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Abstract 

The diffraction limit, rooted in the wave nature of light and formalized by the Heisenberg uncertainty principle, 
imposes a fundamental constraint on optical resolution and device miniaturization. The recent discovery of the sin‑
gular dispersion equation in dielectric media provides a rigorous, lossless framework for overcoming this barrier. Here, 
we demonstrate that achieving such confinement necessarily involves a new class of optical eigenmodes—narwhal-
shaped wavefunctions—which emerge from the singular dispersion equation and uniquely combine global Gaussian 
decay with local power-law enhancement. These wavefunctions enable full-space field localization beyond conven‑
tional limits. Guided by this principle, we design and experimentally realize a three-dimensional sub-diffraction-lim‑
ited cavity that supports narwhal-shaped wavefunctions, achieving an ultrasmall mode volume of 5 × 10−7 λ3. We term 
this class of systems singulonic, and define the emerging field of singulonics as a new nanophotonic paradigm—
establishing a platform for confining and manipulating light at deep-subwavelength scales without dissipation, ena‑
bled by the singular dispersion equation. Building on this extreme confinement, we introduce singular field micros‑
copy: a near-field imaging technique that employs singulonic eigenmodes as intrinsically localized, background-free 
light sources. This enables optical imaging at a spatial resolution of λ/1000, making atomic-scale optical microscopy 
possible. Our findings open new frontiers for unprecedented control over light–matter interactions at the smallest 
possible scales.

Keywords  Singular dispersion equation, Narwhal shaped wavefunction, Singulonics, Singulonic nanocavity, 
Singularity, Singular field microscopy, Twisted lattice nanocavity, Power law enhancement

1  Introduction
In 1927, Dirac’s revolutionary quantization of the elec-
tromagnetic field redefined our understanding of light, 
demonstrating that each electromagnetic mode can be 

treated as a quantum harmonic oscillator confined within 
a finite cavity [1]. When confined within a finite volume, 
electromagnetic modes become discrete and can be nor-
malized, with their quantized  energy  levels correspond-
ing to photons. This framework not only bridges the gap 
between quantized field modes and photonic excitations 
but also establishes the critical role of mode volume: 
smaller mode volumes increase the electric field per pho-
ton, thereby enhancing light–matter interactions. These 
principles form the cornerstone of cavity quantum elec-
trodynamics [2–6], drive the evolution of advanced pho-
tonic technologies [7–43], and fuel the progression of 
modern quantum optics [44–46].
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Despite these advances, photonic devices continue 
to lag behind their electronic counterparts in terms of 
integration density and spatial resolution—a dispar-
ity rooted in the optical diffraction limit. In the visible 
and near-infrared regimes, the wavelength of photons is 
approximately three orders of magnitude larger than the 
de Broglie wavelength of electrons in electronic devices. 
This discrepancy imposes a fundamental constraint: the 
smallest achievable photonic mode volume is roughly 
nine orders of magnitude larger than the corresponding 
volume for electrons—nearly a billion times greater. Plas-
monics has provided a means to overcome this diffrac-
tion limit, enabling significant breakthroughs in sensing, 
imaging, and on-chip photonics [7–21]. However, the 
unavoidable ohmic losses of metals remain a severe bot-
tleneck, limiting their performance and scalability [17, 
47, 48].

Achieving extreme photon confinement in a lossless 
system is essential for advancing photonic integration 
and imaging capabilities. Such a breakthrough would 
enable transformative applications that demand precise 
nanoscale control of light, including the optical obser-
vation of biomolecular structures such as DNA and the 
development of large-scale photonic integrated circuits 
with significantly enhanced processing speeds and effi-
ciencies. Overcoming this challenge requires addressing 
a key limitation: achieving sub-diffraction-limited con-
finement in a lossless dielectric system.

Recent theoretical [22], numerical, and experimental 
advances [22–28] have introduced a promising new fron-
tier in photonics: singulonics—a paradigm based on the 
singular dispersion equation in lossless dielectric media. 
This framework predicts power-law–divergent optical 
modes that enable sub-diffraction confinement in purely 
dielectric nanostructures, giving rise to what we term sin-
gulonic nanocavities [22]. However, these wavefunctions 
remain experimentally unverified, and their confinement 
is currently restricted to two spatial dimensions, falling 
short of achieving full three-dimensional (3D) confine-
ment. Resolving this challenge presents a compelling 
opportunity to advance photonics, with the potential to 
unlock unprecedented capabilities in light manipulation 
and device performance.

In this work, we propose and experimentally demon-
strate a singulonic cavity that enables deeply sub-diffrac-
tion-limited field confinement in all spatial dimensions. 
We show that singulonic confinement necessarily arises 
from a new class of optical eigenmodes—narwhal-
shaped wavefunctions—which emerge from the singu-
lar dispersion equation and uniquely combine global 
Gaussian decay with local power-law enhancement. This 
hybrid profile enables sharp, full-space field localization 
beyond conventional limits. Guided by this principle, 

we design and fabricate a 3D singulonic cavity that sup-
ports these modes, achieving an ultrasmall mode volume 
of 5 × 10−7 λ3—orders of magnitude below the diffrac-
tion limit. Using near-field scanning measurements, we 
directly probe the confined fields and provide the first 
experimental validation of singulonic wavefunctions in a 
lossless dielectric system, with results in excellent agree-
ment with theoretical predictions and full-wave simula-
tions. Building on this extreme confinement, we further 
introduce singular field microscopy: a near-field imaging 
technique that employs singulonic eigenmodes as intrin-
sically localized, background-free light sources. This ena-
bles optical imaging with a spatial resolution of λ/1000, 
making atomic-scale optical microscopy possible.

This work represents a key advance in the emerging 
field of singulonics—a nanophotonic paradigm rooted 
in the singular dispersion equation in lossless dielectric 
media, enabling deep-subwavelength light confinement 
and manipulation without dissipation. In contrast to 
plasmonics, which couples light to free electrons in met-
als and is fundamentally constrained by ohmic losses, 
singulonics employs purely dielectric nanostructures 
engineered to support narwhal-shaped wavefunctions. 
These so-called singulonic modes simultaneously achieve 
ultrasmall mode volumes and high optical quality factors, 
thereby overcoming the long-standing trade-off between 
confinement and loss.

2 � Results
2.1 � Narwhal‑shaped wavefunction
The mode volume characterizes the effective spatial 
region in which an optical mode is confined. It is defined 
as the integral of the electric energy density over all 
space, normalized by its peak value. To minimize the 
mode volume, one must design the electromagnetic field 
to decay rapidly from its intensity maximum, thereby 
tightly concentrating the mode and enhancing the peak 
energy density.

Conventional optical modes typically follow a Gauss-
ian-like intensity profile, I(x) = I0exp

(

− x2

2σ 2

)

 , where I0 is 
the peak intensity at x = 0, and σ defines the mode width. 
The local logarithmic gradient, defined as 
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measures relative rate of intensity variation. While this 
gradient increases with distance from the center, it van-
ishes exactly at the peak. As a result, Gaussian modes 
exhibit too little variation near the intensity maximum to 
achieve strong confinement, fundamentally limiting their 
ability to minimize the mode volume.

Power-law profiles, such as |E|2 ∝ r−2l , offer a com-
plementary behavior. Their logarithmic gradient, 2l

r  , 
increases as r → 0, enabling sharp localization near the 
center. However, these modes decay too slowly at large 
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distances, resulting in extended spatial tails that com-
promise overall confinement.

To overcome these opposing limitations, we intro-
duce a hybrid wavefunction that combines the sharply 
peaked core of a power-law profile with the rapidly 
decaying tail of an exponential function (Fig.  1). This 
composite form maintains strong field variation across 
all spatial scales and significantly reduces the total 
mode volume (Fig.  1b–d; Fig.  S1 in the Supplemental 
Material). Owing to its resemblance to the tapering 
profile of a narwhal’s head, we refer to this optimized 
field distribution as the narwhal-shaped wavefunction.

While conventional dielectric cavities typically sup-
port Gaussian-like modes, realizing the narwhal-
shaped wavefunction requires the introduction of a 
power-law singularity at the field maximum, carefully 
matched to the global mode properties. In our imple-
mentation, a twisted lattice cavity provides the global 
confinement background, chosen for its ability to sup-
port smoothly varying, high-quality-factor (high-Q) 
modes with a broadly Gaussian envelope (Fig. 1e) [42]. 
In principle, other cavity geometries can fulfill a similar 
role.

To produce the required power-law enhancement 
near the field maximum, we embed a dielectric biconi-
cal antenna at the center of the cavity. This 3D tapering 
structure induces power-law scaling of the electric field 
in all spatial directions near its apex, effectively gener-
ating a localized singular core (Fig.  1f ). The resulting 
field profile naturally bridges the smooth, large-scale 
confinement imposed by the cavity and the sharp, 
localized concentration introduced by the antenna.

The resulting mode is the eigenmode of the integrated 
structure—a composite singulonic cavity that combines 
global and local confinement in a synergistic manner. 
The twisted lattice ensures effective spatial confinement 
and suppression of radiative loss, while the biconical 
antenna introduces a geometric singularity that tightly 
concentrates the field. Together, these two elements 
give rise to the narwhal-shaped wavefunction, enabling 
robust 3D, deep-subwavelength localization of light in a 
fully dielectric and intrinsically lossless platform.

2.2 � Three‑dimensional singular field
We find that a dielectric biconical antenna supports 
a 3D singular field, which rapidly diverges following a 
power law in all spatial dimensions as it approaches the 
apex singularity of the conical dielectric structures (see 
Sect. 4.1; Supplemental Material for more details). Near 
the singularity (where k0r ≪ 1 , with k0 being the free 
space wavevector and r representing the distance from 
the apices in spherical coordinates), the eigen-wavefunc-
tion is given by Es = Csr

−l
�(θ ,ϕ) , where Cs is a constant, 

l is a constant between 0 and 1, �(θ ,ϕ) is a function of 
the spherical coordinate angles θ and ϕ.

This 3D singular field indicates that the electric field 
varies with the distance r from the singularity following a 
power law with exponent l in any spatial direction defined 
by the angles θ and ϕ . This scaling law allows the elec-
tric field to vary by several orders of magnitude within a 
subwavelength range (Fig. 1; Fig. S1 in the Supplemental 
Material), serving as a fundamental mechanism for over-
coming the optical diffraction limit in dielectric systems.

As r → 0, the electric field diverges, tending toward 
infinity. In dielectric systems, this field divergence cor-
responds to a divergence of the mode wavevector. Physi-
cally, the wavevector characterizes the spatial variation of 
the field—larger wavevectors correspond to finer spatial 
features. For any polarization component of the electric 
field, we can define a position-dependent wavevector by 
rewriting the field expression from E(r, θ ,ϕ) = eik(r,θ ,ϕ)·r 
to E(r, θ ,ϕ) = ei ∫ k(r,θ ,ϕ)·dr . This formulation allows us to 
incorporate the spatially varying wavevector associated 
with the power-law behavior and derive the correspond-
ing dispersion equation. In this regime, the power-
law-scaled electric field causes all components of the 
wavevector to diverge as 1r [see Equation (19) in Supple-
mental Material]. The resulting dispersion relation takes 
the form:

where ikr , kθ , and kϕ are wavevectors along r -, θ -, and ϕ
-directions, respectively, kr is a real number. Here, n is the 
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Fig. 1  Narwhal-shaped wavefunction—A hybrid optical field profile that combines a steep power-law decay near its intensity peak with a rapidly 
vanishing Gaussian-like tail. This dual behavior accelerates field attenuation across the entire domain, enabling exceptionally small mode 
volumes and giving the profile its resemblance to a narwhal’s head. a Narwhal sketch. b Log-scale 2D intensity distribution of a narwhal-shaped 
wavefunction. c 1D intensity distribution of a narwhal-shaped wavefunction along x-axis. d Local logarithmic gradient of the electric field intensity 
with respect to position. e A twisted lattice cavity supports a high-Q Gaussian-like mode. f Introducing a biconical antenna at the twisted lattice 
cavity center gives rise to the narwhal-shaped wavefunction that preserves the cavity’s global confinement while exhibiting a sharp power-law 
enhancement near the center

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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refractive index of the region described by the dispersion 
relation, ω is the angular frequency, and c is the speed of 
light in vacuum.

We note that as r → 0, all terms on the left-hand side 
of the dispersion equation diverge but cancel each other. 
Among the three wavevector components, the radial 
component is purely imaginary—analogous to the imagi-
nary transverse wavevector in plasmonics, but with-
out metallic loss. As r → 0, this component diverges, 
reflecting a field that decays rapidly as r increases in all 
directions. This divergence drives all wavevector compo-
nents governed by the dispersion equation to approach 
infinity, thereby enabling the electric field to achieve 
extraordinary localization in real space across all spatial 
dimensions.

As r → 0, the magnetic field strength becomes a higher-
order small quantity compared to the electric field. How-
ever, when k0r is no longer much smaller than one, the 
magnetic field no longer vanishes, resulting in an out-
ward energy flow from the singularity. This behavior 
explains why dielectric antennas alone cannot support 
sub-diffraction-limited modes and inherently suffer from 
extremely low quality factors (Fig. S2 in the Supplemental 
Material). In contrast, in the construction of the narwhal-
shaped wavefunction, the emergence of a non-negligi-
ble magnetic field naturally facilitates the matching of 
boundary conditions between the two distinct spatial 
regions of the mode—enabling both deep subwavelength 
confinement and a high quality factor.

2.3 � Experimental characterization of narwhal‑shaped 
wavefunction

We have developed a 3D singulonic cavity operating in 
the microwave band (~1.3 GHz), enabling precise, direct, 
3D measurements of its eigen-wavefunction. Figure  2a 
shows the singulonic cavity, which comprises a 3D bicon-
ical antenna and a twisted lattice cavity (see Sect.  4.2). 
Both components are made of dielectric materials: the 
twisted lattice cavity is formed from aluminum oxide, 
while the biconical antenna is fabricated from zirconium 
oxide.

In the twisted lattice cavity, the twist angle is 3.89°, 
and the lattice constant for both sets of identical pho-
tonic graphene lattices is 100  mm (~λ/2). The biconical 
antenna is composed of two zirconium oxide cones, sep-
arated by an air gap of approximately 0.02 mm (~9 × 10−5 
λ), enabling extreme electromagnetic field localization 
at the singularity. Zirconium oxide was selected for its 
higher dielectric constant, which increases the power-
law exponent l, thereby amplifying the rate of change of 
the electric field in regions governed by the power-law 
profile.

Figures 2 and 3 show both the 3D full-wave simulated 
and experimentally measured sub-diffraction-limited 
wavefunctions of the singulonic cavity. Figure  2b high-
lights the mode’s 3D field distribution, along with two-
dimensional (2D) projections onto the x–y, x–z, and 
y–z planes. Figures  2c, d and 3c further present cross-
sectional field profiles (lines) taken through the singu-
larity in each of the three projected field distributions, 
alongside the corresponding experimental results (dots) 
(see Sect. 4.3; Figs. S3, S4 in the Supplemental Material). 
All three cross sections exhibit a distinct narwhal-shaped 
profile, and the experimentally measured field distribu-
tion matches well with the simulation.

Figures 2e, f and S5 in the Supplemental Material com-
pares the simulated and experimentally measured electric 
field near the singularity. The field intensity peaks at the 
singularity and decays outward following a power law of 
approximately r−0.9, in excellent agreement with the sim-
ulations (see Fig. S6 in the Supplemental Material). This 
strongly localized field, which exhibits a power-law decay 
in all spatial directions, arises from the diverging imagi-
nary radial wavevector. Figure 3b shows normalized mag-
netic-to-electric field amplitude ratio in the same region 
as the electric field plotted in Fig. 3a. The ratio remains 
small across the domain but gradually increases with 
distance from the singularity. At the wavelength scale, it 
becomes comparable to the electric field strength.

Notably, strong localization—and thus an ultra-small 
mode volume—emerges well before r = 0, governed by 
power-law scaling as r decreases, rather than by a strict 
mathematical singularity (see Fig. S7 in the Supplemen-
tal Material). The simulations were performed using the 
actual device geometry, including the biconical antenna 
structure. The experimentally observed field enhance-
ment is lower than the simulated result, primarily due 
to the finite size of the probe antenna, which prevents 
it from accessing the apex region where the field is most 
concentrated.

In the 2D cross section of this 3D field, the phase var-
ies sharply near r = 0 along the ϕ-direction, indicating a 
diverging angular wavevector kϕ [Fig. 4; see also the dis-
cussion of mode decomposition in Supplemental Mate-
rial, Equations  (16)–(17)]. Such rapid angular phase 
variation (diverging real angular wavevector) causes the 
pronounced radial field decay (imaginary radial wavevec-
tor), consistent with the dispersion equation. Figure  4b 
shows the directly measured phase shift around the sin-
gularity, again in excellent agreement with the simula-
tions. Due to the unique narwhal-shaped wavefunction, 
the mode volume of the singulonic cavity is minimized. 
3D full-wave simulations indicate that its mode volume is 
5 × 10−7 λ3 (see Sect. 4.4; Figs. S8–S11 in the Supplemen-
tal Material), exceeding that of previously reported 2D 
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singulonic cavities by nearly three orders of magnitude 
[22, 26–28].

2.4 � Extending to the optical regime
The narwhal-shaped wavefunction field localization 
mechanism demonstrated here is scale-invariant and, 
in principle, extendable to optical frequencies. Figure  5 
shows preliminary results on the fabrication of a singulo-
nic nanocavity operating in the optical regime, along with 
its simulated electric field distribution. With continued 
optimization, this approach could realize fully 3D, sub-
diffraction-limited nanocavities with atomic-scale feature 
sizes—unlocking new possibilities for nanophotonic inte-
gration, quantum light–matter interaction, and atomic-
resolution optical imaging.

2.5 � Singular field microscopy
Leveraging the uniquely confined field defined by the 
narwhal-shaped wavefunction, we introduce singular 
field microscopy—a new approach to near-field scanning 
optical microscopy (Fig.  6). In contrast to conventional 
aperture- or scattering-based techniques [49–52], this 
approach exploits the extreme confinement and purity of 
singulonic eigenmode to directly probe deeply subwave-
length features. Structural perturbations from the sam-
ple modulate the resonance of the singulonic eigenmode, 
allowing high-fidelity readout of deep subwavelength 
details through measurable spectral shifts.

In our implementation, an air gap of approximately 
0.2 mm (~λ/1100) is formed between the two dielectric 
antennas. The sample is positioned within the gap of the 
biconical structure and scanned in a plane perpendicu-
lar to the antenna axis (Fig. 6a; see Sect. 4.3; Fig. S12 in 
the Supplemental Material). As the sample translates, 
local variations in its dielectric environment perturb 
the resonance frequency of the cavity. By raster-scan-
ning the sample in two dimensions, the singular field is 
swept across its surface, and the resonance spectrum is 
recorded at each position, producing a spatially resolved 
map of subwavelength features. Owing to the extreme 
field localization, singular field microscopy enables the 

detection of structural details far beyond the diffraction 
limit.

To explore how different materials affect the cavity’s 
resonance frequency, we prepare thin films (approxi-
mately λ/2300 in thickness) using three materials with 
distinct refractive indices—polyethylene terephthalate 
(PET), aluminum oxide, and zirconium oxide—and place 
them within the air gap (Fig.  S13 in the Supplemen-
tal Material). The results indicate that higher refractive 
index induces a more pronounced effect on the reso-
nance frequency. In the further imaging experiments, we 
select PET, whose refractive index is close to that of air 
(around 1.7), and fabricate perforated patterns on its sur-
face for scanning. The minimal refractive index contrast 
between PET and air highlights the sensitivity of the sin-
gulonic cavity’s resonance frequency to changes in mate-
rial properties, underscoring its potential for imaging 
applications.

We perform line-profile analysis to evaluate the reso-
lution of singular field microscopy. First, we image two 
closely spaced PET strips separated by 0.95 × 10−3 λ 
(Fig. 6b). The resulting two peaks were distinctly resolved, 
confirming the technique’s ability to distinguish nearby 
features. Next, to test the line resolution, we scan a die-
lectric strip measuring only 0.37 × 10−3 λ in width; the 
acquired profile exhibited a full width at half maximum 
(FWHM) of 0.95 × 10−3 λ (Fig. 6c). These measurements 
confirm that singular field microscopy achieves a resolu-
tion better than 1 × 10−3 λ. Figure S14 in the Supplemen-
tal Material provides additional line-profile analysis of a 
dielectric–air interface, and Fig. S15 in the Supplemental 
Material shows line profiles of single strips with various 
widths and two-strip configurations with different gap 
sizes. Collectively, these findings underscore the high-
resolution capabilities of singular field microscopy.

Singular field microscopy can also image arbitrary 
structures at deeply sub–diffraction-limited resolutions 
(Fig. 7). We used it to examine two perforated dielectric 
PET samples patterned with “PKU” and “SFM”, where 
each letter stroke measures less than 1 × 10−3 λ in width 
(Fig. 7a). The resulting images confirm that this technique 

(See figure on next page.)
Fig. 2  Experimental characterization of a 3D narwhal-shaped wavefunction. a Photograph of a singulonic cavity supporting a 3D narwhal-shaped 
wavefunction. The cavity incorporates a biconical antenna and a twisted-lattice structure. Bottom insets: enlarged views of the biconical antenna 
region. b 3D full-wave simulation of the cavity’s eigen-wavefunction, showing the mode’s 3D field distribution along with its 2D projections on the x–
y, x–z, and y–z planes. c,d Cross-sectional electric field profiles taken through the singularity along the x-direction (y = 0, z = 0) and y-direction (x = 0, 
z = 0), respectively. e,f Magnified views of (c) and (d), respectively, to resolve the steep field enhancement near the singularity. Due to measurement 
limitations, experimental values along x-direction near the singularity are measured at z = 0.002 λ, while those in the y-direction are measured 
along the side of the biconical antenna in x–y plane at z = 0. Outside the biconical antenna area, field values (|x|, |y| > 0.11 λ) are obtained at the cavity 
surface (z = 0.06 λ). Solid lines: simulation results; circles: experimental measurements; dashed lines: Gaussian functions for reference
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faithfully reproduces intricate structural details in all 
directions with high fidelity (Fig. 7b–e).

3 � Discussions
We experimentally realize a singulonic cavity that 
achieves full-space, deeply subwavelength field con-
finement with an ultrasmall mode volume of 5 × 10−7 

Fig. 2  (See legend on previous page.)
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Fig. 3  Simulated electromagnetic field and experimentally measured electric field along z-direction. a Simulated electric field distribution 
in the x–z plane at y = 0. b Simulated spatial distribution of the normalized magnetic-to-electric field amplitude ratio in the x–z plane at y = 0. 
The ratio remains small throughout the domain but increases away from the central singularity. c Comparison of simulated and experimentally 
measured electric field at x = 0 in (a). Due to measurement limitations, the z-directed electric field is only recorded above the singulonic cavity 
(z > 0), with values below (z < 0) extrapolated from symmetry for reference. Solid lines: simulation results; circles: experimental measurements; 
dashed lines: exponential functions for reference

Fig. 4  Simulated and experimentally measured electric field phase distributions near the singularity. a Simulated phase distribution 
of the narwhal-shaped wavefunction in the x–z plane at y = 0.02 λ. b Comparison of simulated and experimentally measured phases 
along the dashed line in (a)

Fig. 5  Singulonic nanocavity operating in the optical regime. a SEM image of the central antenna of a fabricated singulonic nanocavity. Simulated 
electric field distribution in the x–y plane taken at the height corresponding to the minimum gap (z = 110 nm) (b) and y–z plane at x = 0 (c)
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λ3, and demonstrate that such confinement necessar-
ily arises from a new class of optical eigenmodes—
narwhal-shaped wavefunctions—which emerge from 
the singular dispersion equation and uniquely combine 
global Gaussian decay with local power-law enhance-
ment. Building on this extreme localization, we intro-
duce singular field microscopy, a near-field imaging 
technique that employs these singulonic modes as 
intrinsically localized, background-free light sources, 
enabling optical imaging with a spatial resolution of 
λ/1000.

Looking ahead, the singular dispersion equation pro-
vides a powerful and unifying mechanism for achieving 
lossless, deeply subwavelength field confinement, rede-
fining the fundamental limits of nanophotonic systems. 

In plasmonics, such confinement is ultimately con-
strained by three intrinsic mechanisms—ohmic loss, 
nonlocal effects, and Landau damping—which degrade 
spatial localization and suppress quality factor. These 
effects arise from the presence of mobile free electrons: 
ohmic dissipation stems from resistive currents, nonlo-
cal blurring reflects the delocalized electronic response, 
and Landau damping results from velocity-matched 
electronic transitions that irreversibly drain energy 
from confined photons.

Dielectric media, by contrast, are composed of tightly 
bound electrons and are inherently free from these lim-
itations. The absence of free carriers eliminates ohmic 
loss; polarization arises from atomic-scale displace-
ments, suppressing nonlocal effects; and the absence of 

Fig. 6  Schematic and imaging resolution of singular field microscopy. a Schematic illustration of singular field microscopy. In this technique, 
the highly localized singular electric field within a biconical antenna gap acts as a near-field probe, scanning a sample placed in the gap in a plane 
perpendicular to the antenna’s axis. As the sample moves, variations in its material properties within the gap shift the cavity’s resonance frequency, 
thereby revealing topographical features (right panel). b Line profile analysis of two closely spaced dielectric polyethylene terephthalate (PET) strips 
separated by 0.95 × 10−3 λ. Inset: photograph of two strips. c Line profile analysis of a dielectric polyethylene terephthalate (PET) strip measuring 
only 0.37 × 10−3 λ in width. Inset: photograph of the strip. In (b) and (c), the circles represent experimental data, the lines indicate fitted curves, 
and the green-shaded regions show the physical size of the strips. Scalebar: λ/500
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available electronic states precludes velocity-matched 
transitions, eliminating Landau damping. As a result, 
singulonic structures can support ultra-confined, high-
Q optical modes, pushing photonic systems toward 
atomic-scale dimensions. This unprecedented combi-
nation of confinement and coherence lays the physical 
foundation for a wide range of transformative photonic 
technologies.

Building on this capability, singular field confine-
ment opens new frontiers across a broad spectrum of 
applications. In nanophotonic devices, it enables ang-
strom-scale lasers, light-emitting diodes, electro-optic 
and all-optical modulators, and photodetectors—pav-
ing the way for ultra-compact, energy-efficient pho-
tonic integration. In quantum and nonlinear optics, it 
facilitates Purcell-enhanced emission, single-photon 
nonlinearities, cavity quantum electrodynamics, and 

Fig. 7  Imaging arbitrary structures with singular field microscopy. a Photographs of two perforated dielectric polyethylene terephthalate 
(PET) samples patterned with “PKU” and “SFM”. b Singular field microscopy image of the “PKU” pattern. c Line analysis of the imaged “P” pattern, 
with the bottom and right profiles indicating resonance frequency shifts (Δf) along the horizontal and vertical dashed lines, respectively. d Singular 
field microscopy image of the “SFM” pattern. e Line analysis of the imaged “S” pattern, with the bottom and right profiles showing resonance 
frequency shifts along the horizontal and vertical dashed lines, respectively. Scalebar in (b) and (d): λ/200. In (c) and (e), the circles represent 
experimental data, the lines indicate fitted curves
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scalable quantum light sources. In sensing and imaging, 
it provides intrinsically localized, background-free illu-
mination for atomic-resolution microscopy, ultrasensi-
tive detection, and near-field spectroscopy. Together, 
these developments define a new regime of singulo-
nics, where the interplay of geometry, material, and 

dispersion enables transformative control over light–
matter interactions at the atomic scale.

4 � Methods
4.1 � Theoretical analysis of infinite singularity
The singulonic cavity comprises a 3D biconical antenna 
embedded within a twisted lattice cavity, supporting 

Fig. 8  Singulonic cavity and its narwhal-shaped eigenfunction. A 3D biconical antenna embedded within a twisted lattice cavity forms 
the singulonic cavity, supporting an eigenmode with a distinctive narwhal-shaped wavefunction in all spatial dimensions. This wavefunction 
exhibits a power-law divergence at its core (the biconical antenna region, E1) and a Gaussian-like decaying tail in the twisted-lattice cavity region 
(E2)
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eigenmode with a unique narwhal-shaped wavefunc-
tion (Fig.  8). These wavefunctions are characterized by 
a power-law divergence at the core and an exponentially 
decaying tail, corresponding to the eigenfunctions of 
the biconical antenna and twisted lattice cavity regions, 
respectively. The distinct properties of these wavefunc-
tions arise from the dielectric material structures of each 
region, with their connection at the boundary governed 
by the boundary conditions.

We begin by solving for the eigenmode in the central 
biconical antenna region using Maxwell’s equations in 
spherical coordinates (Fig.  S16a in the Supplemental 
Material). In the biconical antenna region, for eigen-
modes where the electric field has a singularity at the 
origin, the electric field energy greatly exceeds the mag-
netic field energy [22]. As a result, the electric field E1 
is approximately irrotational, and can be described by 
a potential V. We solve for the potential V separately 
in both the dielectric and air regions, and connect the 
solutions through the boundary conditions. Then, by 
taking the negative gradient of the potential, we can 
obtain the electric field, which has the following form:

where l is a parameter determined by the structure, 
0 < l < 1 , and � =

(

�x,�y,�z

)

 is a function of θ and ϕ 
(see Theoretical analysis of infinite singularity in Supple-
mental Material for more details). Here, when k0r is sig-
nificantly smaller than 1, higher-order small terms of the 
electric and magnetic fields can be neglected.

Notably, the eigenmode exhibits a singularity at the ori-
gin, diverging in the form of r−l , which is corresponding to 
the local power-law field enhancement.

The formation of the infinite electric field singularity 
arises from the divergence of momentum near the biconical 
antenna tip. To clearly reveal the wavevector corresponding 
to the electric field that diverges as a power function at the 
singularity, we introduce a position-dependent wavevector 
k (Fig. S16a in the Supplemental Material):

where all wavevector components diverge as 1
r near 

the singularity (see Theoretical analysis of infinite sin-
gularity in Supplemental Material for more details). 
Further, for any polarization component of the elec-
tric field eigenmode, the corresponding wavevector 
k = ikrer + kθeθ + kϕeϕ satisfies the following dispersion 
relation:

(1)E1 = C1r
−l
�(θ ,ϕ),

(2)E(r, θ ,ϕ) ≡ ei ∫ k(r,θ ,ϕ)·dr ,

(3)(ikr)
2 + k

2
θ + k

2
ϕ − i

(

∂
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+

2

r

)

(ikr)− i
1

r

(

∂

∂θ
+ cot θ

)

kθ − i
1

r sin θ

∂

∂ϕ
kϕ ≈

(

nω

c

)2

.

Next, we solve for E2 in the twisted lattice cavity region. 
The twisted lattice cavity achieves light field localization 
through momentum-space mode locking [39, 42]. To ana-
lytically derive the eigenmodes of the twisted lattice cavity, 
its structure can be regarded as a series of gradually vary-
ing periodic configurations seamlessly connected (Fig. S17a 
in the Supplemental Material). At each position within the 
cavity, the local arrangement can be treated as a unit cell 
for constructing a corresponding periodic structure. The 
result shows that the resonance frequencies of the localized 
modes in the twisted lattice cavity fall within the bandgap 
of the surrounding structures. This ensures that the electric 
field is strongly confined to the center of the cavity.

For the periodic structure constructed from the local 
arrangement, the Hamiltonian can be expressed as:

where k2 = k1 − G , with k1 and k2 denoting the wavevec-
tors of the plane waves, and G representing the recipro-
cal lattice vector of the periodic structure. The parameter 
κ > 0 is the coupling coefficient. neff represents the effec-
tive refractive index of the structure. This Hamiltonian 
results in an energy band (band-edge frequencies: ω± ) 
with a bandgap � at the Brillouin zone edge (see Theoret-
ical analysis of infinite singularity in Supplemental Mate-
rial for more details).

For an electromagnetic wave with a frequency ω within 
the bandgap, propagation is prohibited, and the wave 
becomes an evanescent wave in the photonic crystal. 
Specifically, when ω+ − ω ≪ � , it forms a decaying 

standing wave with a wavefunction ψ = 1√
2

(

1
1

)

 and 

wavevectors of

To simplify the analysis, we first consider a one-dimen-
sional mode with its wavevector along the y-direction 
and polarization along the x-direction. The correspond-
ing field distribution is

In the twisted lattice cavity, both the band-edge fre-
quency and the bandgap exhibit approximately lin-
ear variations within the range eigenmode localized 
(Fig. S17b in the Supplemental Material):

(4)H =
( c
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k1 κ

κ c
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(−k2)

)

,
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kMy
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c
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Different from Eq.  (6), the electric field distribution 
across the entire cavity should be expressed as an inte-
gral, in order to account for the spatially varying decay 
rate of the electromagnetic waves in the cavity:

For the localized mode at the center of the twisted 
lattice cavity with a frequency ω = ω+0 , the condition 
ω+

(

y
)

− ω ≪ �
(

y
)

 is approximately satisfied within the 
mode localized region. When neglecting the parabolic 
term under the square root, the wavevector of the eva-
nescent wave can be expressed as:

then we can derive the electric field distribution,

Further calculations reveal that the band structure 
exhibits approximate rotational symmetry. Consequently, 
the electric field propagating along the radial direction 
with azimuthal polarization can be reasonably approxi-
mated with reference to Eq. (10):

where ρ =
√

x2 + y2 is the radial distance, φ = arctan x
y 

is the azimuth angle, and ν is a parameter denoting the 
confinement of the twisted lattice cavity. f (φ) represents 
the azimuthal profile of the electric field.

Our calculations reveal that the localized eigenmode 
is polarized along the y-direction at the center of the 
twisted lattice cavity, thus we set f (φ) = sin φ as a rea-
sonable approximation. Then, by decomposing Eq.  (11) 
into its x and y components, we obtain:

Notably, this expression indicates that the electric field 
amplitude along the radial direction has an envelope 

function resembling a Gaussian one, described as e−νρ
3
2.

Finally, the eigenmodes E1 and E2 of the biconical 
antenna and twisted lattice cavity regions are connected 
using boundary conditions derived from Maxwell’s equa-
tions. Then, the expression for the dominant electric field 
component, Ey , is derived as:
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(11)E2φ(ρ,φ) = C2f (φ) cos (kMρ)e−νρ
3
2 ,

(12)







E2x = −C2 sin φ cosφ cos (kMρ)e−νρ
3
2

E2y = C2 sin
2 φ cos (kMρ)e−νρ

3
2

.

where C is a normalized constant, and Ey0 is a structure-
dependent parameter. Z(z) represents the wavefunction 
in the z-direction, which is localized by total internal 
reflection and thereby decays exponentially outside the 
cavity.

4.2 � Device fabrication
The singulonic cavity, designed for microwave opera-
tion, was fabricated via computer-numerically-controlled 
(CNC) milling. First, high-purity (≥ 99%) aluminum 
oxide powder—chosen for its low dielectric loss—was 
extruded and sintered at elevated temperatures to form a 
dense ceramic plate. Following a computer-aided design 
(CAD) pattern, this plate was then CNC-milled into the 
twisted lattice cavity. In parallel, a 3D biconical antenna 
was fabricated from high-purity (≥99%) zirconium oxide 
powder using the same extrusion and sintering pro-
cess. The achieved radius of curvature at the cone tips is 
approximately 0.2 mm, as determined by direct measure-
ment. Finally, the antenna was installed into the cavity’s 
central air hole, completing the singulonic cavity assem-
bly. The 0.02 mm air gap was precisely adjusted and cali-
brated in situ during the experimental setup.

4.3 � Experimental characterization
To measure the eigen-wavefunction of the singulonic 
cavities, we employ a two-port transmission spectros-
copy setup with a vector network analyzer, using |S21| 
signal to extract eigenmode information (Fig.  S3 in the 
Supplemental Material). The excitation antenna, con-
nected to port 1 via a coaxial cable, drives the singulo-
nic cavity’s eigenmode in the near field, while a probe 
antenna on port 2 records the resulting electric field dis-
tribution. Within the 0.5–2  GHz measurement range, 
sampled at 75 kHz intervals, a distinct peak in the trans-
mission spectrum emerges, corresponding to the excited 
eigenmode. By translating the probe antenna in three 
dimensions and recording the position-dependent |S21|, 
we obtain the characteristic of the narwhal-shaped eigen-
wavefunction. Because the direct measurement is influ-
enced by the presence of the probe antenna, we adopted 
a simulation-assisted correction approach to rigorously 
account for this effect (Fig. S4 in the Supplemental Mate-
rial). Specifically, we constructed a full-wave 3D model 
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that exactly replicates the experimental geometry, includ-
ing the probe structure. We then computed the eigen-
mode of the system, and the probe detected eigenmode 
excited by another antenna.

By comparing the probe detected eigenmode field 
profile to the measured near-field distribution, we veri-
fied excellent agreement—confirming that the simula-
tion accurately captures the experimental perturbation. 
We then directly compared the simulated eigenmode 
with the probe detected eigenmode to extract the probe-
induced distortion. This differential analysis allowed us to 
correct for the probe’s influence and recover the intrinsic 
cavity mode profile. The corrected field profiles presented 
in main text thus reflect the unperturbed mode structure 
with high fidelity.

Due to measurement limitations, the x-directed elec-
tric field near the singularity are measured at z = 0.002 λ 
in x–y plane, the y-directed electric field near the singu-
larity is measured along the side of the biconical antenna 
in x–y plane at z = 0. Meanwhile, the z-directed electric 
field is only recorded above the cavity (z > 0), with values 
below (z < 0) extrapolated from symmetry for reference.

For singular field microscopy, we use one-port reflec-
tion spectroscopy to determine the resonance frequency 
via the |S11| signal (Fig.  S12 in the Supplemental Mate-
rial). A dip in the reflection spectrum, observed between 
1.26 and 1.36 GHz at 5 kHz steps, is fitted to identify the 
resonance frequency. As the sample moves within the air 
gap, shifts in this measured resonance frequency reveal 
its topographical features.

4.4 � Full‑wave simulation
We numerically investigate the eigenmodes of singulonic 
cavities using 3D full-wave simulations based on the 
finite-element method using a model that replicates the 
actual fabricated structure, which includes a finite tip 
radius and gap size (Fig.  S8 in the Supplemental Mate-
rial). All simulations were performed using COMSOL 
Multiphysics. The singulonic cavity is embedded in air 
and enclosed within a perfectly matched layer (PML) to 
absorb outgoing waves. Scattering boundary conditions 
were applied at the PML interfaces to minimize artificial 
reflections and ensure accurate field distribution. These 
simulations provide key mode characteristics, including 
field distributions, quality factors, and mode volumes. 
The dielectric constants are set to 9.6 for aluminum oxide 
and 29 for zirconium oxide. The mode volume V is calcu-
lated as V = ∫ ε(r)|E(r)|2d3r

max
[

ε(r)|E(r)|2
] , where ε(r) is the position-

dependent dielectric constant. The quality factor is 
determined by Q =

(

Re[f ]
)

/
(

2Im[f ]
)

 , where Re[f ] and 
Im[f ] represent the real and imaginary parts of the eigen-
frequency of the cavity eigenmode.

To assess the influence of fabrication deviations on field 
confinement, we conducted a comprehensive sensitiv-
ity analysis to examine how the mode volume depends 
on the geometric parameters of the cavity. As shown in 
Fig.  S9 in the Supplemental Material, the mode volume 
decreases gradually with decreasing tip radius and gap 
size, and remains well within the deep-subwavelength 
regime across the range of experimentally realizable 
parameters.

To evaluate numerical convergence, we performed a 
mesh sensitivity study using a two-level adaptive refine-
ment strategy near the apex (Fig. S10 in the Supplemen-
tal Material). Region 1 spans a broader area around the 
antenna tip to ensure smooth meshing, while Region 
2—the narrow air gap between opposing tips—uses finer 
mesh elements to resolve the strongly localized fields. 
The mesh resolution in both regions is controlled by a 
refinement parameter m, with higher m corresponding to 
finer meshing.

Figure  S11 in the Supplemental Material details the 
mesh settings as a function of m and shows the resulting 
mode volume and quality factors. We find that the mode 
volume converges to ~5 × 10⁻⁷ λ3 for m ≥ 2 with an air gap 
of 0.02 mm, and the corresponding quality factor remains 
stable around Q ≈ 1320 with further mesh refinement, 
demonstrating that our simulation results are numeri-
cally stable and well-resolved.
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