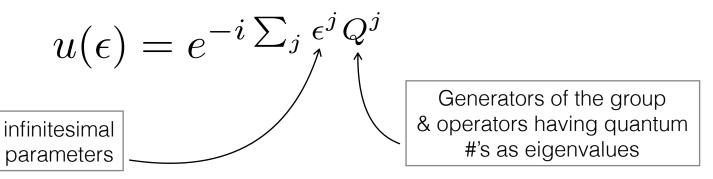


Quantum Mechanics

- Group operations represented by unitary operators (u) in a linear vector space of state vector $|\alpha\rangle$

state vector transformation: $|\alpha\rangle \rightarrow |\alpha'\rangle = u |\alpha\rangle$ operator transformation: $\theta \rightarrow \theta' = u\theta u^{-1}$

- If system is symmetric under group, [H, u] = 0
- Of particular interest are symmetry groups with representation like



• Connection through 'charge' & conserved 'current' $Q \equiv \int d^3x j^0(x) \qquad \partial_\mu j^\mu(x) = 0$

Quantum Field Theory

 $\phi(x)$ is an operator

Internal Symmetry

- Symmetries whose transformation parameters do not affect the point of space and time x
- It is more natural in QM and QFT. For example, the phase of the wave function. Equation of Motion (Dirac or Schrodinger), normalization condition are invariant under the transformation:

$$\Psi(x) \to e^{i\theta} \Psi(x)$$

 It implies the conservation of the probability current.

Heisenberg Isospin Theory

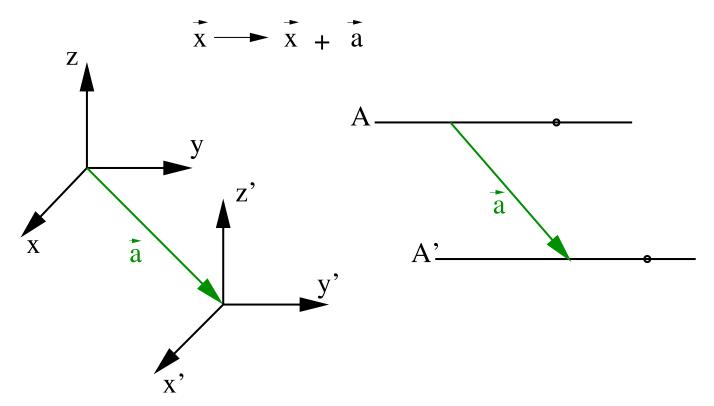
 Assume the strong interaction are invariant under a group of SU(2) transformation in which the proton and neutron form a doublet N(x)

$$N(x) = \begin{pmatrix} p(x) \\ n(x) \end{pmatrix} \quad ; \quad N(x) \to e^{i\vec{\tau} \cdot \vec{\theta}} N(x)$$

 $ec{ au}$ are proportional to Pauli matrices

 $\vec{\theta}$ are the three angles of a general rotation in a three dimensional Euclidean space

Global Symmetry



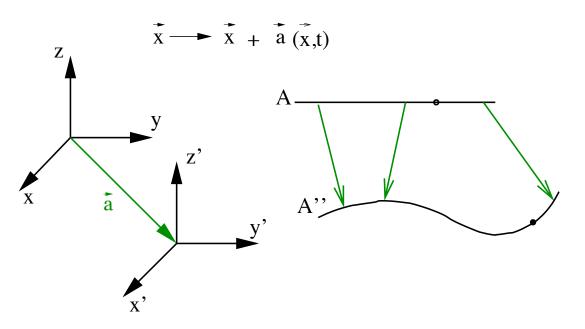
A is trajectory of a free particle in the (x,y,z) system A' is also a possible trajectory of a free particle in the new system

The dynamics of free particles is invariant under space translations by a constant vector

Gauge Transformation

The transformation parameters are functions of the space-time point x

A free particle dynamics is not invariant under translations in which \vec{a} is replaced by $\vec{a}(x)$.



For A" to be a trajectory, the particle must be subject to external forces

Symmetry= Force

Neither Dirac nor Schrodinger equation are invariant under a local change of phase $\theta(x)$

Free Dirac Lagrangian

$$\mathcal{L} = \bar{\Psi}(x)(i\partial \!\!\!/ - m)\Psi(x)$$

is not invariant under the transformation

$$\Psi(x) \to e^{i\theta(x)}\Psi(x) \longrightarrow \partial_{\mu}\theta(x)$$

In order to restore invariance, we must modify free Dirac Lagrangian such that it is no longer describe a free Dirac Field.

Invariance under gauge symmetry leads to the introduction of interactions.

Weyl's Gauge Transformation

Soon after GR was written by Einstein, Weyl proposed a modification ...

He added invariance with respect to

a)
$$g'_{\mu\nu} = \lambda(x)g_{\mu\nu}$$

b) $A'_{\mu} = A_{\mu} - \frac{\partial\lambda(x)}{\partial x^{\mu}}$
b) same $\lambda(x)$ phase

b) is the regular ambiguity required of EM potentials a) is weird $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} \rightarrow \lambda ds^2$

Lengths are re-'gauged'

Weyl's Gauge Transformation

- suggests an invariance even though space & time can change over all space and time
- the mediator which holds the space-time structure together would be the electromagnetic field

An early attempt to unify gravitation with electromagnetism

The brilliant idea did not work but the name stuck.

In 1927 London revived the idea ... but the symmetry isn't the scale of space-time, rather the phase of the wave function.

(为了局对称性 防水和超是因为 e = e 12 重中 近色しい)郡的城北海岛 [1,1]=0 リAbelian UCNマナデル 以林堂场为例, 招氏堂为 $\mathcal{L} = (\partial_{\mu} \phi^{*})(\partial^{n} \phi) - \mu^{2}(\phi^{*} \phi) - \lambda(\phi^{*} \phi)^{2}$ 事中老皇标章的中的复数犯 (宠家数野) 「螳螂秋天天 $\phi^* \longrightarrow \phi^{*'} = e^{-i2} \phi^* = \psi^{\dagger} \phi$ p/jws $\phi^*\phi \longrightarrow \phi^*\phi$ $\partial_{\mu}\phi \longrightarrow \partial_{\mu}(e^{i\xi}\phi) = e^{i\xi}\partial_{\mu}\phi$ $\partial \mu \phi^* \longrightarrow \partial \mu (e^{-i\xi} \phi^*) = e^{-i\xi} \partial \mu \phi^*$ = ノ在しい変換下保持不変 12

2) 排阿尔 SU(1)对称什兰(同传播文并新推) 空中是一个词话被一套(isodoublet) 中=(ϕ_1) $\int = (\partial_{\mu} \phi^{\dagger})(\partial^{\mu} \phi) - \mu^{2}(\phi^{\dagger} \phi) - \frac{\lambda}{2}(\phi^{\dagger} \phi)^{2}$ $\phi^{+} = (\phi^{*})^{\top}$ 此投资在国际超家明中无常的转动下不受 $\phi_j \rightarrow \phi_j' = \phi_j + i \xi^a - \frac{\tau_j^a}{2} \phi_k \equiv V \phi$ 1.1 = 1,2 h = 1.2.3E"是实数卫与X元关 T⁶ 是泡和矩阵 $\tau' = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tau^2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix} \tau^3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

verig:

 $\phi_j^+ \rightarrow \phi_j^{+\prime} = \phi_j^+ - i z^b \phi_o^+ \frac{\tau_{lj}^b}{l_l}$ $\phi_j^+ \phi_j \longrightarrow \phi_j^+ \phi_j + i \left(\mathcal{E}^{\alpha} \frac{T_{j\kappa}}{z} \phi_{\kappa} \phi_j^+ - \mathcal{E}^{b} \phi_{\ell}^+ \frac{T_{\ell j}^{b}}{z} \phi_j \right)$ 将见和了持续后为0

因为 En 是与 Xu 元美, 所以 (Ju 4) (Ju 4) 保持不变

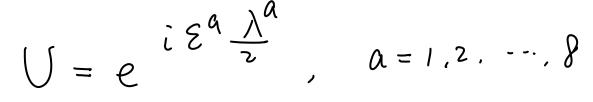
— QED

注意: (1) 我们有助的第上述要找这行为 中 → 中' = V中, V = e^{isa}
則有 中⁺ → 中⁺ = 中⁺V⁺
→ 中⁺ + → 中⁺V⁺V中 = 中⁺中 (::V⁺V=1)
(2) 此更投赴那时比的, 因为 [
$$\frac{\tau^{a}}{2}, \frac{\tau^{b}}{2}$$
] = i Sahe $\frac{\tau^{c}}{2}$
(3) 住何 2×2 起的转为可以行为
 $A = C_{o} + C^{a} \tau^{a}$ $\Pi = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
(4) $T_{V}(\frac{\tau^{a}}{2}) = 0$ $T_{V}(\frac{\tau^{a}}{2}, \frac{\tau^{b}}{2}) = \frac{\delta_{Ab}}{2}$
 $\zeta \tau^{a}, \tau^{b}$] = $\tau^{a} \tau^{b} + \tau^{b} \tau^{a} = 2\delta_{Ab}$ I

3) Non-abelian SU(3) x7 faits

 $\phi \longrightarrow \phi' = U\phi$ $\downarrow = e^{iH}, t_r(H) = o, det(U) = 1$

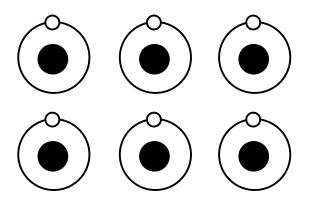
Z于SU(3)群的基础基本 3, 我们可以将H基本为 8个3×3的无连的无法



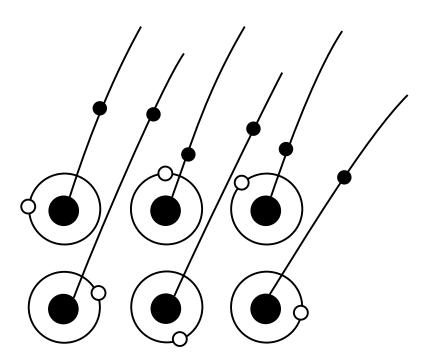
其 2~是实的连续参数 λ°是 SU(3)的载礼

$$1962 \stackrel{>}{\Rightarrow} Grell - mean \stackrel{>}{\Rightarrow} \stackrel{$$

Global versus Local



Global U(1) gauge transformation



Local U(1) gauge transformation

局域対称性 (Gauge Symmetries)
前面我们所讨论的相论变换的参数
$$\xi^{a}$$
新与时空无关
一 不同时空桌上的场要同时变化和间的相位
下面我们考虑 $\xi^{a} = \xi^{a}(x)$,这样的局域对称性 (与X相美)
可以给生动力学,即规范相互作用
(1) Abelian U(1) local symmetry (例如 Quantum Electrodynamics)
考虑地带为(eQ)的自由要求发行的注意登度
 $L_{o} = \overline{\psi}(x)(i \xi^{\mu}\partial_{\mu} - m)\psi(x)$ $\overline{\psi}(x) = \psi^{\dagger} \chi_{o}$

現在 寻義项 将 3 現 版 为复杂的 变 核 形式

$$\overline{\Psi}(x) \partial_{\mu} \Psi(x) \longrightarrow \overline{\Psi}'(x) \partial_{\mu} \Psi'(x)$$

 $= \overline{\Psi}(x) e^{\pm i \partial_{\alpha} \partial_{\alpha} x} \partial_{\mu} (e^{-i \partial_{\alpha} \partial_{\alpha} y} + (x))$
 $\partial_{\mu} e^{i \partial_{\alpha} \partial_{\alpha} y} \longrightarrow = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \overline{\Psi}(x) (\partial_{\mu} \partial_{\alpha} (x)) \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \overline{\Psi}(x) (\partial_{\mu} \partial_{\alpha} (x)) \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \overline{\Psi}(x) (\partial_{\mu} \partial_{\alpha} (x)) \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \overline{\Psi}(x) (\partial_{\mu} \partial_{\alpha} (x)) \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \overline{\Psi}(x) (\partial_{\mu} \partial_{\alpha} (x)) \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \overline{\Psi}(x) (\partial_{\mu} \partial_{\alpha} (x)) \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \overline{\Psi}(x) (\partial_{\mu} \partial_{\alpha} (x)) \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \overline{\Psi}(x) (\partial_{\mu} \partial_{\alpha} (x)) \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \Psi(x) = e^{-i \partial_{\mu} \Psi(x)} \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \Psi(x) (\partial_{\mu} \partial_{\alpha} (x)) \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \Psi(x) = e^{-i \partial_{\mu} \Psi(x)} \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \Psi(x) = e^{-i \partial_{\mu} \Psi(x)} \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) - i \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x) \partial_{\mu} \Psi(x)$
 $\overline{\Psi} = \overline{\Psi}(x)$

⇒ YD, Y(x) 是规范不变的

我们到新的关键场 An(x) (规范场) 莱金 协变等数 $\mathcal{D}_{\mu} \Psi \equiv (\partial_{\mu} + ieQA_{\mu}) \Psi$ (B) $[D_{\mu}4]' = (\partial_{\mu} + ie \otimes A_{\mu}') \psi' , \quad \psi' = U \psi$ $U \equiv e^{-i \mathcal{Q} \mathcal{Q}(\mathbf{x})}$ $(A) \Rightarrow (\partial_{\mu} + ie \otimes A_{\mu})(U\Psi) = U(\partial_{\mu} + ie \otimes A_{\mu})\Psi$ $\Rightarrow (\partial_{\mu}U)\Psi + U(\partial_{\mu}\Psi) + ieQA_{\mu}U\Psi = U(\partial_{\mu}\Psi) + ieQUA_{\mu}\Psi$ $\Rightarrow \left[\partial_{\mu} U + ie Q A_{\mu} U \right] \Psi = \left[+ ie Q U A_{\mu} \right] \Psi$ $\Rightarrow \left[\partial_{\mu} U + i e Q A_{\mu} U - i e Q U A_{\mu} \right] \Psi = 0$

$$\Rightarrow \left[\frac{\partial \mu U + i e Q A \mu U - i e Q U A \mu}{= 0} \right] \Psi = 0$$

以右流乗mら U⁻¹, 可得
(∂µU) U⁻¹ + ie Q Aµ U⁻¹ - ie Q U Aµ U⁻¹ = o
局防 UU⁻¹=1, ∂µ (UU⁻¹)=0 = (∂µU)U⁻¹ + U(∂µU⁻¹)
⇒ (∂µU)U⁻¹ = - U(∂µU⁻¹)
HAm¹
ie Q Aµ' = ie Q U Aµ U⁻¹ - (∂µU)U⁻¹
⇒ Aµ' = U Aµ U⁻¹ -
$$\frac{1}{ieQ}(\partial_{\mu}U)U^{-1} = U(Aµ + \frac{1}{ieQ}\partial_{\mu})U^{+1}$$

又于元家、朝住変換 X<<1,

$$U \equiv e^{-iQX} \simeq 1 - iQX$$

 $U^{\dagger} = e^{\pm iQX} \approx 1 + iQX$

刷有
$$A'_{\mu}(x) = (1-i Q \alpha) (A_{\mu} - \frac{i}{e Q} \partial_{\mu}) (1+i Q \alpha)$$

= $(1-i Q \alpha) A_{\mu}(1+i Q \alpha) - \frac{i}{e Q} \partial_{\mu} (+i Q \alpha) + O(\alpha^{2})$
 $\Rightarrow A'_{\mu}(x) = A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha(x) + O(\alpha^{2})$

现在我们得到UUU规范不变的拉氏量 $\mathcal{L}' = \overline{\Psi} i \gamma^{\mu} D_{\mu} \Psi - m \overline{\Psi} \Psi$ $D_{\mu} = \partial_{\mu} + i e Q A_{\mu}$ So far so good, BUT RATAR Ay (32) 因为上面的拉氏营中并不保含 An 的争数项,所M Euler-Lagrange $\Rightarrow \frac{\partial L}{\partial A_{\mu}} = -\frac{\partial \nabla V}{\partial A_$ 老子场的这动了程告诉我们,电游流更极为0(j=0) ⇒角曲电3的招乐量 平(ir,)~-m)4

可验证
$$\left[(D_{\mu}D_{\nu} - D_{\nu}D_{\mu})\Psi \right]' = U (D_{\mu}D_{\nu} - D_{\nu}D_{\mu})\Psi$$

(周治 $\left[D_{\mu}\Psi \right]' = D_{\mu}'\Psi' = U (D_{\mu}\Psi)$
(新心), $F_{\mu\nu'}\Psi' = U F_{\mu\nu}\Psi$
 $\left[= F_{\mu\nu'}(U\Psi) \right] = \Rightarrow \left(F_{\mu\nu'}U - UF_{\mu\nu'}\right)\Psi = o$
从右边乗いし⁻¹可得
 $F_{\mu\nu'} = U F_{\mu\nu'}U^{-1} = U F_{\mu\nu'}U^{+}$

$$\vec{E} \ QED \phi , \ U = e^{-i \partial \alpha(x)} ,$$

 $U F_{\mu\nu} U^{\dagger} = U U^{\dagger} F_{\mu\nu} \implies F_{\mu\nu}' = F_{\mu\nu}$

 $\vec{P} , F_{\mu\nu} \hat{F}_{\mu\nu} \hat{E}_{\mu\nu} \hat{E}_{\mu\nu$

QED 拉氏量为 小猪: $\mathcal{I} = \Psi (i\gamma^{\mu}D_{\mu} - m)\Psi - \neq F_{\mu\nu}F^{\mu\nu}$ $D\mu = \partial\mu + ie Q A\mu$ J. $\overline{F}_{\mu\nu} = \frac{1}{ieQ} \left[D_{\mu}, D_{\nu} \right] = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$ (e是电荷,Q是步彩4的电荷, Qe==-1) $\mathcal{D}_{\mu} \Psi \longrightarrow [\mathcal{D}_{\mu} \Psi]' = U(\mathcal{D}_{\mu} \Psi)$ 规范更换为 $F_{\mu\nu} \longrightarrow F_{\mu\nu} = U F_{\mu\nu} U^{\dagger}$ $\Psi \to \Psi' = U \Psi$ $A\mu \longrightarrow A\mu' = U(A\mu + \frac{1}{ieq}\partial\mu)U^+$ $\overline{\Psi} \rightarrow \overline{\Psi}' = \overline{\Psi} U^+$ 末 Abelian 現论中, Fin = UFn U+ = Fnu $V = e^{-i\varphi X}$ $A_{\mu} = A_{\mu} + \frac{1}{e} \partial_{\mu} \alpha + \upsilon (\alpha^{2})$

QED 拉氏量为 小猫: $\mathcal{I} = \Psi (i\gamma^{\mu}D_{\mu} - m)\Psi - \neq F_{\mu\nu}F^{\mu\nu}$ $I = \partial_{\mu} + i e Q A_{\mu}$ $\overline{F}_{\mu\nu} = \frac{1}{ieQ} \left[D_{\mu}, D_{\nu} \right] = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$ (e是电荷,Q是步彩4的电荷, Qe==-1)

注意 (1) 党运质量, 因为 An An 破坏规范对标件 (An An) ~* (An An) (2) 党运和党运间设有相互作用

2.) 排阿贝耳规范场 — Yang-Mills fields
Non-abelian SUCS) gauge sym (QCD) Quantum
(ACD) Chromodynamics
1954年 Yang-Mills 1年规范家超打名和]非阿贝耳对称性
考虑 SUCS) 泡沫採作
4 = (4red
4 green
4 blue) 建振考美文
在 SUC3)更换下, 我们了有

$$\Psi(x) \rightarrow \Psi(x) = U\Psi(x), U = e^{-\frac{i\lambda^{6}}{2}} \theta_{\infty}^{2}$$

其中, λ^{9} 是 Gell-mann 程序集
 $\left[\frac{\lambda^{6}}{2}, \frac{\lambda^{6}}{2}\right] = i f_{abc} \frac{\lambda^{c}}{2}$

 \vec{y} , $\vec{\psi}(x) \rightarrow \vec{\psi}(x) = \vec{\psi}(x) \vec{U}$ $\mathcal{D}_{\mu} \Psi = (\partial_{\mu} - i g_s \frac{\lambda^a}{2} G_{\mu}^a) \Psi$ 路御礼 段3场 $= \bigcup \left(\frac{\lambda^{a}}{2} G_{\mu}^{a'} \right) = \bigcup \left(\frac{\lambda^{a}}{2} G_{\mu}^{a} - \frac{1}{(ij_{s})} \partial_{\mu} \right) \bigcup^{+}$ 对无穷小变换有 $G_{\mu}^{a'} = G_{\mu}^{a} + \int^{abc} \Theta^{b} G_{\mu}^{c} - \frac{1}{g_{s}} \partial_{\mu} \Theta^{a} + O(\Theta^{2})$

限动的二阶级林强学 $(D_{\mu}D_{\nu} - D_{\nu}D_{\mu})\Psi \equiv ig_{s}\left(\frac{\lambda^{a}}{2}G_{\mu\nu}^{a}\right)\Psi$ $\Rightarrow G_{\mu\nu}^{\alpha} = \partial_{\mu}G_{\nu}^{\alpha} - \partial_{\nu}G_{\mu}^{\alpha} + g_{s}f^{abc}G_{\mu}^{b}G_{\nu}^{c}$ 因为 (Du4)具有和4和同的规范变换行为, 所则 $\left[\left(D_{\mu}D_{\nu}-D_{\nu}D_{\mu}\right)\Psi\right]'=U\left(D_{\mu}P_{\nu}-D_{\nu}D_{\mu}\right)\Psi$ $\implies \left(\frac{\lambda^{\alpha}}{z}G_{\mu\nu}^{\alpha'}\right) = U\left(\frac{\lambda^{\alpha}}{z}G_{\mu\nu}^{\alpha}\right)U^{+}$ 对于无穷小变换, $G_{\mu\nu}^{\alpha'} = G_{\mu\nu}^{\alpha} + f^{\alpha\beta} \Theta^{\beta} G_{\mu\nu}$

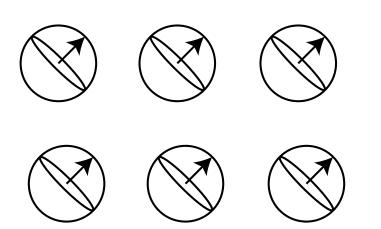
 $[3]_{MJ}, T_{V}\left(\frac{\lambda^{a}}{2}G_{\mu\nu}^{a}\right)\left(\frac{\lambda^{b}}{2}G_{\mu\nu}^{b}\right) = G_{\mu\nu}G_{\mu\nu}G_{\nu}^{b}T_{V}\left(\frac{\lambda^{a}}{2}\frac{\lambda^{b}}{2}\right)$ = Tgap $\begin{aligned} f_{\pm} su(s) \stackrel{*}{\underbrace{\forall}} \stackrel{*}{\underset{i}} \stackrel{*}{\underset{i}} \stackrel{*}{\underset{i}} \stackrel{*}{\underset{i}} &= \frac{1}{2} G_{\mu\nu}^{\alpha} G^{\alpha\mu\nu} \\ \stackrel{*}{\underset{i}} = \frac{1}{2} G_{\mu\nu}^{\alpha} G^{\alpha\mu\nu} \\ \stackrel{*}{\underset{i}} \stackrel{}}{\underset{i}} \stackrel{}}{\underset{i} \stackrel{}}{\underset{i}} \stackrel{}}{\underset{i}} \stackrel{}}{\underset{i}} \stackrel{}}{\underset{i}} \stackrel{}}{\underset{i}} \stackrel{}}{\underset{i}$ 城西, QCD 拉氏营为 $\mathcal{L} = -\frac{1}{4} G_{\mu\nu} G^{\alpha\mu\nu} + \overline{\Psi} (i\beta - m) \Psi$ $= -\frac{1}{2} \operatorname{Tr} \left(\left(\frac{\lambda^{q}}{z} G_{\mu\nu}^{\alpha} \right) \left(\frac{\lambda^{b}}{z} G^{b\mu\nu} \right) \right) + \widetilde{\Psi} (\widetilde{i} \not b - m) \psi$

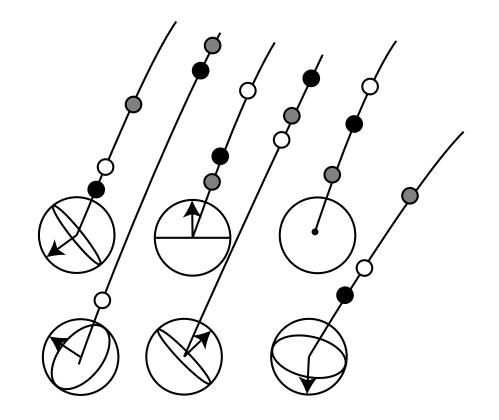
注意: ① zffsucu规范理论,我们也可得到美心的统论):

ζ^Q (a=1,2,3) λ4 (α=1.2,-.8) 生成え 规范玻色》 Wr Gu 副结构教 fahc Eabc 就会纳技 9 02 gs Gur W MV

2 Yang-Mills JA - 4 Gm Gam (in SUC3) 15 - I Win Wan (in SU(21) 中包含规范场的 三次和四次1页 SU(3): - gs fabc (du Gu) Gbu G - gs fabc fade b c du Gev SU(2): - g2 Eabc (2 WW) WW W - J2 Eabc Eade Wh WW WW 一、北阿姆规范的的剧相互们们 w m(和网的规范场不同之处) 一色楼闲和潮近自由

SU(2): Global versus Local





Global SU(2) gauge transformation

Local SU(2) gauge transformation