粒子物理 15．夸克楸型

曹庆宏

北京大学物理学院

Gell－mann的八正法
＊）同位旅和奇至数构成新的有用的分析工具 （su（r））
＊利用群论概念，寻敃绝相正作用的更高对称性，可以保不同同位施和奇异数的粒包客进来
$\Rightarrow 1961$ 年 Gell－mann 和 Neeman 提出SU（3）群
注意：他们委秥动机并不是为了络子分类，而是要试图
建立一个具体的强相作用量子场论
此时量肠论正迅速衰败，被视作是完全过时的
\Rightarrow 直接导治SU（3）提出不久就与其规范理论之根漂
分离，变为一种自生自天的粒分类方诖

为什么QFT在走下坡路？

$$
\begin{gathered}
\text { 今天量子场论 } \\
\text { 如晃手可热 }
\end{gathered}
$$

量子电动力学（QED）

拉格朗日量：

微扰求解

$$
\alpha=\frac{e^{2}}{4 \pi}=\frac{1}{137} \quad \underset{\substack{\text { 贡献 } \alpha^{n}}}{n \text { 光子 }}
$$

量子力学二阶微扰项

$E_{a}^{(2)}=\sum_{i \neq a} \frac{\left.\left|\left\langle\psi_{i}^{(0)}\right| \hat{H}_{I}\right| \psi_{a}^{(0)}\right\rangle\left.\right|^{2}}{E_{a}^{(0)}-E_{i}^{(0)}}=\sum_{i \neq a} \frac{1}{E_{a}^{(0)}-E_{i}^{(0)}}\left\langle\psi_{a}^{(0)}\right| \hat{H}_{I}\left|\psi_{i}^{(0)}\right\rangle\left\langle\psi_{i}^{(0)}\right| \hat{H}_{I}\left|\psi_{a}^{(0)}\right\rangle$

收敛性：

1）$\left\langle\psi_{i}^{(0)}\right| \hat{H}_{I}\left|\psi_{a}^{(0)}\right\rangle$ 很大，导致对各态求和不收敛

\longrightarrow 紫外发散
2）E_{a} 能级附近存在许多（或连续的）能级满足 $\left|E_{i}-E_{a}\right| \sim, 0$ 从而导致对各态求和不收敛
\longrightarrow 红外发散

QED：微扰展开计算中的无穷大问题

Bare vertex

Radiative correction

Electron propagator

Photon propagator
Radiative correction （Vacuum polarization）
＂整个30年代，物理学界共识是，量子场论并不被看好。它可能有用，但只是权宜之计，需要添加全新的东西才能使它说的通。＂

QED重整化

－20世纪40年代后期才消除QED理论中的不健全之处
Feynman，Schwinger，Tomonaga分别提出重整化思想
1949年Dyson证明他们三种方案是等价的

1965 Nobel
Dyson

Freeman Dyson

（2）Note：戴森（Freeman Dyson）早年在剑桥大学追随著名的数学家 G．H．哈代研究数学，1945 年获得数学系的学士学位后，于1947年到美国康奈尔大学跟随汉斯•贝特和理查德•费曼学习。他证明了施温格和朝永根一郎发展的变分法方法和费曼的路径积分法的等价性，为量子电动力学的建立做出了决定性的贡献。1949年戴森提出 Dyson series，这一工作启发 Ward 研究并提出 Ward 等式。

戴森没有博士学位，但由于他的杰出贡献，康奈尔大学于1951年聘请戴森为物理学教授。这在今天是难以想象的。戴森获得很多荣誉学位，其中包括 Yeshiva University（1966），University of Glasgow（1974），Princeton University（1974），Univer－ sity of York（1980），City University of London（1981），New School of Social Research （1982），Rensselaer Polytechnic（1983），Susquehanna University（1984），Depauw Uni－ versity（1987），Rider College（1989），Bates College（1991），Haverford College（1991）， Dartmouth College（1995），Federal Inst．of Tech．（ETH），Switzerland（1995），Scuola Normale Superiore，Pisa，Italy（1996），University of Puget Sound（1997），Oxford Uni－ versity（1997），Clarkson University（1998），Rockefeller University（2001），St．Peter＇s College（2004），Georgetown University（2005），University of Michigan（2005），Univer－ sity of the Sciences（2011）。

Muon g－2

$$
\begin{aligned}
\frac{1}{2} g_{\text {theory }}= & 1 \\
& +(\alpha / 2 \pi) \\
& -0.32848(\alpha / \pi)^{2} \\
& +(1.195 \pm 0.026)(\alpha / \pi)^{3} \\
& -(1.7283(35))(\alpha / \pi)^{4}+(\text { Non-QED })
\end{aligned}
$$

（a） 1928 （Dirac equation）
（b） 1949 （ 1 diagram）
（c） 1958 （ 18 diagrams）
（d） 1974 （ 72 diagrams）
（e） 2006 （ 891 diagrams）．

Kinoshita

Complete Tenth－Order QED Contribution to the Muon \boldsymbol{g}－ 2

Tatsumi Aoyama，${ }^{1,2}$ Masashi Hayakawa，${ }^{3,2}$ Toichiro Kinoshita，${ }^{4,2}$ and Makiko Nio ${ }^{2}$

5圈图（总计12672个费曼图）
计算精度：10－12
人类精确计算的登峰造极之作

量子场论大萧条

1949年后的几年内，因为QED理论的极大成功，人们对量子场论的热情处于发烧状态。许多理论物理学家都认为很快就会完全理解所有的微观现象，不仅仅限于光子，电子和正电子而已。

然而不久，这种信心就崩溃了——量子场论的股票在物理学股市上大跌，并因此进入第二轮熊市。不幸的是，这次大萧条持续了近20年。

B）量场论用于彁相炸用 \rightarrow 玄正性实难。
（被坏几率守恎）
矛因：W／粒子末曾发现
c）量子场论用于强相互作用 \rightarrow 失败更直接和显普 1935 年 Y Wkawn 仿效QED建立一个有效理论，（宔整化设有问题）

虽然可重整化，并田递从守性定律，但这个理论没有什么用！！！因为，无㓐使用微扰论计礿 $\left.\left(g_{p h}^{2}=g_{n n}^{2}\right\lrcorner g_{m}^{2} \simeq 15\right)$
为了得到有意义的理记预言，必须对无限复杂的序列求和但元人知道怎么做！\rightarrow 规则！所以上个世世纪50年代中期，场论方结不被人看好！希望越大，失望也越大！（SVSY）
＊）S－矩煿（理论家是班常联总刚的）
核心问题：强子过程能否用微扰展开级娄的费曼图来描述？
\Rightarrow 如果能，那么如何对发散级数求和？
挨种思路：Yukawa理论的Pion被实验验让了，
如果Yuknwn理记是区确的，那么有意义的一定
求和立后的结果，而级数中个别项不具有重要的物理意义。
Observed：$|i\rangle \rightarrow|f\rangle$
并未曾看到中国传播的核子或Pion
解决方㓐：放弃 Feynman 图，仅研究跃近檘毫本身（ 5 欵车）

1956－1959年 CHZW 等人得到：
S一矩阵可视为有关变量的给析画数
人们仍然用基于费曼图的微扰论做计称，但仅仅将其作为分析S矩阵线析性质的启发性工具。
谢进的 CHEW宣称QFT 在处理弶相主作用已经死亡。
\longrightarrow 提苪＂bootstrap＂理论。

革化祥理论：
从S矩陈的解析结构导出一组由无穷多个来合的非线性强构或的方程组，但无人知道め何求立小。
CHEW 指出：此方程组有解，而且解是惟一的，
并认为通过自洽性要求，此解决定所有强子的居性。
\Rightarrow 所有强子的地位都是场皆的，通过 bortsercp
使自己成为 5 矩阵方程自洽解的一部分。
例如：将无穷多个方程实施或断，䢂入而性质
\Rightarrow 自垥地䄍出 ρ 尔子抟性
用同位族输入 $\Rightarrow \delta U(3)$ 强子对称性

雷奇理论：
Regic 非相对论势能敬射，可采用复数的能量和角动量变是，
而不是用能量和动量转移，来分析解析性质。
CHzW 将之推广到相对论性S矩阵方法
＊）高能量和小动量转移条件下，S矩阵的行为可安
少量的 Regjie 奇卓的性质来理阵
这些 Regfie 奇奌是自施依赖于能量的准程子
＊）Reggie 奇类的能量达到其自施取整数或丰整数时

$$
\Longrightarrow \text { 可观测的强子 }
$$

＊）全新楊子分类
按Regjie轨迹と位置来分粪

不同强子的霬吉轨迹：（a）介子，

注意自旋 (J) 与质量平方 $\left(M^{2}\right)$ 之间的线性关系

不同强子的雷吉轨迹：（b）重子

注意自旋 (J) 与质量平方 $\left(M^{2}\right)$ 之间的线性关系

今克模型
1964年Gell－man 提出 $^{\text {年 }}$
如果八正法是正确的，那么其肾后定隐葴着数的规律。
\Rightarrow 强子为复合粒子，并认为这些䉼子为更基本的且具有 $\log (8)$ 对称性方案：强子有四狛基本实体组成，每个实体的电荷为 0 或 1

好处：可以量复出SU（3）多宝活子结构
坏处：其中1个精子起到基本重子作用，与其余䂵不同
方案2：允作彵荷以非整数形式存在，则可得到更简单，这优美的结构——夸克模型
与此同时 Zweig 独主提出夸克模型，他将之命名为 ACE。
（这场冠命大战最终mGGell－mann大获全胜而告终。）

Gell man 和 Zweig 是根据完全不13］的动机来得到＂奏克＂的概念。

Quark：$s=1 / 2, b=\frac{1}{3} \quad u p$ down strange

$$
\begin{array}{ccc}
I=1 / 2 & 1 / 2 & 0 \\
\delta=0 & 0 & -1 \\
\omega=\frac{2}{3} & -1 / 3 & -1 / 3
\end{array}
$$

复合粒子的想诖并不是革命性的
1949．Yaun 和 Fermi 提当 T是核子一反核子组成 1956 Sakata 提尚坂田模型（p，n和入）为朋解奇专娄

（在 Sakktanomdel中 $\Omega^{-}=\Omega^{-}(\wedge 1 \wedge)$ ）

芳同点 $3: ~$ 都无法解释为何表观测到夸兌
复合粒子意味着其内部成分可以被观测（会子：它子和
Gell－mann 在文中拄明，
由于电荷数和重子数守性，必有一种夸克是绝对稳定的地球表而物质将䊅着稳定夸克，但有可能㫛积量班常徽小
以及子无洼观测到
\Rightarrow 探测四业寻找 $Q=2 / 3$ 或 $-1 / 3$ 的稳定夸克
（今天的暗物质也有可纯是这样的）
＊）虽然Gell－mun 自己本人都怀䅅夸克，但实验家却非旁喜欢。

- 密当根㭖 \Rightarrow 电荷必定是整数的（挑战）
- 之类实验，（1）加速四
（2）宇富线
（3）全新版＂油滴实验
＊）虽然并未直接测到夸克，但用夸克或组分夸克来斿拜绳子分类却取得了极大成功！

这并不奇怪！物理是实验科学。任何理论都是对自然界的一神指述。只要可的朋释实验，那就是如的有敦拈速。
＊）Zweig的组分芌克模并（Comporsite Quark model $\equiv C Q M$ ） （1937生子Moscow，1959年策于 University rf Michigan 数学系）

作为理论物理新乍，设有太多柜架约束，耍想效干
高能物理学界的前辈们并不认同 $C Q M$ ，甚至有八宣称 Zweig
的CQM是＂骗人＂的工作——这比民科还狠！
为什么会这样？
上个世纪60年代，绝相正作用的两个柜架
量场论 质 S－矩阵
两者都无法接受CQM
（1）QFT：无法直接观测到组分夸克 $\rightarrow M_{Q}$ 非常大～GeV $\langle Q \bar{Q}\rangle \sim m_{\pi} \ll 2 m_{Q}$ 要求结合能班常大

$$
\Rightarrow E_{a \theta}^{\text {结既 }} \sim m_{Q}
$$

组分夸克间相互作用太强，无法计称
（2）S－矩阵：更加反对，因为 S－矩阵理谒中，所有强子的地位却是相等的。
bootstrap：根本不相信有什么基本组分。
当然，最重要是实验上末曾观测到组分夸克！！
但人们承认COM的巨大的启发价值。
\Rightarrow 唯象研究取得了极大的成功
（将抽象程度较低的模型名用于数据分析或进步指导实验）
＊）Gell－mann 的夸克和流代数
上世纪60和70年代压在场论头上的两座大山
（1）高能领城的软散射的 Regre 理论
（2）低能领域的有共振态的 CQM
\Rightarrow＂流代数＂保留了场论革命的大种
Gell－mann 是在流代数基群讨论夸克，
工化说服物理学家接受夸克的概念
Gell．men 立章仅项，惟一的虹是计祢自由夸克的绝子＂弱流的对易子

1958年 Gell－mann 和 Feymman 给弱弱相互作用唯象的 V－A理论 WM QED 为蓝本，将弱相红乍用类比于Q 20 中电磁流之间发生的电磁相正作用
问题：纯轻的弱和电磁相正作用非常清楚，
語流和电磁流可以通过场来构造
但实验业找到成百上干的强 8 ？
Gell mam 假设各种强子流之间的关系可以像轻流的 V－A 五里论一样模型化
轻理论 \longrightarrow 流产生SU（2）代数

\Rightarrow 流代数名字的来源

Flavour Symmetry of the Strong Interaction

We can extend this idea to the quarks:

\star Assume the strong interaction treats all quark flavours equally (it does)
-Because $m_{u} \approx m_{d}$:
The strong interaction possesses an approximate flavour symmetry
i.e. from the point of view of the strong interaction nothing changes if all up quarks are replaced by down quarks and vice versa.

- Choose the basis

$$
u=\binom{1}{0} \quad d=\binom{0}{1}
$$

- Express the invariance of the strong interaction under $u \leftrightarrow d$ as invariance under "rotations" in an abstract isospin space

$$
\binom{u^{\prime}}{d^{\prime}}=\hat{U}\binom{u}{d}=\left(\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)\binom{u}{d}
$$

The 2×2 unitary matrix depends on 4 complex numbers, i.e. 8 real parameters But there are four constraints from $\hat{U}^{\dagger} \hat{U}=1$
$\Rightarrow 8-4=4$ independent matrices
-In the language of group theory the four matrices form the $\mathrm{U}(2)$ group

- One of the matrices corresponds to multiplying by a phase factor

$$
\hat{U}_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) e^{i \phi}
$$

not a flavour transformation and of no relevance here.

- The remaining three matrices form an $\operatorname{SU}(2)$ group (special unitary) with $\operatorname{det} U=1$
- For an infinitesimal transformation, in terms of the Hermitian generators \hat{G}

$$
\operatorname{det} U=1 \quad \Rightarrow \operatorname{Tr}(\hat{G})=\hat{U}=1+i \varepsilon \hat{G}
$$

- A linearly independent choice for \hat{G} are the Pauli spin matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- The proposed flavour symmetry of the strong interaction has the same transformation properties as SPIN !
- Define ISOSPIN: $\vec{T}=\frac{1}{2} \vec{\sigma} \quad \hat{U}=e^{i \vec{\alpha} \cdot \vec{T}}$
- Check this works, for an infinitesimal transformation

$$
\hat{U}=1+\frac{1}{2} i \vec{\varepsilon} . \vec{\sigma}=1+\frac{i}{2}\left(\varepsilon_{1} \sigma_{1}+\varepsilon_{2} \sigma_{2}+\varepsilon_{3} \sigma_{3}\right)=\left(\begin{array}{cc}
1+\frac{1}{2} i \varepsilon_{3} & \frac{1}{2} i\left(\varepsilon_{1}-i \varepsilon_{2}\right) \\
\frac{1}{2} i\left(\varepsilon_{1}+i \varepsilon_{2}\right) & 1-\frac{1}{2} i \varepsilon_{3}
\end{array}\right)
$$

Which is, as required, unitary and has unit determinant

$$
U^{\dagger} U=I+O\left(\varepsilon^{2}\right) \quad \operatorname{det} U=1+O\left(\varepsilon^{2}\right)
$$

Properties of Isopin

- Isospin has the exactly the same properties as spin

$$
\begin{array}{cc}
{\left[T_{1}, T_{2}\right]=i T_{3}} & {\left[T_{2}, T_{3}\right]=i T_{1} \quad\left[T_{3}, T_{1}\right]=i T_{2}} \\
{\left[T^{2}, T_{3}\right]=0} & T^{2}=T_{1}^{2}+T_{2}^{2}+T_{3}^{2}
\end{array}
$$

As in the case of spin, have three non-commuting operators, T_{1}, T_{2}, T_{3} and even though all three correspond to observables, can't know them simultaneously. So label states in terms of total isospin I and the third component of isospin I_{3}

NOTE: isospin has nothing to do with spin - just the same mathematics

- The eigenstates are exact analogues of the eigenstates of ordinary angular momentum $\quad|s, m\rangle \rightarrow\left|I, I_{3}\right\rangle$

$$
\text { with } \quad T^{2}\left|I, I_{3}\right\rangle=I(I+1)\left|I, I_{3}\right\rangle \quad T_{3}\left|I, I_{3}\right\rangle=I_{3}\left|I, I_{3}\right\rangle
$$

- In terms of isospin:

$$
\begin{aligned}
& u=\binom{1}{0}=\left|\frac{1}{2},+\frac{1}{2}\right\rangle \quad d=\binom{0}{1}=\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\
& \xrightarrow[-\frac{1}{2}]{\boldsymbol{d}} \xrightarrow[+\frac{1}{2}]{\boldsymbol{u}} I_{3} \\
& I=\frac{1}{2}, \quad I_{3}= \pm \frac{1}{2}
\end{aligned}
$$

- In general $\quad I_{3}=\frac{1}{2}\left(N_{u}-N_{d}\right)$
- Can define isospin ladder operators - analogous to spin ladder operators

Step up/down in I_{3} until reach end of multiplet $\quad T_{+}|I,+I\rangle=0 \quad T_{-}|I,-I\rangle=0$

$$
T_{+} u=0 \quad T_{+} d=u \quad T_{-} u=d \quad T_{-} d=0
$$

- Ladder operators turn $u \rightarrow d$ and $d \rightarrow u$
\star Combination of isospin: e.g. what is the isospin of a system of two d quarks, is exactly analogous to combination of spin (i.e. angular momentum)

$$
\left|I^{(1)}, I_{3}^{(1)}\right\rangle\left|I^{(2)}, I_{3}^{(2)}\right\rangle \rightarrow\left|I, I_{3}\right\rangle
$$

- I_{3} additive : $I_{3}=I_{3}^{(1)}+I_{3}^{(2)}$
- I in integer steps from $\left|I^{(1)}-I^{(2)}\right|$ to $\left|I^{(1)}+I^{(2)}\right|$
\star Assumed symmetry of Strong Interaction under isospin transformations implies the existence of conserved quantites
- In strong interactions I_{3} and I are conserved, analogous to conservation of J_{z} and J for angular momentum

Combining Quarks

Goal: derive proton wave-function

- First combine two quarks, then combine the third
- Use requirement that fermion wave-functions are anti-symmetric

Isospin starts to become useful in defining states of more than one quark.
e.g. two quarks, here we have four possible combinations:

Note: represents two states with the same value of I_{3}

- We can immediately identify the extremes (I_{3} additive)

$$
u u \equiv\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle=|1,+1\rangle \quad d d \equiv\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle=|1,-1\rangle
$$

To obtain the $|1,0\rangle$ state use ladder operators

$$
\begin{gathered}
T_{-}|1,+1\rangle=\sqrt{2}|1,0\rangle=T_{-}(u u)=u d+d u \\
\quad|1,0\rangle=\frac{1}{\sqrt{2}}(u d+d u)
\end{gathered}
$$

The final state, $|0,0\rangle$ can be found from orthogonality with $|1,0\rangle$

$$
\Rightarrow \quad 0,0\rangle=\frac{1}{\sqrt{2}}(u d-d u)
$$

- From four possible combinations of isospin doublets obtain a triplet of isospin 1 states and a singlet isospin 0 state $2 \otimes 2=3 \oplus 1$

- Can move around within multiplets using ladder operators
- note, as anticipated $I_{3}=\frac{1}{2}\left(N_{u}-N_{d}\right)$
- States with different total isospin are physically different - the isospin 1 triplet is symmetric under interchange of quarks 1 and 2 whereas singlet is anti-symmetric
\star Now add an additional up or down quark. From each of the above 4 states get two new isospin states with $I_{3}^{\prime}=I_{3} \pm \frac{1}{2}$

6
2

- Use ladder operators and orthogonality to group the 6 states into isospin multiplets, e.g. to obtain the $I=\frac{3}{2}$ states, step up from $d d d$
\star Derive the $I=\frac{3}{2}$ states from $\quad d d d \equiv\left|\frac{3}{2},-\frac{3}{2}\right\rangle$

$$
\begin{aligned}
& T_{+}\left|\frac{3}{2},-\frac{3}{2}\right\rangle=T_{+}(d d d)=\left(T_{+} d\right) d d+d\left(T_{+} d\right) d+d d\left(T_{+}\right) d \\
& \sqrt{3}\left|\frac{3}{2},-\frac{1}{2}\right\rangle=u d d+d u d+d d u \\
& \left|\frac{3}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(u d d+d u d+d d u) \\
& T_{+}\left|\frac{3}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}} T_{+}(u d d+d u d+d d u) \\
& 2\left|\frac{3}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(u u d+u d u+u u d+d u u+u d u+d u u) \\
& \left.\frac{1}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(u u d+u d u+d u u) \\
& T_{+}\left|\frac{3}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}} T_{+}(u u d+u d u+d u u) \\
& \sqrt{3}\left|\frac{3}{2},+\frac{3}{2}\right\rangle=\frac{1}{\sqrt{3}}(u u u+u u u+u u u) \\
& \left|\frac{3}{2},+\frac{3}{2}\right\rangle=\text { uиu }
\end{aligned}
$$

\star From the 6 states on previous page, use orthoganality to find $\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle$ states
\star The 2 states on the previous page give another $\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle$ doublet
\star The eight states $u u u, u u d, u d u, u d d, d u u, d u d, d d u, d d d$ are grouped into an isospin quadruplet and two isospin doublets

$$
2 \otimes 2 \otimes 2=2 \otimes(3 \oplus 1)=(2 \otimes 3) \oplus(2 \otimes 1)=4 \oplus 2 \oplus 2
$$

- Different multiplets have different symmetry properties

$$
\begin{aligned}
& \left|\frac{3}{2},+\frac{3}{2}\right\rangle=u u u \\
& \left|\frac{3}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(u u d+u d u+d u u) \\
& \left|\frac{3}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(d d u+d u d+u d d) \\
& \text { S } \\
& \left|\frac{3}{2},-\frac{3}{2}\right\rangle=d d d \\
& \left.\left|\frac{1}{2},-\frac{1}{2}\right\rangle=-\frac{1}{\sqrt{6}}(2 d d u-u d d-d u d)\right\} \\
& \left|\frac{1}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{6}}(2 u u d-u d u-d u u) \\
& M_{S} \\
& \left|\frac{1}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}(u d d-\text { dud }) \\
& \left|\frac{1}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}(u d u-d u u) \\
& M_{A} \\
& \text { A quadruplet of states which } \\
& \text { are symmetric under the } \\
& \text { interchange of any two quarks } \\
& \text { Mixed symmetry. } \\
& \text { Symmetric for } 1 \hookleftarrow 2 \\
& \text { Mixed symmetry. } \\
& \text { Anti-symmetric for } 1 \hookrightarrow 2
\end{aligned}
$$

- Mixed symmetry states have no definite symmetry under interchange of quarks $1 \leftrightarrow 3$ etc.

Combining Spin

- Can apply exactly the same mathematics to determine the possible spin wave-functions for a combination of 3 spin-half particles

$$
\begin{aligned}
& \left|\frac{3}{2},+\frac{3}{2}\right\rangle=\uparrow \uparrow \uparrow \\
& \left|\frac{3}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(\uparrow \uparrow \downarrow+\uparrow \downarrow \uparrow+\downarrow \uparrow \uparrow) \\
& \left.\left|\frac{3}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(\downarrow \downarrow \uparrow+\downarrow \uparrow \downarrow+\uparrow \downarrow \downarrow)\right\} S \\
& \left\langle\frac{3}{2},-\frac{3}{2}\right\rangle=\downarrow \downarrow \downarrow \\
& \left.\left|\frac{1}{2},-\frac{1}{2}\right\rangle=-\frac{1}{\sqrt{6}}(2 \downarrow \downarrow \uparrow-\uparrow \downarrow \downarrow-\downarrow \uparrow \downarrow)\right\} \\
& \left|\frac{1}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{6}}(2 \uparrow \uparrow \downarrow-\uparrow \downarrow \uparrow-\downarrow \uparrow \uparrow) \\
& \left|\frac{1}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow \downarrow-\downarrow \uparrow \downarrow) \\
& \left.\left|\frac{1}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}(\uparrow \uparrow \uparrow-\downarrow \uparrow \uparrow)\right\} \mathbf{M}_{\mathrm{A}} \\
& \text { A quadruplet of states which } \\
& \text { are symmetric under the } \\
& \text { interchange of any two quarks }
\end{aligned}
$$

- Can now form total wave-functions for combination of three quarks

Baryon Wave-functions (ud)

\star Quarks are fermions so require that the total wave-function is anti-symmetric under the interchange of any two quarks
\star the total wave-function can be expressed in terms of:

$$
\psi=\phi_{\text {flavour }} \chi_{\text {spin }} \xi_{\text {colour }} \eta_{\text {space }}
$$

* The colour wave-function for all bound qqq states is anti-symmetric
- Here we will only consider the lowest mass, ground state, baryons where there is no internal orbital angular momentum.
- For $\mathrm{L}=0$ the spatial wave-function is symmetric $(-1)^{\mathrm{L}}$.

\star Two ways to form a totally symmetric wave-function from spin and isospin states:
(1) combine totally symmetric spin and isospin wave-functions
$d d d \quad \frac{1}{\sqrt{3}}(d d u+d u d+u d d) \quad \frac{1}{\sqrt{3}}(u u d+u d u+d u u) u u u$

Spin 3/2 Isospin 3/2
(2) combine mixed symmetry spin and mixed symmetry isospin states

- Both $\phi\left(M_{S}\right) \chi\left(M_{S}\right)$ and $\phi\left(M_{A}\right) \chi\left(M_{A}\right)$ are sym. under inter-change of quarks $1 \leftrightarrow 2$
- Not sufficient, these combinations have no definite symmetry under $1 \leftrightarrow 3, \ldots$
- However, it is not difficult to show that the (normalised) linear combination:

$$
\frac{1}{\sqrt{2}} \phi\left(M_{S}\right) \chi\left(M_{S}\right)+\frac{1}{\sqrt{2}} \phi\left(M_{A}\right) \chi\left(M_{A}\right)
$$

is totally symmetric (i.e. symmetric under $1 \leftrightarrow 2 ; 1 \leftrightarrow 3 ; 2 \leftrightarrow 3$)

Spin 1/2
Isospin 1/2

- The spin-up proton wave-function is therefore:

$$
\begin{aligned}
& |p \uparrow\rangle=\frac{1}{6 \sqrt{2}}(2 u u d-u d u-d u u)(2 \uparrow \uparrow \downarrow-\uparrow \downarrow \uparrow-\downarrow \uparrow \uparrow)+\frac{1}{2 \sqrt{2}}(u d u-d u u)(\uparrow \downarrow \uparrow-\downarrow \uparrow \uparrow) \\
& |p \uparrow\rangle=\frac{1}{\sqrt{18}}(2 u \uparrow u \uparrow d \downarrow-u \uparrow u \downarrow d \uparrow-u \downarrow u \uparrow d \uparrow+ \\
& 2 u \uparrow d \downarrow u \uparrow-u \uparrow d \uparrow u \downarrow-u \downarrow d \uparrow u \uparrow+ \\
& 2 d \downarrow u \uparrow u \uparrow-d \uparrow u \downarrow u \uparrow-d \uparrow u \uparrow u \uparrow)
\end{aligned}
$$

NOTE: not always necessary to use the fully symmetrised proton wave-function, e.g. the first 3 terms are sufficient for calculating the proton magnetic moment

Anti-quarks and Mesons (u and d)

\star The \mathbf{u}, \mathbf{d} quarks and $\overline{\mathbf{u}}, \overline{\mathbf{d}}$ anti-quarks are represented as isospin doublets

$$
\begin{aligned}
\bar{u} & =\binom{0}{1} \\
\bar{d} & =-\binom{1}{0}
\end{aligned}
$$

- Subtle point: The ordering and the minus sign in the anti-quark doublet ensures that anti-quarks and quarks transform in the same way (see Appendix I). This is necessary if we want physical predictions to be invariant under $u \leftrightarrow d ; \bar{u} \leftrightarrow \bar{d}$
- Consider the effect of ladder operators on the anti-quark isospin states

$$
\text { e.g } \quad T_{+} \bar{u}=T_{+}\binom{0}{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0}=-\bar{d}
$$

- The effect of the ladder operators on anti-particle isospin states are:

$$
T_{+} \bar{u}=-\bar{d} \quad T_{+} \bar{d}=0 \quad T_{-} \bar{u}=0 \quad T_{-} \bar{d}=-\bar{u}
$$

Compare with

$$
T_{+} u=0 \quad T_{+} d=u \quad T_{-} u=d \quad T_{-} d=0
$$

Light ud Mesons

\star Can now construct meson states from combinations of up/down quarks

- Consider the $q \bar{q}$ combinations in terms of isospin

$$
\begin{aligned}
& |1,+1\rangle=\left|\frac{1}{2},+\frac{1}{2}\right\rangle \overline{\left|\frac{1}{2},+\frac{1}{2}\right\rangle}=-u \bar{d} \\
& |1,-1\rangle=\left|\frac{1}{2},-\frac{1}{2}\right\rangle \overline{\left|\frac{1}{2},-\frac{1}{2}\right\rangle}=d \bar{u}
\end{aligned}
$$

The bar indicates this is the isospin representation of an anti-quark

To obtain the $I_{3}=0$ states use ladder operators and orthogonality

$$
\begin{aligned}
T_{-}|1,+1\rangle & =T_{-}[-u \bar{d}] \\
\sqrt{2}|1,0\rangle & =-T_{-}[u] \bar{d}-u T_{-}[\bar{d}] \\
& =-d \bar{d}+u \bar{u} \\
\Rightarrow \quad|1,0\rangle & =\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d})
\end{aligned}
$$

- Orthogonality gives: $\quad|0,0\rangle=\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d})$
\star To summarise:

\square Triplet of $I=1$ states and a singlet $I=0$ state

- You will see this written as $\quad 2 \otimes \overline{2}=3 \oplus 1$
- To show the state obtained from orthogonality with $|1,0\rangle$ is a singlet use ladder operators

$$
T_{+}|0,0\rangle=T_{+} \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d})=\frac{1}{\sqrt{2}}(-u \bar{d}+u \bar{d})=0
$$

similarly $\quad T_{-}|0,0\rangle=0$
\star A singlet state is a "dead-end" from the point of view of ladder operators

SU(3) Flavour

\star Extend these ideas to include the strange quark. Since $m_{s}>m_{u}, m_{d}$ don't have an exact symmetry. But m_{s} not so very different from m_{u}, m_{d} and can treat the strong interaction (and resulting hadron states) as if it were symmetric under $u \leftrightarrow d \leftrightarrow s$

- NOTE: any results obtained from this assumption are only approximate as the symmetry is not exact.
- The assumed uds flavour symmetry can be expressed as

$$
\left(\begin{array}{l}
u^{\prime} \\
d^{\prime} \\
s^{\prime}
\end{array}\right)=\hat{U}\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)=\left(\begin{array}{lll}
U_{11} & U_{12} & U_{13} \\
U_{21} & U_{22} & U_{23} \\
U_{31} & U_{32} & U_{33}
\end{array}\right)\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

- The 3×3 unitary matrix depends on 9 complex numbers, i.e. 18 real parameters There are 9 constraints from $\hat{U}^{\dagger} \hat{U}=1$
\square Can form 18-9 = 9 linearly independent matrices
These 9 matrices form a $U(3)$ group.
- As before, one matrix is simply the identity multiplied by a complex phase and is of no interest in the context of flavour symmetry
- The remaining 8 matrices have $\operatorname{det} U=1$ and form an $\operatorname{SU}(3)$ group
- The eight matrices (the Hermitian generators) are: $\quad \vec{T}=\frac{1}{2} \vec{\lambda} \quad \hat{U}=e^{i \vec{\alpha} \cdot \vec{T}}$
$\star \ln \operatorname{SU}(3)$ flavour, the three quark states are represented by:

$$
u=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad d=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad s=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

\star In SU(3) uds flavour symmetry contains $\operatorname{SU}(2)$ ud flavour symmetry which allows us to write the first three matrices:

$$
\lambda_{1}=\left(\begin{array}{ll}
\sigma_{1} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{ll}
\sigma_{2} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \quad \lambda_{3}=\left(\begin{array}{cc}
\sigma_{3} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

i.e.

$$
\mathrm{u} \leftrightarrow \quad \mathrm{~d} h_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- The third component of isospin is now written $I_{3}=\frac{1}{2} \lambda_{3}$

$$
\text { with } \quad I_{3} u=+\frac{1}{2} u \quad I_{3} d=-\frac{1}{2} d \quad I_{3} s=0
$$

- I_{3} "counts the number of up quarks - number of down quarks in a state
- As before, ladder operators $T_{ \pm}=\frac{1}{2}\left(\lambda_{1} \pm i \lambda_{2}\right) \quad d \bigcirc \longleftarrow u$
- Now consider the matrices corresponding to the $\mathbf{u} \leftrightarrow \mathbf{s}$ and $\mathbf{d} \leftrightarrow \mathbf{s}$

	$=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right) \lambda_{5}=\left(\begin{array}{ccc}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right)$	
	$=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \lambda_{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right)$	

- Hence in addition to $\lambda_{3}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ have two other traceless diagonal matrices
- However the three diagonal matrices are not be independent.
- Define the eighth matrix, λ_{8}, as the linear combination:

$$
\lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)+\frac{1}{\sqrt{3}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)=\frac{1}{\sqrt{3}}\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

which specifies the "vertical position" in the 2D plane

> "Only need two axes (quantum numbers) to specify a state in the 2D plane": $\left(\mathrm{I}_{3}, \mathrm{Y}\right)$

\star The other six matrices form six ladder operators which step between the states

$$
\begin{array}{r}
\begin{array}{r}
T_{ \pm}=\frac{1}{2}\left(\lambda_{1} \pm i \lambda_{2}\right) \\
V_{ \pm}=\frac{1}{2}\left(\lambda_{4} \pm i \lambda_{5}\right) \\
U_{ \pm}=\frac{1}{2}\left(\lambda_{6} \pm i \lambda_{7}\right)
\end{array} \\
\text { with } I_{3}=\frac{1}{2} \lambda_{3} Y=\frac{1}{\sqrt{3}} \lambda_{8}
\end{array}
$$

and the eight Gell-Mann matrices

$\mathbf{u} \leftrightarrow \mathrm{d}$	$\lambda_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \lambda_{2}=\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$	$\lambda_{3}=\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\mathbf{u} \leftrightarrow \mathbf{s}$	$\lambda_{4}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right) \quad \lambda_{5}=\left(\begin{array}{ccc}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right)$	$\lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$\mathbf{d} \leftrightarrow \mathbf{s}$	$\lambda_{6}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) \quad \lambda_{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right)$	${ }^{\sqrt{3}}\left(\begin{array}{lll}0 & 0 & -2\end{array}\right)$

Quarks and anti-quarks in SU(3) Flavour

Quarks

$$
I_{3} u=+\frac{1}{2} u ; \quad I_{3} d=-\frac{1}{2} d ; \quad I_{3} s=0
$$

$$
Y u=+\frac{1}{3} u ; \quad Y d=+\frac{1}{3} d ; \quad Y s=-\frac{2}{3} s
$$

-The anti-quarks have opposite $\mathbf{S U}(3)$ flavour quantum numbers

Anti-Quarks

$$
I_{3} \bar{u}=-\frac{1}{2} \bar{u} ; \quad I_{3} \bar{d}=+\frac{1}{2} \bar{d} ; \quad I_{3} \bar{s}=0
$$

$$
Y \bar{u}=-\frac{1}{3} \bar{u} ; \quad Y \bar{d}=-\frac{1}{3} \bar{d} ; \quad Y \bar{s}=+\frac{2}{3} \bar{s}
$$

SU(3) Ladder Operators

- SU(3) uds flavour symmetry contains ud, us and ds $\operatorname{SU}(2)$ symmetries
- Consider the $u \leftrightarrow S$ symmetry "V-spin" which has the associated $s \rightarrow u$ ladder operator

$$
\begin{aligned}
& V_{+}=\frac{1}{2}\left(\lambda_{4}+i \lambda_{5}\right)=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)+\frac{i}{2}\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \text { with } \quad V_{+} s=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=+u
\end{aligned}
$$

\star The effects of the six ladder operators are:

$$
\begin{array}{rl|rl}
T_{+} d=u ; & T_{-} u=d ; & T_{+} \bar{u}=-\bar{d} ; & T_{-} \bar{d}=-\bar{u} \\
V_{+} s=u ; & V_{-} u=s ; & V_{+} \bar{u}=-\bar{s} ; & V_{-} \bar{s}=-\bar{u} \\
U_{+} s=d ; & U_{-} d=s ; & U_{+} \bar{d}=-\bar{s} ; & U_{-} \bar{s}=-\bar{d}
\end{array}
$$

SU(3) LADDER OPERATORS

Light (uds) Mesons

- Use ladder operators to construct uds mesons from the nine possible $q \bar{q}$ states

- The three central states, all of which have $Y=0 ; I_{3}=0$ can be obtained using the ladder operators and orthogonality. Starting from the outer states can reach the centre in six ways

$$
\begin{aligned}
T_{+}|d \bar{u}\rangle & =|u \bar{u}\rangle-|d \bar{d}\rangle & & T_{-}|u \bar{d}\rangle
\end{aligned}=|d \bar{d}\rangle-|u \bar{u}\rangle,
$$

- Only two of these six states are linearly independent.
- But there are three states with $Y=0 ; I_{3}=0$
- Therefore one state is not part of the same multiplet, i.e. cannot be reached with ladder ops.
- First form two linearly independent orthogonal states from:

$$
|u \bar{u}\rangle-|d \bar{d}\rangle \quad|u \bar{u}\rangle-|s \bar{s}\rangle \quad|d \bar{d}\rangle-|s \bar{s}\rangle
$$

* If the $\operatorname{SU}(3)$ flavour symmetry were exact, the choice of states wouldn't matter. However, $m_{s}>m_{u, d}$ and the symmetry is only approximate.
- Experimentally observe three light mesons with $\mathbf{m} \sim 140 \mathrm{MeV}: \quad \pi^{+}, \pi^{0}, \pi^{-}$
- Identify one state (the π^{0}) with the isospin triplet (derived previously)

$$
\psi_{1}=\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d})
$$

- The second state can be obtained by taking the linear combination of the other two states which is orthogonal to the π^{0}

$$
\psi_{2}=\alpha(|u \bar{u}\rangle-|s \bar{s}\rangle)+\beta(|d \bar{d}\rangle-|s \bar{s}\rangle)
$$

with orthonormality: $\quad\left\langle\psi_{1} \mid \psi_{2}\right\rangle=0 ; \quad\left\langle\psi_{2} \mid \psi_{2}\right\rangle=1$

$$
\psi_{2}=\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s})
$$

- The final state (which is not part of the same multiplet) can be obtained by requiring it to be orthogonal to ψ_{1} and ψ_{2}

$$
\psi_{3}=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})
$$

\star It is easy to check that ψ_{3} is a singlet state using ladder operators

$$
T_{+} \psi_{3}=T_{-} \psi_{3}=U_{+} \psi_{3}=U_{-} \psi_{3}=V_{+} \psi_{3}=V_{-} \psi_{3}=0
$$

which confirms that $\psi_{3}=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})$ is a "flavourless" singlet

- Therefore the combination of a quark and anti-quark yields nine states which breakdown into an OCTET and a SINGLET

- In the language of group theory: $3 \otimes \overline{3}=8 \oplus 1$
\star Compare with combination of two spin-half particles $2 \otimes 2=3 \oplus 1$

$$
\begin{aligned}
\text { TRIPLET of spin-1 states: } & |1,-1\rangle,|1,0\rangle,|1,+1\rangle \\
\text { spin-0 SINGLET: } & |0,0\rangle
\end{aligned}
$$

- These spin triplet states are connected by ladder operators just as the meson uds octet states are connected by SU(3) flavour ladder operators
- The singlet state carries no angular momentum - in this sense the SU(3) flavour singlet is "flavourless"

PSEUDOSCALAR MESONS ($\mathrm{L}=0, \mathrm{~S}=0, \mathrm{~J}=0, \mathrm{P}=-1$)

-Because $\operatorname{SU}(3)$ flavour is only approximate the physical states with $I_{3}=0, Y=0$ can be mixtures of the octet and singlet states. Empirically find:

$$
\begin{aligned}
\pi^{0} & =\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \\
\eta & \approx \frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s}) \\
\eta^{\prime} & \approx \frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})
\end{aligned}
$$

VECTOR MESONS (L=0, $S=1, J=1, P=-1$)

-For the vector mesons the physical states are found to be approximately "ideally mixed":

$$
\begin{aligned}
\rho^{0} & =\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \\
\omega & \approx \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}) \\
\phi & \approx s \bar{s}
\end{aligned}
$$

MASSES

Combining uds Quarks to form Baryons

\star Have already seen that constructing Baryon states is a fairly tedious process when we derived the proton wave-function. Concentrate on multiplet structure rather than deriving all the wave-functions.
\star Everything we do here is relevant to the treatment of colour

- First combine two quarks:

\star Yields a symmetric sextet and anti-symmetric triplet: $\quad 3 \otimes 3=6 \oplus \overline{3}$

- Now add the third quark:

- Best considered in two parts, building on the sextet and triplet. Again concentrate on the multiplet structure (for the wave-functions refer to the discussion of proton wave-function).
(1) Building on the sextet: $\quad 3 \otimes 6=10 \oplus 8$

> Symmetric Decuplet

Mixed
Symmetry
Octet

(2) Building on the triplet:

- Just as in the case of uds mesons we are combining $\overline{3} \times 3$ and again obtain an octet and a singlet

- Can verify the wave-function $\psi_{\text {singlet }}=\frac{1}{\sqrt{6}}(u d s-u s d+d s u-d u s+s u d-s d u)$ is a singlet by using ladder operators, e.g.

$$
T_{+} \psi_{\text {singlet }}=\frac{1}{\sqrt{6}}(u u s-u s u+u s u-u u s+s u u-s u u)=0
$$

\star In summary, the combination of three uds quarks decomposes into

$$
3 \otimes 3 \otimes 3=3 \otimes(6 \oplus \overline{3})=10 \oplus 8 \oplus 8 \oplus 1
$$

Baryon Decuplet

\star The baryon states $(\mathrm{L}=0)$ are:

- the spin $3 / 2$ decuplet of symmetric flavour and symmetric spin wave-functions $\phi(S) \chi(S)$
BARYON DECUPLET ($L=0, S=3 / 2, J=3 / 2, P=+1$)
Mass in MeV

$\Delta(1232)$
$\Sigma(1318)$
$\Xi(1384)$
$\Omega(1672)$
* If $\operatorname{SU}(3)$ flavour were an exact symmetry all masses would be the same (broken symmetry)

Baryon Octet

\star The spin $1 / 2$ octet is formed from mixed symmetry flavour and mixed symmetry spin wave-functions

$$
\alpha \phi\left(M_{S}\right) \chi\left(M_{S}\right)+\beta \phi\left(M_{A}\right) \chi\left(M_{A}\right)
$$

See previous discussion proton for how to obtain wave-functions
BARYON OCTET ($L=0, S=1 / 2, J=1 / 2, P=+1$)

Mass in MeV 939
$\Sigma(1193)$
Λ (1116)
$\Xi(1318)$
\star NOTE: Cannot form a totally symmetric wave-function based on the anti-symmetric flavour singlet as there no totally anti-symmetric spin wave-function for 3 quarks

Summary

\star Considered SU(2) ud and SU(3) uds flavour symmetries

* Although these flavour symmetries are only approximate can still be used to explain observed multiplet structure for mesons/baryons

夫 In case of $\operatorname{SU}(3)$ flavour symmetry results, e.g. predicted wave-functions should be treated with a pinch of salt as $m_{s} \neq m_{u / d}$
夫 Introduced idea of singlet states being "spinless" or "flavourless"
\star In the next handout apply these ideas to colour and QCD...

Appendix: the $\mathbf{S U (2)}$ anti-quark representation

- Define anti-quark doublet $\bar{q}=\binom{-\bar{d}}{\bar{u}}=\binom{-d^{*}}{u^{*}}$
- The quark doublet $q=\binom{u}{d}$ transforms as $q^{\prime}=U q$

$$
\binom{u^{\prime}}{d^{\prime}}=U\binom{u}{d} \xlongequal[\text { conjugate }]{\text { Complex }}\binom{u^{* *}}{d^{*}}=U^{*}\binom{u^{*}}{d^{*}}
$$

- Express in terms of anti-quark doublet

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \bar{q}^{\prime}=U^{*}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \bar{q}
$$

- Hence \bar{q} transforms as

$$
\bar{q}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) U^{*}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \bar{q}
$$

- In general a 2×2 unitary matrix can be written as

$$
U=\left(\begin{array}{cc}
c_{11} & c_{12} \\
-c_{12}^{*} & c_{11}^{*}
\end{array}\right)
$$

- Giving

$$
\begin{aligned}
\bar{q}^{\prime} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
c_{11}^{*} & c_{12}^{*} \\
-c_{12} & c_{11}
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \bar{q} \\
& =\left(\begin{array}{cc}
c_{11} & c_{12} \\
-c_{12}^{*} & c_{11}^{*}
\end{array}\right) \\
& =U \bar{q}
\end{aligned}
$$

- Therefore the anti-quark doublet $\bar{q}=\binom{-\bar{d}}{\bar{u}}$ transforms in the same way as the quark doublet $q=\binom{u}{d}$
\star NOTE: this is a special property of $\operatorname{SU}(2)$ and for $\operatorname{SU}(3)$ there is no analogous representation of the anti-quarks

