北京大学官网北京大学新闻网 English
汤超
点赞:
汤超
点赞:
发表文章

pdf.png119. Yimiao Qu, Jun Jiang, Xiang Liu, Ping Wei, Xiaojing Yang, and Chao Tang “Cell Cycle Inhibitor Whi5 Records Environmental Information to Coordinate Growth and Division in Yeast”,Cell Reports 29, 987–994(2019). 

pdf.png118. Jianfeng Cao, Guoye Guan, Ming-Kin Wong, Lu-Yan Chan3, Chao Tang, Zhongying Zhao & Hong Yan,“Establishment of morphological atlas of Caenorhabditis elegans embryo with cellular resolution using deep-learning-based 4D segmentation”,bioRxiv, 797688 (2019). 

117. Guoye Guan, Ming-Kin Wong, Vincy Wing Sze Ho, Xiaomeng An, Lu-Yan Chan, Binghui Tian, Zhiyuan Li, Leihan Tang, Zhongying Zhao, Chao Tang,“System-Level Quantification and Phenotyping of Early Embryonic Morphogenesis of Caenorhabditis elegans”,bioRxiv, 776062 (2019). 

116. Shanshan Qin, Qianyi Li, Chao Tang, and Yuhai Tu, “Optimal compressed sensing strategies for an array of nonlinear olfactory receptor neurons with and without spontaneous activity,” PNAS, 1906571116 (2019). 

115. Mingyue Zhang and Chao Tang, “Bi-functional biochemical networks,” Physical biology 16, 016001 (2019). 

114. Yimiao Qu, Jun Jiang, Xiang Liu, Ping Wei, Xiaojing Yang, and Chao Tang, “Cell cycle inhibitor whi5 records environmental information to coordinate growth and division in yeast,” bioRxiv, 583666 (2019). 

113. Xin Wang, Kang Xia, Xiaojing Yang, and Chao Tang, “Growth strategy of microbes on mixed carbon sources,” Nature communications 10, 1279 (2019). 

112. Zongmao Gao, Haoyuan Sun, Shanshan Qin, Xiaojing Yang, and Chao Tang, “A systematic study of the determinants of protein abundance memory in cell lineage,” Science Bulletin 63, 1051–1058 (2018). 

111. Jingxiang Shen, Feng Liu, and Chao Tang, “Toward deciphering developmental patterning with deep neural network,” bioRxiv, 374439 (2018). 

110. Leqian Yu, Junjun Li, Jiayin Hong, Yasuhiro Takashima, Nanae Fujimoto, Minako Nakajima, Akihisa Yamamoto, Xiaofeng Dong, Yujiao Dang, Yu Hou, et al., “Low cell-matrix adhesion reveals two subtypes of human pluripotent stem cells,” Stem cell reports 11, 142–156 (2018). 

109. Shanshan Qin and Chao Tang, “Early-warning signals of critical transition: Effect of extrinsic noise,” Physical Review E 97, 032406 (2018). 

108. Zongmao Gao, Siheng Chen, Shanshan Qin, and Chao Tang, “Network motifs capable of decoding transcription factor dynamics,” Scientific reports 8, 3594 (2018). 

107. Peijia Yu, Qing Nie, Chao Tang, and Lei Zhang, “Nanog induced intermediate state in regulating stem cell differentiation and reprogramming,” BMC systems biology 12, 22 (2018). 

106. Li-Hui Cao, Dong Yang, Wei Wu, Xiankun Zeng, Bi-Yang Jing, Meng-Tong Li, Shanshan Qin, Chao Tang, Yuhai Tu, and Dong-Gen Luo, “Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in drosophila,” Nature communications 8, 1357 (2017). 

105. Zhi-Bo Zhang, Qiu-Yue Wang, Yu-Xi Ke, Shi-Yu Liu, Jian-Qi Ju, Wendell A Lim, Chao Tang, and Ping Wei, “Design of tunable oscillatory dynamics in a synthetic nf-κb signaling circuit,” Cell systems 5, 460–470 (2017). 

104. Wenjia Shi, Wenzhe Ma, Liyang Xiong, Mingyue Zhang, and Chao Tang, “Adaptation with transcriptional regulation,” Scientific reports 7, 42648 (2017). 

103. Huan Hu, Hongmin Zhang, Sheng Wang, Miao Ding, Hui An, Yingping Hou, Xiaojing Yang, Wensheng Wei, Yujie Sun, and Chao Tang, “Live visualization of genomic loci with bifc-tale,” Scientific reports 7, 40192 (2017). 

102. Liyang Xiong, Wenjia Shi, and Chao Tang, “Adaptation through proportion,” Physical biology 13, 046007 (2016). 

src="/system/_tsf/feUZBrVrEB7r" width="30" height="30"/>101. Domitilla Del Vecchio, Douglas Densmore, Hana El-Samad, D Ingber, A Khalil, S Kosuri, and C Tang, “What have the principles of engineering taught us about biological systems?” Cell Systems 2, 5–7 (2016). 

100. Xianfeng Ping and Chao Tang, “An atlas of network topologies reveals design principles for caenorhabditis elegans vulval precursor cell fate patterning,” PloS one 10, e0131397 (2015). 

99. Hui Shi, Xin Wang, Xiaorong Mo, Chao Tang, Shangwei Zhong, and Xing Wang Deng, “Arabidopsis det1 degrades hfr1 but stabilizes pif1 to precisely regulate seed germination,” Proceedings of the National Academy of Sciences 112, 3817–3822 (2015). 

98. Xili Liu, Xin Wang, Xiaojing Yang, Sen Liu, Lingli Jiang, Yimiao Qu, Lufeng Hu, Qi Ouyang, and Chao Tang, “Reliable cell cycle commitment in budding yeast is ensured by signal integration,” Elife 4, e03977 (2015). 

97. Dan Lu, Jennifer Y Hsiao, Norman E Davey, Vanessa A Van Voorhis, Scott A Foster, Chao Tang, and David O Morgan, “Multiple mechanisms determine the order of apc/c substrate degradation in mitosis,” J Cell Biol 207, 23–39 (2014). 

96. Chang Chang and Chao Tang, “Community detection for networks with unipartite and bipartite structure,” New Journal of Physics 16, 093001 (2014). 

95. Adi Stern, Simone Bianco, Ming Te Yeh, Caroline Wright, Kristin Butcher, Chao Tang, Rasmus Nielsen, and Raul Andino, “Costs and benefits of mutational robustness in rna viruses,” Cell reports 8, 1026–1036 (2014). 

94. Ning Yin, Wenzhe Ma, Jianfeng Pei, Qi Ouyang, Chao Tang, and Luhua Lai, “Synergistic and antagonistic drug combinations depend on network topology,” PloS one 9, e93960 (2014). 

93. Zhiyuan Li, Simone Bianco, Zhaoyang Zhang, and Chao Tang, “Generic properties of random gene regulatory networks,” Quantitative Biology 1, 253–260 (2013). 

pdf.png92. Xiaojing Yang, Kai-Yeung Lau, Volkan Sevim, and Chao Tang, “Design principles of the yeast g1/s switch,” PLoS biology 11, e1001673 (2013). 

91. Xiaojing Yang, Anna Payne-Tobin Jost, Orion D Weiner, and Chao Tang, “A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast,” Molecular biology of the cell 24, 2419–2430 (2013). 

90. Jian Shu, Chen Wu, Yetao Wu, Zhiyuan Li, Sida Shao, Wenhui Zhao, Xing Tang, Huan Yang, Lijun Shen, Xiaohan Zuo, et al., “Induction of pluripotency in mouse somatic cells with lineage specifiers,” Cell 153, 963–975 (2013). 

src="/system/_tsf/feUZBrVrEB7r" width="30" height="30"/>89. Connie M Lee, Siyuan Gong, Chao Tang, and Wendell A Lim, “Bridging cross-cultural gaps in scientific exchange through innovative team challenge workshops,” Quantitative biology 1, 3 (2013). 

src="/system/_tsf/feUZBrVrEB7r" width="30" height="30"/>88. Michael Q Zhang and Chao Tang, “Qb: A new inter-and multi-disciplinary forum for modeling, engineering and understanding life,” (2013). 

87. Wendell A Lim, Connie M Lee, and Chao Tang, “Design principles of regulatory networks: searching for the molecular algorithms of the cell,” Molecular cell 49, 202–212 (2013). 

86. Angela H Chau, Jessica M Walter, Jaline Gerardin, Chao Tang, and Wendell A Lim, “Designing synthetic regulatory networks capable of self-organizing cell polarization,” Cell 151, 320–332 (2012). 

85. Qi Ouyang, Luhua Lai, and Chao Tang, “Designing the scientific cradle for quantitative biologists,” (2012). 

84. Colm J Ryan, Assen Roguev, Kristin Patrick, Jiewei Xu, Harlizawati Jahari, Zongtian Tong, Pedro Beltrao, Michael Shales, Hong Qu, Sean R Collins, et al., “Hierarchical modularity and the evolution of genetic interactomes across species,” Molecular cell 46, 691–704 (2012). 

83. Yuan Tian, Chunxiong Luo, Yuheng Lu, Chao Tang, and Qi Ouyang, “Cell cycle synchronization by nutrient modulation,” Integrative Biology 4, 328–334 (2012). 

82. Lin Hou, Lin Wang, Minping Qian, Dong Li, Chao Tang, Yunping Zhu, Minghua Deng, and Fangting Li, “Modular analysis of the probabilistic genetic interaction network,” Bioinformatics 27, 853–859 (2011). 

src="/system/_tsf/feUZBrVrEB7r" width="30" height="30"/>81. Zhiyuan Li, Ming Ni, Jikun Li, Yuping Zhang, Qi Ouyang, and Chao Tang, “Decision making of the p53 network: Death by integration,” Journal of theoretical biology 271, 205–211 (2011). 

80. Lu Wang, Luhua Lai, Qi Ouyang, and Chao Tang, “Flux balance analysis of ammonia assimilation network in e. coli predicts preferred regulation point,” PloS one 6, e16362 (2011). 

79. A Trusina and C Tang, “The unfolded protein response and translation attenuation: a modelling approach,” Diabetes, Obesity and Metabolism 12, 27–31 (2010). 

78. Wenzhe Ma, Ala Trusina, Hana El-Samad, Wendell A Lim, and Chao Tang, “Defining network topologies that can achieve biochemical adaptation,” Cell 138, 760–773 (2009). 

77. Huanhuan Liang, Hao Chen, Keqiang Fan, Ping Wei, Xianrong Guo, Changwen Jin, Chen Zeng, Chao Tang, and Luhua Lai, “De novo design of a beta alpha beta motif.” Angewandte Chemie (International ed. in English) 48, 3301–3303 (2009). 

76. Zhaoqian Steven Xie and Chao Tang, “A more robust boolean model describing inhibitor binding,” Frontiers of Electrical and Electronic Engineering in China 3, 371–375 (2008). 

75. Ala Trusina, Feroz R Papa, and Chao Tang, “Rationalizing translation attenuation in the network architecture of the unfolded protein response,” Proceedings of the National Academy of Sciences 105, 20280–20285 (2008). 

74. Kun Yang, Hongjun Bai, Qi Ouyang, Luhua Lai, and Chao Tang, “Finding multiple target optimal intervention in disease-related molecular network,” Molecular systems biology 4, 228 (2008). 

73. Tony Yu-Chen Tsai, Yoon Sup Choi, Wenzhe Ma, Joseph R Pomerening, Chao Tang, and James E Ferrell, “Robust, tunable biological oscillations from interlinked positive and negative feedback loops,” Science 321, 126–129 (2008). 

72. Morten Kloster and Chao Tang, “Scumble: a method for systematic and accurate detection of codon usage bias by maximum likelihood estimation,” Nucleic acids research 36, 3819–3827 (2008). 

71. Kai-Yeung Lau, Surya Ganguli, and Chao Tang, “Function constrains network architecture and dynamics: A case study on the yeast cell cycle boolean network,” Physical Review E 75, 051907 (2007). 

70. Kun Yang, Wenzhe Ma, Huanhuan Liang, Qi Ouyang, Chao Tang, and Luhua Lai, “Dynamic simulations on the arachidonic acid metabolic network,” PLoS computational biology 3, e55 (2007). 

69. Je-Luen Li, Roberto Car, Chao Tang, and Ned S Wingreen, “Hydrophobic interaction and hydrogen-bond network for a methane pair in liquid water,” Proceedings of the National Academy of Sciences 104, 2626–2630 (2007). 

68. Wenzhe Ma, Luhua Lai, Qi Ouyang, and Chao Tang, “Robustness and modular design of the drosophila segment polarity network,” Molecular Systems Biology 2, 70 (2006). 

67. Danying Shao, Wen Zheng, Wenjun Qiu, Qi Ouyang, and Chao Tang, “Dynamic studies of scaffold-dependent mating pathway in yeast,” Biophysical journal 91, 3986–4001 (2006). 

66. Yuping Zhang, Minping Qian, Qi Ouyang, Minghua Deng, Fangting Li, and Chao Tang, “Stochastic model of yeast cell-cycle network,” Physica D: Nonlinear Phenomena 219, 35–39 (2006). 

65. Fangting Li, Ying Lu, Tao Long, Qi Ouyang, and Chao Tang, “Global dynamic properties of protein networks,” in Frontiers And Prospects Of Contemporary Applied Mathematics (World Scientific, 2005) pp. 149–159. 

64. Erik Kruus, Peter Thumfort, Chao Tang, and Ned S Wingreen, “Gibbs sampling and helix-cap motifs,” Nucleic acids research 33, 5343–5353 (2005). 

63. Wenzhe Ma, Chao Tang, and Luhua Lai, “Specificity of trypsin and chymotrypsin: loop-motion-controlled dynamic correlation as a determinant,” Biophysical journal 89, 1183–1193 (2005). 

62. Morten Kloster, Chao Tang, and Ned S Wingreen, “Finding regulatory modules through large-scale gene-expression data analysis,” Bioinformatics 21, 1172–1179 (2004). 

61. Susanne Moelbert, Eldon Emberly, and Chao Tang, “Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins,” Protein Science 13, 752–762 (2004). 

60. Fangting Li, Tao Long, Ying Lu, Qi Ouyang, and Chao Tang, “The yeast cell-cycle network is robustly designed,” Proceedings of the National Academy of Sciences 101, 4781–4786 (2004). 

59. Eldon G Emberly, Ranjan Mukhopadhyay, Chao Tang, and Ned S Wingreen, “Flexibility of β-sheets: Principal component analysis of database protein structures,” Proteins: Structure, Function, and Bioinformatics 55, 91–98 (2004). 

58. Morten Kloster and Chao Tang, “Simulation and analysis of in vitro dna evolution,” Physical review letters 92, 038101 (2004). 

57. Ned S Wingreen, Hao Li, and Chao Tang, “Designability and thermal stability of protein structures,” Polymer 45, 699–705 (2004). 

56. Ranjan Mukhopadhyay, Eldon Emberly, Chao Tang, and Ned S Wingreen, “Statistical mechanics of rna folding: Importance of alphabet size,” Physical Review E 68, 041904 (2003). 

55. Jinfeng Zhang, Rong Chen, Chao Tang, and Jie Liang, “Origin of scaling behavior of protein packing density: A sequential monte carlo study of compact long chain polymers,” The Journal of chemical physics 118, 6102–6109 (2003). 

54. Eldon G Emberly, Ranjan Mukhopadhyay, Ned S Wingreen, and Chao Tang, “Flexibility of α-helices: Results of a statistical analysis of database protein structures,” Journal of molecular biology 327, 229–237 (2003). 

53. Mehdi Yahyanejad, Mehran Kardar, and Chao Tang, “Structure space of model proteins: a principal component analysis,” The Journal of chemical physics 118, 4277–4284 (2003). 

52. Hao Li, Chao Tang, and Ned S Wingreen, “Designability of protein structures: A lattice-model study using the miyazawa-jernigan matrix,” Proteins: Structure, Function, and Bioinformatics 49, 403–412 (2002). 

51. Eldon G Emberly, Ned S Wingreen, and Chao Tang, “Designability of α-helical proteins,” Proceedings of the National Academy of Sciences 99, 11163–11168 (2002). 

50. Jonathan Miller, Chen Zeng, Ned S Wingreen, and Chao Tang, “Emergence of highly designable protein-backbone conformations in an off-lattice model,” Proteins: Structure, Function, and Bioinformatics 47, 506–512 (2002). 

49. Eldon G Emberly, Jonathan Miller, Chen Zeng, Ned S Wingreen, and Chao Tang, “Identifying proteins of high designability via surface-exposure patterns,” Proteins: Structure, Function, and Bioinformatics 47, 295–304 (2002). 

48. Henry Cejtin, Jan Edler, Allan Gottlieb, Robert Helling, Hao Li, James Philbin, Ned Wingreen, and Chao Tang, “Fast tree search for enumeration of a lattice model of protein folding,” The Journal of chemical physics 116, 352–359 (2002). 

47. H. Li, C. Tang, and N. Wingreen, “Designing Protein Structures,” in Phase Transitions and Self-Organization in Electronic and Molecular Networks, pp 441-445, edited by J.C. Philips and M.F. Thorpe (Kluwer Academic/Plenum Publishers, 2001). 

46. Robert Helling, Hao Li, Régis Mélin, Jonathan Miller, Ned Wingreen, Chen Zeng, and Chao Tang, “The designability of protein structures,” Journal of Molecular Graphics and Modelling 19, 157–167 (2001). 

45. Morten Kloster, Sergei Maslov, and Chao Tang, “Exact solution of a stochastic directed sandpile model,” Physical Review E 63, 026111 (2001). 

44. Tairan Wang, Jonathan Miller, Ned S Wingreen, Chao Tang, and Ken A Dill, “Symmetry and designability for lattice protein models,” The Journal of Chemical Physics 113, 8329–8336 (2000). 

43. Chao Tang, “Simple models of the protein folding problem,” Physica A: Statistical Mechanics and its Applications 288, 31–48 (2000). 

42. Sergei Maslov, Chao Tang, and Yi-Cheng Zhang, “1/f noise in bak-tang-wiesenfeld models on narrow stripes,” Physical Review Letters 83, 2449 (1999). 

41. Colin Denniston and Chao Tang, “Incommensurability in the frustrated two-dimensional xy model,” Physical Review B 60, 3163 (1999). 

40. Régis Mélin, Hao Li, Ned S Wingreen, and Chao Tang, “Designability, thermodynamic stability, and dynamics in protein folding: a lattice model study,” The Journal of chemical physics 110, 1252–1262 (1999). 

39. Chao Tang, “Fractal dimension of julia set for nonanalytic maps,” Journal of statistical physics 93, 1001–1008 (1998). 

38. Colin Denniston and Chao Tang, “Low-energy excitations and phase transitions in the frustrated two-dimensional xy model,” Physical Review B 58, 6591 (1998). 

37. Hao Li, Chao Tang, and Ned S Wingreen, “Are protein folds atypical?” Proceedings of the National Academy of Sciences 95, 4987–4990 (1998). 

36. Colin Denniston and Chao Tang, “Domain walls and phase transitions in the frustrated two-dimensional xy model,” Physical review letters 79, 451 (1997). 

35. Hao Li, Chao Tang, and Ned S Wingreen, “Nature of driving force for protein folding: a result from analyzing the statistical potential,” Physical review letters 79, 765 (1997). 

34. Chao Tang, Xinsheng Ling, S Bhattacharya, and Paul M Chaikin, “Peak effect in superconductors: Melting of larkin domains,” EPL (Europhysics Letters) 35, 597 (1996). 

33. Hao Li, Robert Helling, Chao Tang, and Ned Wingreen, “Emergence of preferred structures in a simple model of protein folding,” Science 273, 666–669 (1996). 

32. XS Ling, HJ Lezec, MJ Higgins, JS Tsai, J Fujita, H Numata, Y Nakamura, Y Ochiai, Chao Tang, PM Chaikin, et al., “Nature of phase transitions of superconducting wire networks in a magnetic field,” Physical review letters 76, 2989 (1996). 

31. Colin Denniston and Chao Tang, “Phases of josephson junction ladders,” Physical review letters 75, 3930 (1995). 

30. A Alan Middleton and Chao Tang, “Self-organized criticality in nonconserved systems,” Physical review letters 74, 742 (1995). 

29. Chao Tang, “Self-Organized Criticality: Sandpiles and Flux Lines,” in Proceedings of the Second International Conference on Computational Physics, edited by D.-Y. Li, D.-H. Feng, M. Strayer, and T.-Y. Zhang, (International Press, Cambridge, MA, 1995). 

28. Colin Denniston and Chao Tang, “Dynamics of a driven single flux line in superconductors,” Physical Review B 51, 8457 (1995). 

27. Chao Tang, Shechao Feng, and Leonardo Golubovic, “Dynamics and noise spectra of a driven single flux line in superconductors,” Physical review letters 72, 1264 (1994). 

26. Chao Tang and Shoudan Liang, “Patterns and scaling properties in a ballistic deposition model,” Physical review letters 71, 2769 (1993). 

25. Chao Tang, “Soc and the bean critical state,” Physica A: Statistical Mechanics and its Applications 194, 315–320 (1993). 

24. Chao Tang, “Earthquakes as a Complex Phenomenon,” in Modeling Complex Phenomena, edited by L. Lam and V. Naroditsky (Springer-Verlag, New York, 1992). 

23. JS Langer and C Tang, “Rupture propagation in a model of an earthquake fault,” Physical review letters 67, 1043 (1991). 

22. Jean M Carlson, James S Langer, Bruce E Shaw, and Chao Tang, “Intrinsic properties of a burridge-knopoff model of an earthquake fault,” Physical Review A 44, 884 (1991). 

21. Per Bak, Kan Chen, and Chao Tang, “A forest-fire model and some thoughts on turbulence,” Physics letters A 147, 297–300 (1990). 

20. Chao Tang, “Self-Organized Critical Phenomena,” in Scaling in Disordered Materials: Fractal Structure and Dynamics, edited by J.P. Stokes, M.O. Robbins, and T.A. Witten (Materials Research Society, 1990). 

19. C. Tang, S. Alexander, and R. Bruinsma, “Scaling Theory for the Growth of Amorphous Films,” Phys. Rev. Lett. 64, 772 (1990). 

18. Chao Tang, Hiizu Nakanishi, and JS Langer, “Droplet model for autocorrelation functions in an ising ferromagnet,” Physical Review A 40, 995 (1989). 

17. Kurt Wiesenfeld, Chao Tang, and Per Bak, “A physicist’s sandbox,” Journal of statistical physics 54, 1441–1458 (1989). 

16. Kurt Wiesenfeld, Chao Tang, and Per Bak, “A Physicist's Sandbox,” J. Stat. Mech. 54, 1441 (1989). 

15. Per Bak and Chao Tang, “Self-Organized Criticality,” in Physics News in 1988, Physics Today January, S-27 (1989). 

14. Per Bak, Chao Tang, and Kurt Wiesenfeld, “Are earthquakes, fractals, and 1/f noise self-organized critical phenomena?” in Cooperative Dynamics in Complex Physical Systems (Springer, 1988) pp. 274–279. 

13. Per Bak, Chao Tang, and Kurt Wiesenfeld, “Scale invariant spatial and temporal fluctuations in complex systems,” in Random fluctuations and pattern growth: Experiments and models (Springer, 1988) pp. 329–335. 

12. Per Bak, Chao Tang, and Kurt Wiesenfeld, “Self-Organized Critical Phenomena,” in Directions in Chaos, vol. 2, edited by Hao Bai-Lin (World Scientific, Singapore, 1988). 

11. Chao Tang and Per Bak, “Mean field theory of self-organized critical phenomena,” Journal of Statistical Physics 51, 797–802 (1988). 

10. Chao Tang and Per Bak, “Critical exponents and scaling relations for self-organized critical phenomena,” Physical Review Letters 60, 2347 (1988). 

9. Per Bak, Chao Tang, and Kurt Wiesenfeld, “Self-organized criticality,” Physical review A 38, 364 (1988). 

8. Per Bak, Chao Tang, and Kurt Wiesenfeld, “Self-organized criticality: An explanation of the 1/f noise.” Physical review letters 59, 381–384 (1987). 

7. Chao Tang, Kurt Wiesenfeld, Per Bak, Susan Coppersmith, and Peter Littlewood, “Phase organization,” Physical review letters 58, 1161 (1987). 

6. Mahito Kohmoto, Bill Sutherland, and Chao Tang, “Critical wave functions and a cantor-set spectrum of a one-dimensional quasicrystal model,” Physical Review B 35, 1020 (1987). 

5. Chao Tang and Mahito Kohmoto, “Global scaling properties of the spectrum for a quasiperiodic schrödinger equation,” Physical Review B 34, 2041 (1986). 

4. David Bensimon, Leo P Kadanoff, Shoudan Liang, Boris I Shraiman, and Chao Tang, “Viscous flows in two dimensions,” Reviews of Modern Physics 58, 977 (1986). 

3. Chao Tang, “Diffusion-limited aggregation and the saffman-taylor problem,” Physical Review A 31, 1977 (1985). 

2. Leo P Kadanoff and Chao Tang, “Escape from strange repellers,” Proceedings of the National Academy of Sciences 81, 1276–1279 (1984). 

1. Mahito Kohmoto, Leo P Kadanoff, and Chao Tang, “Localization problem in one dimension: Mapping and escape,” Physical Review Letters 50, 1870 (1983). 


研究领域

研究方向总概 

我们应用和发展定量的方法和工具,有机地结合理论、计算和实验来提出和解决关键生物学问题。通过对生物系统的定量的交叉的研究,来发现生物世界中的基本定量规律及普适性原理。目前研究方向主要集中在细胞和调控网络层次,具体包括:细胞周期调控中的系统设计原理,细胞是怎么及如何做各种决定的;生物网络中的功能与拓扑结构的关系;发育及细胞分化的数学模型;信息论在生物系统中的应用;基于网络结构的复杂疾病机理等。 

super%20spider[1].gif

细胞周期调控中的系统设计原理 

真核生物的细胞周期在进化上高度保守,其功能异常是癌症的一大标志。细胞的增殖和分裂是一个复杂的过程,包括了一系列不同事件之间的转换 。我们试图理解细胞周期中的转换开关如何保证可控、可靠和果断的切换,以及扰动/突变对这个系统影响。我们使用模式生物芽殖和裂殖酵母,结合数学建模,酵母遗传学工具,时序荧光显微镜,单细胞分析以及微流芯片技术来研究这些问题。

research-cell[1].jpg

生物网络中的功能与拓扑结构的关系 

生物网络的功能与其拓扑结构紧密相连,理解二者的对应关系,可以建立一个理论框架,从功能上界定与解释复杂的生物网络,并能为网络设计提供指南。目前,我们利用计算模拟的方法来研究小型网络模块的功能-拓扑关系。例如针对生化网络的适应性,我们确定出所有可能具有适应性的网络结构,发现在众多生化网络中,只有两种核心网络结构模式可以实现完全的适应功能。最近我们将计算与合成生物学方法结合,发现并实验验证了具有细胞极化功能的核心网络结构。

motif2[1].jpg

细胞命运的决定及转化 

单细胞生物在内外环境变化时要做各种决定,选择不同的命运形态。多细胞生物在发育过程中细胞不断分化。而在干细胞的研究与应用中,希望对细胞重编程的各种可能性进行探索。我们针对这些问题建立数学模型及理论框架,与实验结合,来理解它们做决定的策略、机理、信息处理、其中的定量规律及一些共性原理。

zhiyuan-cell[1].jpg

论文成果

暂无内容

专利

暂无内容

著作成果

暂无内容

科研项目

暂无内容