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Introduction





http://hubblesite.org/newscenter/newsdesk/archive/releases/2006/01/

Star forming regions

http://hubblesite.org/newscenter/newsdesk/archive/releases/2003/34/image/a



https://blackholecam.org/a-massive-star-collapsing-in-upon-itself-forms-a-black-hole/

Life cycle of stars



Galaxies beyond MW



The early stage of the universe
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Coevolution of SMBHs with galaxies

local SMBHs 
(z=0)



Cosmological QSO population

Development of  
Galaxies, Stars, Planets.

First Stars 
@z>20

13.7 billion years 

today 
(z=0)

Inflation

Quantum 
fluctuation

Dark ages / EoR 

First SMBHs



redshift

B
H

 m
as

s 
(M

su
n)

107

108

109

1010

6 7 8 9

1011

Inayoshi et al. (2020)

High-redshift monster BHs
age (Gyr)

*λEdd=1 is assumed for BHs
 if not mass measurements
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gas accretion

bright QSOs

Rapid SMBH assembly

BH mergers 
(GWs) seed BH 

formation

(tH ~ 1Gyr)

“The Assembly of the First Massive Black Holes” 
Inayoshi, Visbal & Haiman (2020), ARA&A in press
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First star formation
(Pop III stars)



Initial conditions for our universe

Cosmic Microwave Background (Planck Satellite) 

380,000 years after the Big Bang (z=1100)



Formation of large-scale structure

small fluctuation highly non-linear evolution



Matter power spectrum

~ k

~ k-3



Simulations of the (Λ)CDM universe



Collapsed objects (DM halos)

・mean gas density in a collapsed object

<<                     star formation

・virial radius / temperature
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radiative cooling !



Radiative cooling
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Barkana & Loeb (2001)

Galaxy / star formation: tcool < tH
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molecular

H  He+

free-free
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metal lines 
C/O/CO2/H2O

atomic

(Rees & Ostriker 1977)



H2 formation processes

・H2 formation in ISM occurs on dust

・the electron-catalyzed reaction in metal-free gas

note: no dipole moment

H- process (low density)

・3-body interaction

3H → H2 +H

H+ e− → H− + γ

H− +H → H2 + e−

(high density; n>108 cm-3)



H2 formation processes

Galli & Palla (1998)



H2 cool 
tcool < tH

Tegmark et al. (1997) Hirano et al. (2014)

First star formation (Z=0)
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Mcool ~ 105 Msun at z~30
Gravitational collapse of metal-free gas: 

300 parsec 5 parsec

10 astronomical unit25 solar−radii

 cosmological halo  star−forming cloud

 fully molecular part new−born protostar
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D C

Yoshida et al. (2008)

self-similar collapse!



Star formation with H2

from N.Yoshida’s slide

H2 formation
3-body 
reaction
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“time since collapse begins”

H2 fraction



Gas fragmentation

γeff < 1

Li, Klessen & MacLow (2003)

γeff<1

tcool << tff

tcool ~ tff

density
(time since collapse begins)
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p ∝ ργeff

Equation of state:

MJ ~
 const

fragment’s size and mass

λJ ∼ cstff

MJ ∼ ρλ3
J ∝ T 3/2ρ−1/2T ∝ ργeff−1



Star formation with H2

from N.Yoshida’s slide

H2 formation

fragment!

3-body 
reaction

massive stars!MJ ∼ 103 M�
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Collapsing gas profile
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runaway collapse ! 

(Larson-Penston solution)

R-2



Dynamics of collapsing/accreting gas

300 parsec 5 parsec

10 astronomical unit25 solar−radii

 cosmological halo  star−forming cloud

 fully molecular part new−born protostar

A B

D C

Yoshida et al. (2008)

early collapse stage

“seed” protostar

late accretion stage

final stellar mass will be 
determined in the phase



Protostellar accretion (PopIII)

Ṁ� ∼ MJ

tff
∼ c3s

G
∝ T 3/2 ∼ 10−3 M�yr−1

Stahler, Shu & Taam (1980)



Protostellar accretion (PopIII)
Omukai & Palla (2001, 2003)

adiabatic 
expansion

Kelvin-Helmholz 
contraction

ZAMS

Teff ~  105K



M
M

/y
r

Stellar evolution + RHD

Radiative heating (UV rad.) 
shuts off stellar growth

Hosokawa et al. (2011), see also 
Stacy et al. (2012), McKee & Tan (2008)



100 PopIII calculations…



PopIII stellar IMF
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PopIII IMF :  top-heavy (~100Msun)

stellar mass 
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Hirano et al. (2014)
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PopIII binary formation
Turk et al. (2009); Stacy et al. (2013,2016), Susa et al. (2013), Hosokawa et al. (2016)

Machida et al. (2008) Susa et al. (2014)

・Binary formation due to disk fragmentation

・high binary fraction (fbin~60% @MW)



Formation of massive BH seeds
(special situations of Pop III formation)



Star formation with H2

from N.Yoshida’s slide

H2 formation

fragment!

3-body 
reaction
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PopIII stars: massive but M＊<103 Msun



monolithical 
collapse single protostar

H cooling 
~104K

no fragment
H2 cooling 
~102-3 K
fragment

normally…

Pop III stars
M∗ ∼ 100 M�

Safranek-Shrader et al. (2016)

High-z star formation 
cosmological scales

if no H2



monolithical 
collapse single protostar

・high mass / no fragments:

・very high accretion rate:

MJ ∼ ρλ3
J ∝ c3s√

ρ

Ṁacc ∼ MJ

tff
∼ c3s

G

higher temperature is required

∝ T 3/2

cosmological scales

High-z star formation 



Ways to suppress H2 formation

Bromm & Loeb 2003; Shang +2010; Latif +2013; Johnson +(2013); Regan +2014; Inayoshi +2014; Sugimura 
+ 2014; Visbal +2015; Latif +2016; Chon+2016; Hirano+2018; Inayoshi+2018; Wise +2019; Luo+2019 etc…

pristine gas

Lyman-Werner irradiation

pristine gas

baryonic streaming motion

v2eff ≡ c2s + v2bsmH2 + γLW → 2 H



Radiative cooling w/o H2
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H atomic cooling is important (higher T)



Omukai (2001)
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Omukai (2001)
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Star formation w/o H2



Inayoshi, Omukai & Tasker (2014)
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No fragments / high Mdot!

Becerra et al. (2015) Regan et al. (2014)

pristine & H2 free gas no/weak fragmentation
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Inayoshi, Omukai & Tasker (2014)

M� ≈ Ṁacc × tlife ∼ O(105) M�

・no/weak fragmentation
・high accretion rate



Massive accretion disk 
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Ṁ
∗
[
M

	/
y
r
]

1e+00

Mean 1e2 yr
Mean 1e3 yr

0 0.02 0.04 0.06 0.08 0.1

Time tp [ Myr ]
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Q ∼ csΩ

πGΣ
∼ αc3s

GṀext

Unstable accretion disk 

Toomre’s instability:

~ 1
tmig ∼ 1

α

2π

Ω
∼ torb < tKH

clumps migrate inward 
before forming stars

KI & Haiman (2014)

continuous 
high acc. rate!



Rapidly accreting protostar

stellar mass (Msun)
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Rapidly accreting protostar

Hosokawa, KI et al. (2013)
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Direct-collapse!

dp

dr
= −Gε(r)M(r)
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・Newton gravity + GR correction
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pressure -> energy -> mass…

M＊ > a few × 105Msun

no stable stellar structure if

(see textbook by Shapiro & Tuekolsky)

Umeda et al. (2016)



Summary

・Pop III stars form at z~20 in mini-halos via H2 cooling

・Pop III stars are typically massive (10-1000 Msun)
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・Metal-free star formation w/o H2 provides seeds of  
    high-z SMBHs (DCBHs)



Thank you!


