

第二节粒子探测器

 1) Passage of particles through matter

 1) Passage of particles through matter

 2) Particle detector at Accelerators

 3) Particle detector at Non-Accelerators

为什么研究粒子探测

粒子物理发展史不仅仅是理论物理的 历史,同时也是实验物理(特别是对 撞机和探测器技术)的发展史。

理论物理学家应该了解简单的实验, 1)可以判断实验学家工作的正确与否 2)可以建议实验检验方案

爱因斯坦 温伯格 海森堡 李政道 费米 (Fermi) 杨振宁 威特曼(Veltman) 盖尔曼 威特 (Witten) 费曼

0 0 0

0 0

好的实验物理学家也应该了解理论

今日的探测器

希格斯粒子产生 等稀有事例是难 以寻找的。

需要更好的探测器、触发器和存储器来将残骸遗 迹还原出真正的物理。

目的: 探测粒子并尽可能精确地测量粒子的属性

物理可观测量:

1) 电荷
 2) 磁矩
 3) 寿命
 4) 速度、动量和能量

注意:质量不是直接观测量 $p = m\gamma\beta$ $E = m\gamma$ $m^2 = E^2 - p^2$

1) 电荷 2) 磁矩 3) 寿命 4) 速度、动量和能量

现代探测器

可探测的粒子要取决于粒子的寿命和相互作用

现代探测器可以探测6种"稳定"粒子:

 $\gamma, e^{\pm}, p^{\pm}, \pi^{\pm}, n, \mu^{\pm}$

和中微子 (表现为丢失能量或动量)

稳定: $\tau \ge 10^{-10}s$

大型强子对撞机 探测器围绕对撞点,探测次级粒子

理想的探测器:

1. 尽可能覆盖所有方位 捕获所有粒子,没有漏洞或盲点 2. 尽可能提高精度

分辨所有粒子,精确测量能量和动量 可以分析每一次对撞(高速无遗漏)

现实测量的局限性:

- 1. 设备成本和实验技术的局限性
- 2. 辅助设备、电源线和信号线、冷却设备
- 3. 不可避免的辐射

二战之后高能物理才成为一门公认的学科 (富人的游戏)

对撞机年表

大型强子对撞机 质心系能量14TeV

LHC ring: 27 km circumference

大型强子对撞机 质心系能量14TeV

LHC ring: 27 km circumference

CMS: 长21米,高15米,宽15米,12.5千吨

ATLAS: 长46米,高25米,宽25米,7千吨

现代探测器:

大型强子对撞机的探测器 在对撞点附近

带电粒子如何通过探测物质

电中性粒子怎么测量?

- 1. 粒子必须与探测物质发生相互作用
- 2. 此相互作用要能够被测量到

离子化过程可能会在物理上或化学上改变测量物质 云雾室、气泡室、感光乳剂

不可避免地是,待测量粒子性质也会被测量过程改变 能量损耗、运动方向改变

If you want to measure something...

it has to interact!

离子化或激发

eminteraction of a charged particle

Interaction with the atomic electrons. The incoming particle loses energy and the atoms are excited or ionized ➔ process used to produce measureable signals

Interaction with the atomic nucleus. The particle is deflected (scattered) causing multiple scattering of the particle in the material. During this scattering a **Bremsstrahlung** photon can be emitted → shower production

If the particle's velocity is larger than the velocity of light in the medium, the resulting EM shockwave manifests itself as Cherenkov Radiation -> used to measure the energy of atmospheric showers by "Astrophysics **Calorimeter**"

1) 径迹探测器 (最内层的探测器) 电荷和动量

气体或硅探测器(离子化)测量带电粒子轨迹

示例: LHC上希格斯衰变

在探测器中心施加强磁场

Charged particles bend in the magnetic field

The lower the particle momentum the more they bend.

Straight tracks from high momentum particles are the most interesting!

CMS螺线管强磁场

Lorentz Force:

$$\vec{F}_L = q \, \vec{v} \times \vec{B}$$

⊗B

R

614米

700

For B = constant: circular motion in the transverse plane. Equation of motion: Lorentz force balanced by centrifugal force: $q v_t B = m v_t^2 / R$

 $p_{t} = m v_{t} \Rightarrow p_{t} = qRB$ also holds relativistically. $cp_{t}[GeV] = 0.3 R[m]B[T]$ for q = e Low p_{t} tracks curl up inside the tracker if 2R < L dso holds relativistically. CMS: B = 3.8 T $p_{t}[GeV/c] R[m]$ 100 87.72 10 8.77 1 0.88

如何测量带电粒子的等距位置?

Silicon strip detectors

- Planar sensor from a high-purity silicon wafer (here *n*-type).
- Segmented into strips by implants forming *pn* junctions.
- Strip pitch 20 to 200 μm , high precision photolithography (expensive).
- Bulk is fully depleted by a reverse bias voltage (25-500V).
- Ionizing particle creates electron-hole pairs (25k in 300 μm).

CMS Silicon tracking

One outer barrel module:

Carbon-fibre support structure. Stable. Software alignment needed, despite tight mechanical tolerances and accurate placement. ±5 µm reached so far.

CMS Silicon Tracker

700 600

Inner barrel

 $10^7 \text{ channels} 200 \text{ m}^2$

Multiple Coulomb scattering

Multiple elastic scattering from nuclei causes angular deviations:

d

p

$$\langle \theta \rangle [rad] \approx \frac{0.014}{p [GeV/c]} \sqrt{d/X_0}$$

 X_0 = radiation length 9.4 cm for silicon 18.8 cm for carbon

Number of scatterings is Poisson process \Rightarrow RMS ~ \sqrt{d}

Important at low momentum: $\sim 1/p$

CMS momentum resolution

Multiple scattering and momentum resolution: $\sigma_{p_t}^{MS}/p_t \approx \frac{0.016}{RL} \sqrt{\sum d/X_0}$

 $\sigma_x \approx 10 - 20 \mu m$ $X_0 = 9.4 \text{cm}$

Silicon

detectors

CMS mass resolution

$$m_{\mu\mu} = \sqrt{(p_{\mu^+} + p_{\mu^-})^2}$$

2) 电磁量能器

电磁级联簇射 (EM shower)

高能散射过程的次级衰变产物将被量能器完全 吸收,从而测得这些粒子的能量和位置。所有 (或大部分)入射能量都以激发或离子化探测 材料的原子的形式记录下来。

Calorimeter

Energy loss of particles in matter

Bethe-Bloch公式

$$\begin{vmatrix} -\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln\left(\frac{2m_e c^2 \gamma^2 \beta^2}{I}\right) - \beta^2 - \frac{\delta}{2} \right] \\ = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\ln\frac{T_{\max}}{I} - \beta^2 - \frac{\delta}{2} \right] \\ x = \rho \ell$$

1930年

$$\frac{K}{A} = \frac{4\pi N_A r_e^2 m_e c^2}{A} = 0.307 \text{ MeV} g^{-1} \text{cm}^2 \quad if \quad A = 1g \text{ mol}^{-1}$$

Tmax: 单次散射传递给自由电子的最大能量

- ^z 入射粒子电荷 Z 测量媒介的原子数
- I 离子化的势能,通常 $I = 10 \times Z$ (eV)
- δ 测量媒介的密度修正项

- 离子化能量损失不依赖于入射粒子质量,对具体的探测材料也不太敏感,因为大部分材料都满足 Z/A~0.5
 离子化能量损失依赖于入射粒子速度β
- 3. B-B公式给出的是平均的能量损失,其统计方差(通常 被称作straggling)是很大的。

4. 离子化能量损失随入射粒子速度减小而平方增加~β⁻²
入射粒子越慢,能量损失越快 => 慢粒子更快离子化
5. 最小离子化粒子(βγ~3)

10 GeV Muon在铁中能损约为13MeV/cm,因此可以跑大约10米,穿行无阻

 $\frac{dE}{dx} \times \rho$

6. 相对论性增加 $(3 \le \beta \gamma \le 800)$:带电粒子电场随其速度增强⁻² 可以看到更远处的原子中的电子,从而损失更多的能量

$$-\frac{dE}{dx} \propto \ln \frac{2m_e c^2 \beta^2 \gamma^2}{I} \sim \ln \frac{2m_e c^2}{I} + \ln \left(\beta^2 \gamma^2\right) \sim \ln \frac{p}{m}$$

练习:考虑一个动能80MeV的pion粒子通过碳媒介物。 估算一下,需要多厚的碳板才可以将此pion粒子停住。 $\rho_C = 2.265g/\text{cm}^3$

 $K.E. = E - M \qquad 80 \text{ MeV} = E - 140 \text{ MeV}$ E = 220 MeV

 $P = \sqrt{E^2 - M^2} = 170 \text{ MeV}$ $\beta \gamma = \frac{P}{M} = \frac{170}{140} \simeq 1.21$

 查图可知: $-\frac{dE}{dx}\Big|_{\beta\gamma=1.21} = 2 \operatorname{MeV} \frac{\operatorname{cm}^2}{g}$

 → $\frac{\Delta E}{\Delta x} = 2.265 \frac{g}{\operatorname{cm}^3} \times 2 \operatorname{MeV} \frac{\operatorname{cm}^2}{g} = 4.5 \frac{\operatorname{MeV}}{\operatorname{cm}}$

 → $L = \frac{80 \operatorname{MeV}}{4.5 \operatorname{MeV/cm}} = -18 \operatorname{cm}$

电子和光子的能量损失 电子质量非常轻(m_µ± = 206m_e±),主要通过在 核子的库仑场中发生轫致辐射损失能量

电子的轫致辐射

电子辐射光子的几率正别于加速度的平方,从而 当电子靠近核子附近时的轫致辐射更加重要。 (核子附近电场要大于原子核附近电子的电场) 测量材料的原子数越大时, 轫致辐射越重要

当核子电场给定时,轫致辐射几率反比于入射粒子 质量平方 $Prob \propto \frac{1}{m^2}$

$$\begin{array}{c} \longrightarrow \quad \frac{\operatorname{Prob}(\mu)}{\operatorname{Prob}(e)} \propto 10^{-4} \\ & & \\ \end{array} \\ \begin{array}{c} \longrightarrow \quad \operatorname{Prob}(\mu) \sim \operatorname{Prob}(e) \quad \rightarrow \quad E_{\mu} \sim 10^{4} E_{e} \end{array}$$

Bethe-Heither公式

$$-\frac{dE}{E} = \frac{dX}{X_0}$$

 X_0 : 辐射长度 (radiation length), 定义为 电子能量减少为初始值的1/e时的距离 $X_0 \sim 1/Z \sim 1/\rho$

空气 (n.t.p.) $X_0 \simeq 300 \text{ m}$ 水 $X_0 \simeq 0.36 \text{ m}$ 碳 $X_0 \simeq 0.2 \text{ m}$ 铁 $X_0 \simeq 2 \text{ cm}$ 铅 $X_0 \simeq 5 \text{ mm}$

光子的能量损失

 $\frac{1}{X_0} = \frac{4\alpha^3}{m_e^2} n Z^2 \ln \frac{m_e}{Q_e}$

screening $\frac{1}{Q_s} = 1.4Z^{-1/3}a_B$

铅板中电子的相对能量损失

临界能量: $E_c \approx \frac{800}{Z}$ MeV $E_c(\text{Lead}) = 7$ MeV 我们通常遇到的电子的能量远远大于此临界能量

光子的能量损失

依赖光子的能量: 1.~eV 与原子中电子发生光电效应 2.~keV 康普顿散射 3.>1.022 MeV e⁺e·对产生

 $\sigma_{\text{p.e.}} = \text{Atomic photoelectric effect (electron ejection, photon absorption)}$ $\sigma_{\text{Rayleigh}} = \text{Rayleigh (coherent) scattering-atom neither ionized nor excited}$ $\sigma_{\text{Compton}} = \text{Incoherent scattering (Compton scattering off an electron)}$ $\kappa_{\text{nuc}} = \text{Pair production, nuclear field}$ $\kappa_e = \text{Pair production, electron field}$ $\sigma_{\text{g.d.r.}} = \text{Photonuclear interactions, most notably the Giant Dipole Resonance}$ In these interactions, the target nucleus is broken up.

em interactions with matter

- High energy: Bremsstrahlung
 - photon radiation close to an atom
- Low energy: ionization

- energy dissipation by creating free electrons

Photons:

- High energy : e⁺/e⁻ pair production
 - materialization of photons
- Medium energy: Compton effect
 - photon diffusion liberating an electron from the atomic cortex
- Low energy: photoelectric effect
 - photon absorption liberating an electron from the atomic cortex

Electromagnetic Shower

Shower in a cloud chamber

铅板之间的 级联簇射

A simple shower model

Start with a high energy electron: $\mathbf{E}_{\mathbf{0}}$

 \Rightarrow After $\mathbf{1X_0}$: $\mathbf{1}~\mathbf{e}^{-}$ and $\mathbf{1}\gamma,$ each with $\mathbf{E_0/2}$

 $\Rightarrow \text{After } \mathbf{2X_0} : \mathbf{2} e^-, \mathbf{1} e^+ \text{ and } \mathbf{1} \gamma, \text{ each with } \mathbf{E_0/4} \qquad \text{Radiation}$

 \Rightarrow After $\mathbf{k}\mathbf{X_0}$: total \mathbf{N} = $\mathbf{2^k}$, each with ${<}\mathbf{E>}$ = $\mathbf{E_0}/{2^k}$

At $\langle E \rangle = E_c$ pair production and bremsstrahlung stop.

Compton- or photoeffect and ionization take over. The shower ranges out. $E_c = 0.6 \text{ GeV} / (Z+1.24) = 7 \text{ MeV}$ for lead. (empirical fit by the PDG)

 $\Rightarrow k_{max} = lg_2(E_0/E_c).$ Shower depth grows logarithmically with E_0 .

 \Rightarrow N_{max} = 2^{kmax} = E₀/E_c. Number of particles grows linearly with E₀.

A sophisticated shower simulation

longitudinal shower profile:

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}, t = \frac{x}{X_0}$$

Shower simulation 1 GeV e⁻ in lead

10 cm

-5 cm

photons electrons positrons

Energy measurement

Total number of particles in the shower in the simple model: N_{tot} = $\sum_k 2^k = 2 k_{max} - 1 \approx 2 E_0 / E_c$

2/3 of N_{tot} are charged $(e^+ + e^-)$. $\Rightarrow N_{ch} \approx 4/3 E_0 / E_c$

Each *e* travels 1 X0 between interactions. \Rightarrow total path length: $L_{ch} \approx 4/3 X_0 E_0 / E_c$

Electrons and positrons also **ionize** the medium.

Collect the charge or the fluorescent light signal: $S \sim X_0 E_0 / E_c$

After calibration, S is an energy measurement!

Shower fluctuations: particle production is a Poisson process. $\Rightarrow \sigma(N) = \sqrt{N}$

 $\Rightarrow \sigma(S) / S = 1 / \sqrt{S}$ The relative energy resolution improves as $1/\sqrt{E_0}$.

CMS PbWO Crystals

CMS ECAL Test beam with final electronics

Energy resolution terms

- The intrinsic shower fluctuations give $\sigma(E) \sim \sqrt{E}$
- Fluctuations in the photo-electron yield also give $\sigma(E) \sim \sqrt{E}$
- Noise (electronics, radiation) gives a constant term: $\sigma(E) = c$
- Inhomogeneities and leakage give $\sigma(E) \sim E$

3) 强子量能器

强子级联簇射 (Hadron shower)

高能散射过程的次级衰变产物将被量能器完全 吸收,从而测得这些粒子的能量和位置。所有 (或大部分)入射能量都以激发或离子化探测 材料的原子的形式记录下来。

Calorimeter

Hadronic showers

Hadronic showers may already start in the ECAL and extend into the HCAL.

Hadronic interaction length

- Pion-proton cross section $\sigma(\pi p) \approx 25$ mbarn above a few GeV.
- $\sigma(\pi A) \approx \sigma(\pi p) A^{2/3}$ (black disk limit).
- \Rightarrow hadronic interaction length:

$$\lambda_I = \frac{A}{\sigma N_A \rho} = \frac{35 \, cm}{\rho} \, A^{1/3}$$

- $\lambda_I = 17 \text{ cm in Fe or Pb}$.
- Much larger than X₀.

Hadronic showers

- Hadronic interaction have high multiplicity:
 - Shower is to 95% contained in \sim 7 λ at 50 GeV (1.2m of iron).
- Hadronic interactions produce π^0 :
 - $\pi^0 \rightarrow \gamma \gamma$, leading to local EM showers ('hot spots', ~30%)
- Some energy lost in nuclear breakup and neutrons ('invisible energy', 15-35%).
- Stronger fluctuations in a hadronic shower:
 - Worse energy resolution.

2 hadronic showers

A good hadron calorimeter should have equal response to hadrons and electrons ('hardware compensation') or high granularity to isolate the hot spots ('software compensation')

Jet Finding

Calorimeter jet (cone)

- jet is a collection of energy deposits with a given cone *R*: $R = \sqrt{\Delta \varphi^2 + \Delta \eta^2}$
- \blacklozenge cone direction maximizes the total E_{T} of the jet
- various clustering algorithms
 - → correct for finite energy resolution
 - → subtract underlying event
 - → add out of cone energy

Particle jet

 a spread of particles running roughly in the same direction as the parton after hadronization

Transverse slice through CMS detector

Summary

1. 粒子电荷和动量测量 弧高测量和偏转 2. 电子和光子能量测量 轫致辐射+离子化 3. 强子能量测量 粉碎核+核子碰撞 + 离子化 muon子动量测量 4. 偏转 5. 中微子动量 丢失动量

