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SMBH-galaxy co-evolution
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SMBH-galaxy co-evolut
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SMBH-galaxy co-evolution

Correlation Between Black Hole Mass
and Bulge Mass
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Quasars discovered at the highest redshift
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Quasars discovered at the highest redshift
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Banados et al. 2014 : PAN-STARRS1 VERETETE EEEl, AT
More than 180 quasars at z>5.7 discovered from the large optical/near-IR surveys:
SDSS main survey, mag_z<20.2, Fan et al. 2000~2006
SDSS stripe 82, Jiang et al. 2008, 2009; CFHQS, Willott et al. 2007-2010; UKIDSS,
Mortlock et al. 2011; VISTA, Venemans et al. 2013; PAN-STARRS1, Banados et al.

2014: Venemans et al. 2013, 2015, Banados et al. 2016; Subaru: Matsuoka et al.
2017

Cross section (m?)




Introduction: Discovery of highest-z quasars

* More than 180 quasars at z>5.6 discovered from the large
optical /near-IR surveys: SDSS, Pan-STARRS1, CFHQS, etc.

recent summary from Banados et al. 2016, Ap]S, 227, 11
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Introduction: Discovery of highest-z quasars

 Fainter objects, less luminous and more common population at

the highest redshift : Subaru SHELLQs, etc. (Matsuoka etal. 2017,
PAS))

e known quasars
e SHELLQs quasars
e SHELLQs galaxies




Quasars discovered at the highest redshift

*More than 200 quasars at z>5.7 discovered from the large
optical/near-IR surveys:

*SDSS main survey, mag_z<20.2, Fan et al. 2000~2006
*SDSS stripe 82, Jiang et al. 2008, 2009; CFHQS, Willott et
al. 2007-2010; UKIDSS, Mortlock et al. 2011; VISTA,
Venemans et al. 2013; PAN-STARRS], Banados et al. 2014;
Venemans et al. 2013, 2015, Banados et al. 2016; Subaru:
Matsuoka et al. 2017, 2019;

*Fainter objects, less luminous and more common
population at the highest redshift : Subaru SHELLQs, etc.
(Matsuoka et al. 2017, 2019, PAS])



Quasars discovered at the highest redshift

* Quasar activities : similar to the low-z quasars in
similar luminosity range (Shen et al. 2019).
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The millimeter and radio telescopes




Heterodyne receivers
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At least 50x12-m (12-m Array), plus 12x7-m & 4x12-m (ACA)

0.15-16 ki
~0.2” x (300/v GHz) % ( 1 km | max. baseline )

~20.6” x (300/v GHz)

~35" % (300/v GHz)

Up to 1225 (ALMA correlator can handle up to 64 antennas)

16 GHz (2 polarizations x 4 basebands x 2 GHz/baseband)
As narrow as 0.008 x (v/300 GHz) km/s

Full Stokes parameters

I# 31.3-45 6.7-9.5 145-135 93 % 13-9 - S 0.14-0.1 T
23 67-90 5 1 -68 3 6 - 0.07-0.05 3
3 54-116 2.6-3.6 72-52 37 0.07 4.9-3.6 0.04 0.05-0.038 430
4 125-163 1.8-24 49-37 32 0.06 3.3-2.5 0.048 0.035-0.027 330
5 163-211 1.4-1.8 37-29 23

6 211-275 1.1-14 29-22 18 0.09 2.0-1.5 0.05 0.021-0.016 490
7 275-373 0.8-1.1 22-16 12 0.15 1.5-1.1 0.08 0.016-0.012 814
8 385-500 0.6-0.8 16-12 9 0.40 1.07-0.82 0.28 0.011-0.009 1900
9 602-720 0.4-0.5 10-8.5 6 14 0.68-0.57 0.9 0.007-0.006 8900
10 787-950 0.3-0.4 7.7-64 5 12 0.52-0.43 L6 0.006-0.005 —




Star forming galaxies at high redshift

| Line sensitivity (300 km/s, 12hrs) “sun/
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The negative K-correction and dust emission
at high-z

o Lar~4.7x10' (S250cH2/mJy)
Lsun at Z~2;

e Lfr~3.6x10'%(S250G6H2/mIY)
Lsun at Z~4;

e Lfr~2.34x10'%(S2506H2/mJY)
Lsun at Z~6;
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Millimeter and radio observations of the
earliest quasar host galaxies

Submm/mm continuum : redshifted FIR thermal dust
continuum emission, 40~60 K, usually heated by nearby
star formation;

Molecular CO : direct tracer of the molecular gas;

|C II] fine structure line : tracer of star formation, atomic
and ionized gas;
Interferometer observations :

— Resolve the distributions of the dust, gas components and
star formation activity;

— Spectral lines : resolve the velocity field of the gas.



Questions on SMBH-galaxy formation

Star formation co-eval with SMBH accretion ?

— Searching for 40~60 K warm dust, [C II], molecular CO in
the quasar host galaxies;

Size, distribution of star formation ?
— Mapping of the tracers of star formation, e.g., [C II];

— Resolving the intense star formation in the nuclear region
of a few kpc scale.

Star formation rate ?

— Questions of dust SED decomposition, IMF, etc.
AGN feedback ?

— Gas kinematics, outflows;

— ISM excitation ;

Masses of dust, gas, and stellar components, SMBH-host
relations



Star formation: Dust and [C IT] surveys

* Bright FIR dust continuum was first detected in ~30% of
the optically luminous quasars at z~6 using the JCMT,
[RAM-30m;

 Combine of Herschel, IRAM, JCMT data: FIR emission

powered by massive star formation in quasar hosts.
P+CAT3D_n+MBB

 FIR luminosities and
Star formation rates

comparable to ULIRGs or H:g

HLIRGs. g

Right : the SED of a z=6 3

Quasar J2310 with

T;,~40 K 750 v 7

rest wavelength (um)

Shao et al. 2018, submitted



Star formation: Dust and [C IT] surveys

* No clear evolution on the average optical to FIR SED of
quasars from low-z to z~6.

* JCMT SCUBA-2 survey of 54 z~6 quasars by Qiong Li et al.
2019, in prep.

z ~ 2.1 quasars (this work)
z ~ 2.5 quasars (Netzer 2016)
z ~ 6 quasars (N=54, this work)

|Og Vpest (HZ)



Recent ALMA programs of z>=6 quasars by
our and other groups

* The ALMA observations mainly focus on the [C II]
158 micron fine structure line and dust continuum:

 Surveys of optically/mm-selected sample: sub-
arcsec resolution, to constrain the source size and
total fluxes;

 [CII] emission from the sources that are bright in

dust continuum from previous mm surveys, e.g.,
ALMA Cycle 0 Wang et al. (2013);

* ALMA survey of optically selected z>6 quasars
with M, ,-, <-25.25, Decarli et al. 2018:

27 objects at z>6, 100% detected in continuum and

85% in [C II];

 ALMA observations of the optically fainter quaars
discovered from HSC (Izumi et al. 2018, 2019)



Recent ALMA programs of z>=6 quasars by
our and other groups

* Continuum sensitivity 5~10 times deeper
than previous single dish surveys;

* FIR luminosities 3x10' Lo, 10" Lg;
* Dust mass from 2x107 ~10° M.

* Detailed studies of the most [C II] luminous
objects;

* 0.1"~0.3” resolution imaging (e.g. Shao et al. 2017,
Wang et al. 2019);

e Observations of CO and other fine structure lines
(e.g., Venemans et al. 2017; Carniani et al. 2019);



Dust and [C IT] mapping on kpc scale

 ALMA observation of three z~6 quasars at 0.2” resolution; Wang
etal. 2019

* FWHM Source sizes: [CII] 0.3"~0.6" or 1.8 kpc ~ 3.6 kpc;

* The continuum emission is usually more compact;
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* Following the trend defined by other SMGs and
quasars at lower redshift (Gullberg et al. 2018).
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* Surface brightness vs. radius of [C II] and dust
continuum: consistent with exponential light
profiles;

Wang et al. 2019

[C 1] line FIR continuum

F
Radius (kpc)



[CII] to FIR intensity ratio over the disk

* The FIR surface brightnesses in the nuclear region of all
three objects are in the range between a few 1010 to 2x1012
Lo kpc?, indicating a high density and dusty ISM with
strong radiation field which could result in the low [C II]-to-
FIR ratios ; —
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Physical condition and excitation of the ISM

e [CII], low/mid-] CO suggest emission from PDR
regions powered by star formation (Venemans et al.
2017; Shao et al. 2019)

high z quasars
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Physical condition and excitation of the ISM

* Detections of very
high-] CO suggest CO
excitation by the
central AGN N

0 M8z

¢ NGC6240

Y NGC1068

E
g




ALMA/NOEMA observations of the most FIR
luminous object, Jianan Li et al.

* SDSSJ2310+1855, at z=6.0, FIR luminous with
luminosity of 10*3 L ;

* We search for CO (8-7) (9-8) line with ALMA, ~0.6"
resolution;

» CO (13-12), (12-11), (5-4) with NOEMA;

* Preliminary results : the CO SLED and molecular gas
excitation;



* The CO SLED could be described with a single molecular
gas component with the LVG model;

* Left : single component, Ty ~hundred K, n(H,) ~ 10> cm.

* Right : double components, J1148 + hotter and denser
component;
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* The ALMA observation at 0.6” resolution, we are looking
at the dense gas in the nuclear region;

Lietal. 2019, to be submitted



* Velocity maps : compared between [C II], CO (8-7),
CO (9-8), Lietal. 2019 to be submitted




CO SLED of the most massive quasar
J0100+2802 at z=6.3 Wang, F. et al. 2019

* Best fitted with two components:
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Physical condition and excitation of the ISM

* CO SLED of one of the

. 20 J23104-1855
mm bright z~6 quasar sop 1@ ocal ULIRGS

. local normal+ starburst galaxies
(blaCk Square) . 2 2=2-4 Ie:;.e; SMG: )

z=12-4.15SMGs

* Compared to the
starburst systems.

* Highly excited
molecular gas that
dominated the high-]
CO SLED.
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Physical condition and excitation of the ISM

* CO SLED of quasar hosts,

including four quasars at WL 12310+ 1855
7 ~ 6 . . Cloverleaf

) - APM 08279

- J1148+5251

 Dense (105 Cm'3) and . N 1010042802

J0439+-1634

warm (107 K) molecular
gas component that
dominates the high-]

transition;

* Powered by AGN ?

* Cold component S
associated with the 40-50 J upper

K dust ?



Gas kinematics

* Surveys of [CII] line in the z~6 quasar hosts:

Similar [C II] line width distributions between
quasars and SMGs (Decarli et al. 2018);

Mazzucchelli+ 17 .
Maiolino+05 D
Venemans+12,16,17 D
Wang+ 13,16 D
Willott+13,15,17 D

Banados+15 D

This work .
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Gas kinematics - a range of activities

* Observations of the [C II] and CO emission lines from
these young quasar hosts at z>5.7 at sub-arcsecond
to arcsecond resolution reveal a range of kinematic

properties:

* Velocity gradients: (Willott et al. 2013, 2017; Venemans et al.
2016; Shao et al. 2017) rotating motion.
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Gas kinematics - a range of activities

 Large velocity dispersion/turbulence

e.g., SDSS J2310+1855 at z=6.0, v, /o ~ 1-2, Feruglio
etal. 2018;




Gas kinematics - a range of activities

* SDSSJ0129-0035 at z=5.78, complex gas kinematics,
rotation + turbulent clumps (Wang et al. 2019)
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Gas kinematics - a range of activities

* Compact, dispersion-dominate system (Decarli et al.
2018; Venemans et al. 2018)

PJO09-10

h

11" 20M 152%.50° 148° 146° 144
Right Ascension

z=7.1 quasar, Venemans et al. 2017

= s 0000 .
-50 0 +50 +100  +150
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Different line profile between the [C II]
and CO

* SDSSJ1044-0125 at z=5.78, A warmer gas
component traced by [CII] ?
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Wang et al. 2019



* CO(6-5) trace the dense
molecular gas from star forming
region;

 |CII] : trace the disk gas and star
forming regions, as well as the
warm diffuse neutral /ionized

medium, could also powered by
the central AGN;

* e.g., Asymmetric [C II] line
emission that is broader than
the molecular CO emission was
detected the radio galaxy 3C
326N, suggest [C II] emission |
from a warm diffuse and 00 00 200 o0 L 200
turbulent molecular gas
component powered by AGN-jet

activity (Figure from Guillard et
al. 2015).




Gas kinematics - more details with ALMA image,
recent work from Venemans et al. 2019

* 0.076" resolution with ALMA of a z=6.6 quasar host,
Venemans et al. 2019;

Continuum flux density (u)y beam=1) Integrated [CII] flux (Jy km s~ beam™1)




* Gas kinematics:
dispersion + rotation in
the central kpc.

* This implies that most
of the gas has not yet
settled in a disk ?

* Or heated/disrupted by
the AGN ?
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Gas kinematics - a range
of activities

* Galaxy interactions/companions:
e.g., Decarli et al. 2017; 51308.21
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SDSS J1044-0125 at z=5.78, Wang et al. 2019

* Or gas outflows ?

+200




Gas kinematics - a range of activities,
recent work from Bischetti et al. 2018

* Gas outflows: detections of low surface brightness,
extended emission is indeed difficult.

Whole sample

Bischetti et al. 2018
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Mgy - My, - compared to local systems

* The dynamical mass
constraints on these z6 to
7 quasars suggest that, in
the early universe, the
most massive SMBHs with
masses of 10° to 101 M,
may grows faster than
that of their host galaxies
(Walter et al. 2004;
Venemans et al.
2016;Wang et al. 2016;
Decarli et al. 2018);

local galaxies @
5.7<z<7.1 quasars U

* The less massive systems ULAS J1319+0950 7
(107~108 M@) are SDSS J0129-0035vy
evolving more closer to '/ ol 02 1o
the trend of local galaxies (M)

(Willott et al. 2017; Izumi
et al. 2018).



Discussions: Dynamical mass of the quasar host

* Can the [C II], or CO emitting region trace the stellar
component in the quasar hosts ?

* Line width from the observing spectrum = circular
velocity (rotating system) / velocity dispersion
(dispersion-dominated system);

 Uncertainties in the SMBH mass ;

* Will need JWST to directly image the stellar
component.



Summary

Large samples of quasars at z>6 are now selected from deep
optical and near-IR surveys: these objects allow us to study the
formation of the first SMBHs and galaxies;

The mm and radio telescopes allow us to observe the dust and
gas components in these earliest galaxies;

Detections of strong dust continuum, molecular CO, [C II] In
quasar host galaxies at z~6 and higher provide evidence of
massive star formation, co-eval with rapid SMBH accretion;

Line and FIR luminosity ratios : physical conditions of the ISM.

Spatially resolved dust and gas emission : provide constraints on
the dynamics of the quasar host galaxies, and evidence of AGN
feedback;

Preliminary constraints on the Mg-M,,,4. relationships.



Open questions and Opportunities

Evolutionary connections between different systems at the
highest redshift;

Star formation and ISM excitation in different systems: quasar
host galaxy, dusty starburst galaxy with no visible AGN,
normal star forming galaxies;

SMBH-galaxy co-evolution : M-c relationships, accurate
measurement of the host galaxy masses, stellar velocity
dispersion; directly imaging of stellar component;

Modern millimeter and radio facilities : provide the required
spatial resolution and sensitivity to detect the faint continuum
and line emission from the most distant galaxies;

Together with future optical and near-IR telescopes, e.g.,
JWST, TMT, will fully probe the formation of the first galaxies.



