HI in low-z galaxies

How to observe?

HI observation

(a) (b) Total spin = 0 Mass = 0.9 GeV (b) Total spin = 1 Mass = 0.9 + 6 \times 10⁻¹⁵ GeV

Spatial resolution 3' $10^{19.5}$ cm⁻² -> 0.2s

WSRT

Spatial resolution 20" 10^{19.5} cm⁻² ->12h

HI data cube of M83 (LVHIS)

Why HI?

Different appearance from other bands

Credit: A. Lopez-Sanchez

The life cycle of gas on stellar scales

Probing the dark matter

The fueling of star formation

HI depletion time

(Saintonge+18)

 $T_{dep} = M_{gas} / SFR$

Along the SFMS

1.0

0.5

0.0

×°

-0.5 go

-1.0

-1.5

9.5

[hr] 0.0

 $\overset{\mathfrak{S}}{\overset{\mathfrak{C}}{\operatorname{cr}}} t_{\mathsf{dep}}(\mathrm{H}_2)$

⊣8.0 [∞] •

7.5

log M. $[M_{\odot}]$

Scatter of the M*-Metalicity relation

Brown+16

Kinematical features that indicates external origin

Thick HI discs

(Credit: Oosterloo)

Sancisi & Allen 1979

Swaters et al. 1997

Oosterloo et al. 2007 Historical evolution of NGC 891

HI and the inside-out disc formation

(Wang+11)

Non-circular nonthermal motion

Wang+

The resolved HI-SFR relation

(Bigiel+08) H₂ dominated region

No intrinsic relation between Σ_{SFR} and Σ_{HI}

NGC6946 (Boomsma+08)

Simulations predict that an OB association giving an energy input of 10^{53} erg, creates a superbubble with a diameter of about 1.3 kpc and a shell mass of 0.6×10^7 Msun in 30 Myr.

2

Diameter (kpc)

0.4 0.6 0.8

50

axis ratio

0

Pitch angle $(^{\circ})$

1

3

acm ochaime

acm cohave

20^h34^m50^s

20^h34^m20^s

55^s

25^s

45^s

15^s

The HI size-mass relation

Environmental effects

Rampressure stripping

Chung+09

Phase-space diagram of clusters

Virgo Cluster galaxies (Yoon+17)

Satellites in groups (local density vs halo mass)

Centrals in groups

Enhanced HI mass fraction in post-mergers

Stephan's Quintet: hydrogen contours (left) & MegaCam optical (right) References: Williams et al. 2002, Duc et al. 2018

Watkins+16

Surveys

Existing data

SINGLE-dish:

- ALFALFA \bullet
- HIPASS \bullet
- (X-)GASS \bullet
- HRS \bullet
- Nançay catalog \bullet
- AGS \bullet
- GEMS

Interferometry:

- WHISP
- THINGS \bullet
- LVHIS \bullet

 \bullet

- **VLA ANGST** \bullet
 - \bullet

 \bullet

- LITTLE THINGS •
- FIGGS(2)
- SHIELD
- ATLAS3D \bullet
- **BUDHIES Oosterloo ET**

VIVA \bullet

Published Not published

Data on the way:

- CHILIES
- CHILLING
- \bullet

Future data:

 \bullet

 \bullet

Distant future:

MHONGOOSE \bullet

WALLABY

Apertif

- Fornax \bullet
- MALS \bullet
- LADUMA \bullet
- DINGO ightarrow

HALOGAS

- Bluedisk
- **HIGHMASS**

• VGC

- Lemonias+
- HIX
- - IMAGING

- Ursa-Major
 - - WALLABY

- - SKA