}_{3} \mid=\sqrt{E^{2}-m_{\mu}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{p_{3}}{E}=\beta, \beta=\sqrt{1-\frac{4 m_{\mu}^{2}}{s}} \\
& \left(p_{1} \cdot p_{2}\right)=2 E^{2} \\
& \left(p_{1} \cdot p_{4}\right)=\left(p_{2} \cdot p_{3}\right)=E^{2}(1+\beta \cos \theta) \\
& \left(p_{1} \cdot p_{3}\right)=\left(p_{2} \cdot p_{4}\right)=E^{2}(1-\beta \cos \theta) \\
& S=2 p_{1} \cdot p_{2} \\
& t=\left(m_{\mu}^{2}-2 p_{1} \cdot p_{3}\right)=\left(m_{\mu}^{2}-2 p_{2} \cdot p_{4}\right) \\
& U=\left(m_{\mu}^{2}-2 p_{1} \cdot p_{4}\right)=\left(m_{\mu}^{2}-2 p_{2} \cdot p_{3}\right)
\end{aligned}
$$

微分敢身揞而。

$$
\frac{d \sigma}{d \Omega}=\frac{d \sigma}{d \cos \theta d \phi}=\frac{1}{64 \pi^{2} s} \frac{\left|\vec{P}_{3}\right|}{\left|\vec{p}_{1}\right|} \overline{|m|^{2}}
$$

所ms，

$$
\begin{array}{r}
\frac{d \sigma}{d \Omega}=\frac{d \sigma}{d \cos \theta d \phi}=\frac{\alpha^{2} \alpha_{\mu}^{2}}{4 S} \beta\left(1+\beta^{2} \cos ^{2} \theta+\frac{m_{\mu}^{2}}{E^{2}}\right) \\
=\frac{\alpha^{2} \theta_{\mu}^{2}}{4 S} \beta\left(2-\beta^{2}+\beta^{2} \cos ^{2} \theta\right) \\
\alpha=\frac{e^{2}}{4 \pi}
\end{array}
$$

极端相对论情况下，$m_{\mu} \ll E, \beta \rightarrow 1$

$$
\frac{d \sigma}{d \Omega} \longrightarrow \frac{Q_{\mu}^{2} \alpha^{2} \beta}{4 s}\left(1+\cos ^{2} \theta\right)
$$

总敢的截而

$$
O=\int \frac{d \sigma}{d \Omega}=\int_{\cos \theta=-1}^{+1} \int_{\phi=0}^{2 \pi} \frac{d \sigma}{d \Omega} d \cos \theta d \phi=\frac{4 \pi \alpha^{2} Q_{\mu}^{2} \beta}{3 S}\left(\frac{3-\beta^{2}}{2}\right)
$$

threshold ${ }^{\circ}$ 付近行为

$$
\nabla \xrightarrow[\beta \rightarrow 1]{ } \frac{4 \pi \alpha^{2} Q_{\mu}^{2}}{3 S} \approx \frac{86.6 Q_{\mu}^{2}}{\left(\frac{5}{G V^{2}}\right)}[n b]
$$

Bacino et al PRL41，13， 1978
$\rightarrow \beta^{?}$ Homenomle

CalcHEP－高能蒙特卡洛模拟软件

http：／／theory．sinp．msu．ru／～pukhov／calchep．html

CalcHEP－a package for calculation of Feynman diagrams and integration over multi－particle phase space．

Authors－Alexander Pukhov，Alexander Belyaev，Neil Christensen

The main idea of CalcHEP is to enable one to go directly from the Lagrangian to the cross sections and distributions effectively，with a high level of automation．The package can be compiled on any Unix platform．

General information
Main features．Acknowledgments．
News\＆Bugs
Publications\＆Lectures
Contributions

Cut－Diagram方法
在对初末态贵米子自施求和后，我们将 $\sum_{\text {spin }} \rightarrow \operatorname{Tr}()$
采用Cut－diagram nortation 可以帮助我们更快地计标亩 $\overline{\left.m\right|^{2}}$

$$
\begin{aligned}
& \sum_{s p^{-n}}|m|^{2}=\sum_{\text {spin }} m m^{+}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\text {spin }}
\end{aligned}
$$

Feynmon Rule for cut-diagrams
(1) fermion line

$$
\begin{aligned}
i, \alpha \int p^{j, \beta} & \text { (2Ti) } \delta^{+}\left(p^{2}-m^{2}\right)(p p+m)_{\beta \alpha \alpha} \delta_{i j} \\
& \longrightarrow \delta\left(p^{2}-m^{2}\right) \theta\left(p_{0}\right)
\end{aligned}
$$

(4)
(2) glusn line

$$
{\underset{v, a}{ }}_{\overbrace{\underset{\sim}{r}}^{k}}{ }_{\mu, b}(2 \pi) \delta^{+}\left(k^{2}\right)\left(-g_{\mu \nu}\right) \delta_{a b}
$$

(5)
(3) W-boson line

$$
\operatorname{mun}_{v} \overrightarrow{\sim i}_{\mu}^{q}(2 \pi) \delta^{t}\left(q^{2}-M^{2}\right)\left(-g_{\mu \nu}+\frac{q_{\mu} q_{v}}{M^{2}}\right)
$$

$$
e^{+} \bar{e} \rightarrow \mu^{+} \mu^{-}
$$

每个封闭的贵籽图
都意曈求迹

$$
\begin{gathered}
=\operatorname{Tr}\left[\phi_{1} \gamma_{\mu^{\prime}}\left(-\phi_{2}^{\prime}\right) \gamma_{\mu}\right] \operatorname{Tr}\left[\left(\phi_{3}+m_{\mu}\right) \gamma_{\nu}\left(-\beta_{4}+m_{\mu}\right) \gamma_{\nu^{\prime}}\right] \\
\times \frac{-g^{\mu \nu}}{q^{2}} \times \frac{-g \mu^{\prime} \nu^{\prime}}{q^{2}}
\end{gathered}
$$

（相室间因子另外计标）

$$
\begin{gathered}
=\operatorname{Tr}\left[\not \phi_{1} \gamma_{\mu^{\prime}}\left(-\not \phi_{2}\right) \gamma_{\mu}\right] \operatorname{Tr}\left[\left(\not \phi_{3}^{\prime}+m_{\mu}\right) \gamma_{\nu}\left(-\phi_{4}+m_{\mu}\right) \gamma_{\nu^{\prime}}\right] \\
\times \frac{-g^{\mu \nu}}{q^{2}} \times \frac{-g^{\mu^{\prime} \nu^{\prime}}}{q^{2}}
\end{gathered}
$$

（相空间因子另外计称）

$$
\begin{aligned}
& =\operatorname{Tr}\left[\not \phi_{1} \gamma_{\mu^{\prime}} \not \phi_{2} \gamma_{\mu}\right] \operatorname{Tr}\left[\left(\not \phi_{3}+m_{\mu}\right) \gamma_{\mu}\left(\not \phi_{4}-m_{\mu}\right) \gamma_{\mu^{\prime}}\right] \frac{1}{q^{4}} \\
& =\operatorname{Tr}\left[\not \phi_{1} \gamma_{\mu^{\prime}} \not \phi_{2} \gamma_{\mu}\right] \operatorname{Tr}\left[\left(\not \phi_{4}-m_{\mu}\right) \gamma^{\mu^{\prime}}\left(\not \phi_{3}^{\prime}+m_{\mu}\right) \gamma^{\mu}\right] \frac{1}{q^{4}} \\
& =\frac{1}{q^{4}} \operatorname{Tr}\left[\not \phi_{1} \gamma_{\beta} \not \phi_{2} \gamma_{\alpha}\right] \operatorname{Tr}\left[\left(\not \phi_{4}-m_{\mu}\right) \gamma^{\beta}\left(\not \phi_{3}+m_{\mu}\right) \gamma^{\alpha}\right]
\end{aligned}
$$

FeynCalc－高能物理符号计算软件

Search this site with Google

Go

Documentation Forum

Download

Download releases or check out the code at our Github page．

Related

 software：FeynArts LoopTools FormCalc Form

FeynCalc

About

FeynCalc is a Mathematica package for algebraic calculations in elementary particle physics．

Tools and Tables for Quantum Field Theory Calculations

Some of the features of FeynCalc are：
－Passarino－Veltman reduction of one－loop amplitudes to standard scalar integrals
－Tools for frequently occuring tasks like Lorentz index contraction，color factor calculation， Dirac matrix manipulation and traces，etc．
－Tensor and Dirac algebra manipulations（including traces）in 4 or \mathbf{D} dimensions
－Generation of Feynman rules from a lagrangian
－Tools for non－commutative algebra
－ $\mathrm{SU}(\mathrm{N})$ algebra

FeynCalc－高能物理符号计算软件

Loading the package FeynCalc

＜＜HighEnergyPhysics｀fc

Loading FeynCalc from／Users／cao／Library／Mathematica／Applications／HighEnergyPhysics
FeynCalc 8．2．0 For help，type ？FeynCalc，open FeynCalcRef8．nb or visit www．feyncalc．org Loading FeynArts，see www．feynarts．de for documentation

```
输入散射振幅模方
term1 = Tr[GS[p1].GA[\beta].GS[p2].GA[\alpha]]
4(-\mp@subsup{g}{}{\alpha\beta}\textrm{p}1\cdot\textrm{p}2+\textrm{p}\mp@subsup{1}{}{\beta}\textrm{p}\mp@subsup{2}{}{\alpha}+\textrm{p}\mp@subsup{1}{}{\alpha}}\mp@subsup{\textrm{p}}{}{\beta}
term2 = Tr [(GS[p3]-mf).GA[\beta].(GS[p4] +mf).GA[\alpha]]
4(mf 2}(-\mp@subsup{g}{}{\alpha\beta})-\mp@subsup{g}{}{\alpha\beta}\textrm{p}3\cdot\textrm{p}4+\textrm{p}\mp@subsup{3}{}{\beta}\textrm{p}\mp@subsup{4}{}{\alpha}+\textrm{p}\mp@subsup{3}{}{\alpha}\textrm{p}4\mp@subsup{4}{}{\beta}
numsq = Calc[term1 term2]
32mf }\mp@subsup{}{}{2}\textrm{p}1\cdot\textrm{p}2+32\textrm{p}1\cdot\textrm{p}4\textrm{p}2\cdot\textrm{p}3+32\textrm{p}1\cdot\textrm{p}3\textrm{p}2\cdot\textrm{p}
spin = (1/2) * (1/2);
prefactor = (e^4 Q^2 / s^2);
matsq = spin * prefactor * numsq // Simplify
8 午 Q ( (mf }\mp@subsup{}{}{2}\textrm{p}1\cdot\textrm{p}2+\textrm{p}1\cdot\textrm{p}4\textrm{p}2\cdot\textrm{p}3+\textrm{p}1\cdot\textrm{p}3\textrm{p}2\cdot\textrm{p}4
```


定义洛伦兹不变量：

```
replace rule #|
rr1 = {
    Pair[Momentum[p1], Momentum[p1]] }->0\mathrm{ 0,
    Pair[Momentum[p2], Momentum[p2]] }->0\mathrm{ ,
    Pair[Momentum[p3], Momentum[p3]] }->\textrm{mf}\mathrm{ ,
    Pair[Momentum[p4], Momentum[p4]] }->\mathrm{ mf,
    Pair[Momentum[p1], Momentum[p2]] }->\mathrm{ s/2,
    Pair[Momentum[p1], Momentum[p3]] -> (mf^2-t) / 2,
    Pair[Momentum[p1], Momentum[p4]] -> (mf^2-u)/2,
    Pair[Momentum[p2], Momentum[p3]] }->(\mp@subsup{mff^}{^2-u)/2,}{
    Pair[Momentum[p2], Momentum[p4]] -> (mf^2-t)/2,
    Pair[Momentum[p3], Momentum[p4]] }->(s-2 mf^2)/
}
{p12 }\mp@subsup{\mp@code{N}}{}{2},\textrm{p}\mp@subsup{2}{}{2}->0,\textrm{p}\mp@subsup{3}{}{2}->\textrm{mf},\textrm{p}\mp@subsup{4}{}{2}->\textrm{mf},\textrm{p}1\cdot\textrm{p}2->\frac{s}{2},\textrm{p}1\cdot\textrm{p}3->\frac{1}{2}(\mp@subsup{\textrm{mf}}{}{2}-t)
p1\cdotp4 -> \frac{1}{2}(\mp@subsup{\textrm{mf}}{}{2}-u),\textrm{p}2\cdot\textrm{p}3->\frac{1}{2}(\mp@subsup{\textrm{mf}}{}{2}-u),\textrm{p}2\cdot\textrm{p}4->\frac{1}{2}(\mp@subsup{\textrm{mf}}{}{2}-t),\textrm{p}3\cdot\textrm{p}4->\frac{1}{2}(s-2m\mp@subsup{f}{}{2})}
```


FeynCalc－高能物理符号计算软件

选取质心系：

In the frame of center of mass of e＋and e－

$$
\begin{aligned}
& \text { metric }=\{\{1,0,0,0\},\{0,-1,0,0\},\{0,0,-1,0\},\{0,0,0,-1\}\} ; \\
& \mathrm{p} 1=\left\{\frac{\sqrt{\mathrm{s}}}{2}, 0,0, \frac{\sqrt{\mathrm{~s}}}{2}\right\} ; \\
& \mathrm{p} 2=\left\{\frac{\sqrt{\mathrm{s}}}{2}, 0,0,-\frac{\sqrt{\mathrm{s}}}{2}\right\} ; \\
& p 3=\frac{\sqrt{s}}{2}\{1, \beta \operatorname{Sin}[\theta], 0, \beta \operatorname{Cos}[\theta]\} ; \\
& \mathrm{p} 4=\frac{\sqrt{\mathrm{s}}}{2}\{1,-\beta \operatorname{Sin}[\theta], 0,-\beta \operatorname{Cos}[\theta]\} ; \\
& \text { rr2 }=\{t \rightarrow(p 1-p 3) . m e t r i c .(p 1-p 3) / / S i m p l i f y, \\
& u \rightarrow(p 1-p 4) . m e t r i c .(p 1-p 4) / / S i m p l i f y\} \\
& r r 3=\left\{m f \rightarrow \sqrt{1-\beta^{\wedge} 2} * \sqrt{s} / 2\right\}
\end{aligned}
$$

总散射截面

```
XSEC[dsdzfunc_] := Module[\{z, tmp, integral, result\},
    tmp \(=\mathbf{d s d z f u n c / . ~} \operatorname{Cos}[\theta] \rightarrow z ;\)
    integral \(=\int\) tmp diz;
    result \(=\) (integral \(/ . z \rightarrow 1\) ) - (integral/.z \(\rightarrow-1\) );
    Return[result]
]
XSEC[dsdz] // Simplify
\(2 \pi \alpha^{2} \beta\left(\beta^{2}-3\right) Q^{2}\)
    \(3 s\)
```


性 量荅克来道和㬵色数目

$$
\begin{aligned}
& O\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right) \xrightarrow{s \gg m_{\mu}^{2}} \frac{4 \pi \alpha^{2} Q_{\mu}^{2}}{3 s} \\
& \Rightarrow R=\sum_{q} Q_{q}^{2} \quad\left(s \geqslant m_{q}^{2}\right)
\end{aligned}
$$

$$
R=\sum_{q} Q_{q}^{2} \quad\left(s \geqslant m_{q}^{2}\right)
$$

当 $1.5 \mathrm{GeV}<Q<3.6 \mathrm{GeV}$ 时，$u \bar{u}, d \bar{d}$ 和 $5 \bar{s} \overline{\text { gum }}$ 被成对产生
如果含克没有颜色，

$$
R=Q_{u}^{2}+Q_{d}^{2}+Q_{s}^{2}=\frac{2}{3}
$$

如果夸克有 3 种颜色

$$
R=3 \times\left(Q_{u}^{2}+Q_{d}^{2}+Q_{s}^{2}\right)=\frac{2}{3} \times 3=2 \quad(J)
$$

$$
R=\sum_{g} Q_{g}^{2} \quad\left(s \geqslant m_{\delta}^{2}\right)
$$

当能量提高时 $c \bar{c}$ 和的都可能成对产生

$$
\begin{aligned}
& R=3 \times\left(Q_{u}^{2}+Q_{d}^{2}+Q_{s}^{2}+Q_{c}^{2}\right)=\frac{10}{3} \\
& R=3 \times\left(Q_{u}^{2}+Q_{d}^{2}+Q_{s}^{2}+Q_{c}^{2}+Q_{b}^{2}\right)=\frac{11}{3}
\end{aligned}
$$

$$
R=\sum_{q} Q_{q}^{2} \quad\left(s \geqslant m_{q}^{2}\right)
$$

当能量提高时 $c \bar{c}$ 和泫都可能成对产生

$$
\begin{aligned}
& R=3 \times\left(Q_{u}^{2}+Q_{d}^{2}+Q_{s}^{2}+Q_{c}^{2}\right)=\frac{10}{3} \\
& R=3 \times\left(Q_{u}^{2}+Q_{d}^{2}+Q_{s}^{2}+Q_{c}^{2}+Q_{b}^{2}\right)=\frac{11}{3}
\end{aligned}
$$

$$
\begin{aligned}
& R=3 \times\left(Q_{u}^{2}+Q_{d}^{2}+Q_{s}^{2}+Q_{c}^{2}\right)=\frac{10}{3} \\
& R=3 \times\left(Q_{u}^{2}+Q_{d}^{2}+Q_{s}^{2}+Q_{c}^{2}+Q_{b}^{2}\right)=\frac{11}{3}
\end{aligned}
$$

注意：考虑QCD㑕正后 $\left(O\left(\alpha_{s}\right)\right)$

$$
R=3 \sum_{q} Q_{q}^{2}\left(1+\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)
$$

R值的 Q^{2} 无关性被 Q D 的效应 $\ln \left(Q^{2}\right)$ 破坏 $\} Q^{2}$ 依赖性很隹

总结

1）QED散射截面：自旋求和

1．1）Completion Relations

$$
\sum_{s=1}^{2} u_{s} \bar{u}_{s}=\left(\gamma^{\mu} p_{\mu}+m I\right)=\not p+m, \quad \sum_{r=1}^{2} v_{r} \bar{v}_{r}=\left(\gamma^{\mu} p_{\mu}-m I\right)=\not p-m
$$

1．2）Trace Theorems

（a） $\operatorname{Tr}(I)=4$ ；
（b）the trace of any odd number of γ－matrices is zero；
（c） $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}$ ；
（d） $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 g^{\mu \nu} g^{\rho \sigma}-4 g^{\mu \rho} g^{\nu \sigma}+4 g^{\mu \sigma} g^{\nu \rho}$ ；
（e）the trace of γ^{5} multiplied by an odd number of γ－matrices is zero；
（f） $\operatorname{Tr}\left(\gamma^{5}\right)=0$ ；
（g） $\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu}\right)=0$ ；and
（h） $\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 i \varepsilon^{\mu \nu \rho \sigma}$ ，where $\varepsilon^{\mu \nu \rho \sigma}$ is antisymmetric under the inter－ change of any two indices．

总结

2）R 值测量

