Contact Information:

ZipCode :

PostalAddress :

OfficePhone :

Email :


Wenjun Ma

+

Academic Title:国家重点研发计划课题负责人

Degree:Doctoral degree

Status:Employed

School/Department:重离子物理研究所

Scientific Research

Current position: Home / Scientific Research

Paper publication

  • Paper Publications


    2021
    Super-Heavy Ions   Acceleration Driven by Ultrashort Laser Pulses at Ultrahigh Intensity, P.   Wang, Z. Gong, S.G. Lee, Y. Shou, Y. Geng, C. Jeon, I. Kim, H. .Lee, J.Yoon,   J.Sung, S. K. Lee, D. Kong, J.Liu, Z. Mei, Z. Cao, Z. Pan, I. W. Choi*, X.   Yan*, C. H. Nam*, W. Ma*, Physical Review X, 11, 021049 (2021)
    Fabrication of   large-area uniform carbon nanotube foams as near-critical-density targets for   laser-plasma experiments,P. Wang, G. Qi, Z. Pan, D. Kong, Y. Shou, J. Liu, Z.   Cao, Z. Mei, S. Xu, Z. Liu, S. Chen, Y. Gao, J. Zhao, W. Ma* , High Power   Laser Science and Engineering (in publication)
    Ultra-high dose rate FLASH irradiation   induced radio-resistance of normal fibroblast cells can be enhanced by   hypoxia and mitochondrial dysfunction resulting from loss of cytochrome c, J.   Han, Z. Mei, C. Lu, J. Qian, X. Sun, Y. Liang, Z. Pan, D. Kong, S. Xu, Z.   Liu, Y. Gao, G. Qi, Y. Shou, S. Chen, Z. Cao, Y. Zhao, C. Lin, Y. Zhao, Y.   Geng, J. Chen, X. Yan*, W. Ma*, G. Yang*, Cell and Developmental Biology,   9,672929 (2021)
    Association of cancer stem cell   radio-resistance under ultra-high dose rate FLASH irradiation with   lysosome-mediated autophagy, G. Yang*, C. Lu, Z. Mei, X. Sun, J. Han, J.   Qian, Y. Liang, Z. Pan, D. Kong, S. Xu, Z. Liu, Y. Gao, G. Qi, Y. Shou, S.   Chen, Z. Cao, Y. Zhao, C. Lin, Y. Zhao, Y. Geng, W. Ma*, X. Yan*, Cell and   Developmental Biology, 9,672693(2021)
    Cascaded generation of isolated sub-10   attosecond half-cycle pulses, Shou, Y., Hu, R., Gong, Z., Yu, J., Chen, J.E.,   Mourou, G., Yan, X., Ma, W., (2021) New Journal of Physics, 23 (5)
    Experimental progress of laser-driven   high-energy proton acceleration and new acceleration schemes   [激光加速高能质子实验研究进展及新加速方案], Ma, W.-J., Liu, Z.-P., Wang, P.-J., Zhao, J.-R., Yan,   X.-Q., (2021) Wuli Xuebao/Acta Physica Sinica, 70 (8)
    High-efficiency water-window x-ray   generation from nanowire array targets irradiated with femtosecond laser   pulses, SHOU Y., KONG D., WANG P., MEI Z., CAO Z., PAN Z., LI Y., XU S., QI   G., CHEN S., ZHAO J., ZHAO Y., FU C., LUO W., ZHANG G., YAN X., MA W., (2021)   Optics Express, 29(4), pp.5427-5436.
    Measurements of D–D fusion neutrons   generated in nanowire array laser plasma using Timepix3 detector, Rubovič P.,   Bonasera A., Burian P., Cao Z., Fu C., Kong D., Lan H., Lou Y., Luo W., Lv   C., Ma Y., Ma W., Ma Z., Meduna L., Mei Z., Mora Y., Pan Z., Shou Y., Sýkora   R., Veselský M., Wang P., Wang W., Yan X., Zhang G., Zhao J., Zhao Y.,   Žemlička J. (2021) Nuclear Instruments and Methods in Physics Research,   Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,   985.
    2020
    Demonstration of tailored energy   deposition in a laser proton accelerator, Zhu J.G., Wu M.J., Zhu K., Geng   Y.X., Liao Q., Li D.Y., Yang T., Easton M.J., Li C.C., Xu X.H., Shou Y.R., Yu   J.Q., Gong Z., Zhao Y.Y., Wang P.J., Wang D.H., Tao L., Chen C.E., Ma W.J.,   Lu H.Y., Tajima T., Mourou G., Lin C., Yan X.Q., (2020) Physical Review   Accelerators and Beams, 23(12).
    Proton beams from intense laser-solid   interaction: Effects of the target materials, Geng Y.X., Wu D., Yu W., Sheng   Z.M., Fritzsche S., Liao Q., Wu M.J., Xu X.H., Li D.Y., Ma W.J., Lu H.Y.,   Zhao Y.Y., He X.T., Chen J.E., Lin C., Yan X.Q., (2020) Matter and Radiation   at Extremes, 5(6).
    Laser-driven ion acceleration:   development and potential applications [激光离子加速研究与应用展望], Wu X., Shou Y., Gong   Z., Zhao Y., Zhu K., Yang G., Lu H., Lin C., Ma W., Chen J., Yan X., (2020)   Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 32(9).
    Proton sheet crossing in thin   relativistic plasma irradiated by a femtosecond petawatt laser pulse, Gong   Z., Shou Y., Tang Y., Hu R., Yu J., Ma W., Lin C., Yan X., (2020) Physical   Review E, 102 (1).
    Emittance measurement along transport   beam line for laser driven protons, Wu, M.J., Li, D.Y., Zhu, J.G., Yang,   T., Hu, X.Y., Geng, Y.X., Zhu, K., Easton, M.J., Zhao, Y.Y., Zhang, A.L., Lu,   H.Y., Ma, W.J., Lin, C*., Yan, X.Q*., (2020) Physical Review Accelerators and   Beams, 23 (3) .
    Collection and focusing of laser   accelerated proton beam by an electromagnetic quadrupole triplet   lens, Wu, M., Zhu, J., Li, D., Yang, T., Liao, Q., Geng, Y., Xu, X., Li,   C., Shou, Y., Zhao, Y., Lu, Y., Lu, H., Ma, W., Lin, C., Zhu, K., Yan, X.,   (2020) Nuclear Instruments and Methods in Physics Research, Section A:   Accelerators, Spectrometers, Detectors and Associated Equipment, 955 .
    2019
    Experimental demonstration of a laser   proton accelerator with accurate beam control through image-relaying   transport, Zhu, J.G., Wu, M.J., Liao, Q., Geng, Y.X., Zhu, K., Li, C.C., Xu,   X.H., Li, D.Y., Shou, Y.R., Yang, T., Wang, P.J., Wang, D.H., Wang, J.J.,   Chen, C.E., He, X.T., Zhao, Y.Y., Ma, W.J., Lu, H.Y., Tajima, T., Lin, C.,   Yan, X.Q., (2019) Physical Review Accelerators and Beams, 22 (6) .
    Automated positioning of transparent   targets using defocusing method in a laser proton accelerator, Shou, Y.,   Wang, D., Wang, P., Liu, J., Cao, Z., Mei, Z., Geng, Y., Zhu, J., Liao, Q.,   Zhao, Y., Zhu, K., Lin, C., Lu, H., Ma, W.*, Yan, X.*, (2019) Nuclear   Instruments and Methods in Physics Research, Section A: Accelerators,   Spectrometers, Detectors and Associated Equipment, 927, pp. 236-239.
    Target fabrication for laser-ion   acceleration research at the Technological Laboratory of the LMU Munich,   Szerypo, J., Ma, W., Bothmann, G., Hahner, D., Haug, M., Hilz, P., Kreuzer,   C., Lange, R., Seuferling, S., Speicher, M., Stehr, F., Stork, S., Thirolf,   P.G., Schreiber, J., Wirth, H.-F., (2019) Matter and Radiation at Extremes, 4   (3) .
    Generation of bright γ-ray/hard x-ray   flash with intense femtosecond pulses and double-layer targets, Liu, J., Yu,   J.*, Shou, Y., Wang, D., Hu, R., Tang, Y., Wang, P., Cao, Z., Mei, Z., Lin,   C., Lu, H., Zhao, Y., Zhu, K., Yan, X., Ma, W*., (2019) Physics of Plasmas,   26 (3).
    Detection and analysis of laser driven   proton beams by calibrated Gafchromic HD-V2 and MD-V3 radiochromic   films, Xu, X.H., Liao, Q., Wu, M.J., Geng, Y.X., Li, D.Y., Zhu, J.G.,   Li, C.C., Hu, R.H., Shou, Y.R., Chen, Y.H., Lu, H.Y., Ma, W.J., Zhao, Y.Y.,   Zhu, K., Lin, C.*, Yan, X.Q.*, (2019) Review of Scientific Instruments, 90   (3) .
    Laser Acceleration of Highly Energetic   Carbon Ions Using a Double-Layer Target Composed of Slightly Underdense   Plasma and Ultrathin Foil, Ma, W.J.*, Kim, I.J., Yu, J.Q., Choi, I.W., Singh,   P.K., Lee, H.W., Sung, J.H., Lee, S.K., Lin, C., Liao, Q., Zhu, J.G., Lu,   H.Y., Liu, B., Wang, H.Y., Xu, R.F., He, X.T., Chen, J.E., Zepf, M.,   Schreiber, J., Yan, X.Q.*, Nam, C.H.*, (2019) Physical Review Letters, 122   (1) .
    Creation of Electron-Positron Pairs in   Photon-Photon Collisions Driven by 10-PW Laser Pulses, Yu, J.Q., Lu, H.Y.*,   Takahashi, T., Hu, R.H., Gong, Z., Ma, W.J., Huang, Y.S., Chen, C.E., Yan,   X.Q.*, (2019) Physical Review Letters, 122 (1) .
    2018
    Enhanced proton acceleration from an   ultrathin target irradiated by laser pulses with plateau ASE, Wang, D., Shou,   Y., Wang, P., Liu, J., Li, C., Gong, Z., Hu, R., Ma, W.*, Yan, X*., (2018)   Scientific Reports, 8 (1).
    Single-shot laser-induced damage   threshold of free-standing nanometer-thin diamond-like carbon foils, Wang,   D., Ma, W.*, Bin, J., Alinger, K., Shou, Y., Wang, P., Liu, J., Zhu, J., Cao,   Z., Mei, Z., Wang, H., Lu, H., Lin, C., Zhao, Y., Schreiber, J., Yan, X.*,   (2018) Nuclear Instruments and Methods in Physics Research, Section B: Beam   Interactions with Materials and Atoms, 436, pp. 18-21.
    Shaping of ion energy spectrum due to   ionization in ion acceleration driven by an ultra-short pulse laser, Yu,   J.Q., Ma, W.J., Lin, C., Yan, X.Q.*, (2018) Plasma Physics and Controlled   Fusion, 60 (11) .
    Enhanced laser proton acceleration by   target ablation on a femtosecond laser system, Liao, Q., Wu, M.J., Gong,   Z., Geng, Y.X., Xu, X.H., Li, D.Y., Shou, Y.R., Zhu, J.G., Li, C.C., Yang,   M., Li, T.S., Lu, H.Y., Ma, W.J., Zhao, Y.Y., Lin, C.*, Yan, X.Q.*, (2018)   Physics of Plasmas, 25 (6) .
    The generation of collimated γ-ray pulse   from the interaction between 10 PW laser and a narrow tube target, Yu,   J.Q., Hu, R.H., Gong, Z., Ting, A., Najmudin, Z., Wu, D., Lu, H.Y., Ma,   W.J.*, Yan, X.Q.*, (2018) Applied Physics Letters, 112 (20) .
    Ring-like spatial distribution of laser   accelerated protons in the ultra-high-contrast TNSA-regime, Becker, G.A.,   Tietze, S., Keppler, S., Reisl?hner, J., Bin, J.H., Bock, L., Brack, F.-E.,   Hein, J., Hellwing, M., Hilz, P., Hornung, M., Kessler, A., Kraft, S.D.,   Kuschel, S., Liebetrau, H., Ma, W., Polz, J., Schlenvoigt, H.-P., Schorcht,   F., Schwab, M.B., Seidel, A., Zeil, K., Schramm, U., Zepf, M., Schreiber, J.,   Rykovanov, S., Kaluza, M.C.*, (2018) Plasma Physics and Controlled Fusion, 60   (5).
    2017
    Distribution uniformity of   laser-accelerated proton beams, Zhu, J.-G., Zhu, K., Tao, L., Xu, X.-H., Lin,   C., Ma, W.-J., Lu, H.-Y., Zhao, Y.-Y., Lu, Y.-R., Chen, J.-E., Yan, X.-Q.,   (2017) Chinese Physics C, 41 (9) .
    High-Yield High-Efficiency Positron   Generation in High-Z Metal Targets Irradiated by Laser Produced Electrons   from Near-Critical Density Plasmas, Song, W., Hu, R.-H., Shou, Y.-R., Gong,   Z., Yu, J.-Q., Lin, C., Ma, W.-J., Zhao, Y.-Y., Lu, H.-Y.*, Yan, X.-Q.*,   (2017) Chinese Physics Letters, 34 (8) .
    An analytical reconstruction model of the   spread-out Bragg peak using laser-accelerated proton beams, Tao, L.,   Zhu, K.*, Zhu, J., Xu, X., Lin, C., Ma, W., Lu, H., Zhao, Y., Lu, Y., Chen,   J.-E., Yan, X.*, (2017) Physics in Medicine and Biology, 62 (13), pp.   5200-5212. 
    Beam Line Design of Compact Laser Plasma   Accelerator, Zhu, J.-G., Zhu, K.*, Tao, L., Geng, Y.-X., Lin, C., Ma, W.-J.,   Lu, H.-Y., Zhao, Y.-Y., Lu, Y.-R., Chen, J.-E., Yan, X.-Q.*, (2017) Chinese   Physics Letters, 34 (5) .
    An automated, 0.5 Hz nano-foil target   positioning system for intense laser plasma experiments, Gao, Y., Bin, J.,   Haffa, D., Kreuzer, C., Hartmann, J., Speicher, M., Lindner, F.H., Ostermayr,   T.M., Hilz, P., R?sch, T.F., Lehrack, S., Englbrecht, F., Seuferling, S.,   Gilljohann, M., DIng, H., Ma, W., Parodi, K., Schreiber, J.*, (2017) High   Power Laser Science and Engineering, 5 .
    2016
    Stable radiation pressure acceleration of   ions by suppressing transverse Rayleigh-Taylor instability with multiple   Gaussian pulses, Zhou, M.L., Liu, B., Hu, R.H., Shou, Y.R., Lin, C., Lu,   H.Y., Lu, Y.R., Gu, Y.Q., Ma, W.J.*, Yan, X.Q.*, (2016) Physics of Plasmas,   23 (8).
    Ion wave breaking acceleration, Liu, B.,   Meyer-Ter-Vehn, J., Bamberg, K.-U., Ma, W.J., Liu, J., He, X.T., Yan, X.Q.,   Ruhl, H.*, (2016) Physical Review Accelerators and Beams, 19 (7).
    Using Target Ablation for Ion Beam   Quality Improvement, Zhao, S., Lin, C., Chen, J.-E., Ma, W.-J., Wang, J.-J.,   Yan, X.-Q.*, (2016) Chinese Physics Letters, 33 (3) .
    Recent progress of proton acceleration at   Peking University, Liao, Q., Lin, C., Ma, W., Geng, Y., Lu, H., Zhao, Y.,   Yan, X.*, (2016) IPAC 2016 - Proceedings of the 7th International Particle   Accelerator Conference, pp. 1588-1591.
    CLAPA proton beam line in Peking   University, Zhu, J.G., Zhu, K., Tao, L., Lin, C., Ma, W.J., Lu, H.Y., Chen,   J.E., Yan, X.Q.*, (2016) IPAC 2016 - Proceedings of the 7th International   Particle Accelerator Conference, pp. 1592-1594.
    2010-2015
    Ion Acceleration Using Relativistic Pulse   Shaping in Near-Critical-Density Plasmas, Bin, J.H., Ma, W.J.*, Wang, H.Y.,   Streeter, M.J.V., Kreuzer, C., Kiefer, D., Yeung, M., Cousens, S., Foster,   P.S., Dromey, B., Yan, X.Q., Ramis, R., Meyer-ter-Vehn, J., Zepf, M.*,   Schreiber, J.*, (2015) Physical Review Letters, 115 (6) .
    Bright subcycle extreme ultraviolet   bursts from a single dense relativistic electron sheet, Ma, W.J.*, Bin, J.H.,   Wang, H.Y., Yeung, M., Kreuzer, C., Streeter, M., Foster, P.S., Cousens, S.,   Kiefer, D., Dromey, B., Yan, X.Q., Meyer-Ter-Vehn, J., Zepf, M.*, Schreiber,   J.*, (2014) Physical Review Letters, 113 (23).
    Laser-driven three-stage heavy-ion   acceleration from relativistic laser-plasma interaction, Wang, H.Y., Lin, C.,   Liu, B., Sheng, Z.M., Lu, H.Y., Ma, W.J., Bin, J.H., Schreiber, J., He, X.T.,   Chen, J.E., Zepf, M., Yan, X.Q.*, (2014) Physical Review E - Statistical,   Nonlinear, and Soft Matter Physics, 89 (1) .
    Dependence of laser-driven coherent   synchrotron emission efficiency on pulse ellipticity and implications for   polarization gating, Yeung, M., Dromey, B., Cousens, S., Dzelzainis, T.,   Kiefer, D., Schreiber, J., Bin, J.H., Ma, W., Kreuzer, C., Meyer-Ter-Vehn,   J., Streeter, M.J.V., Foster, P.S., Rykovanov, S., Zepf, M.*, (2013) Physical   Review Letters, 112 (12).
    Single shot cell irradiations with   laser-driven protons, Humble, N., Allinger, K., Bin, J., Drexler, G.A.,   Friedl, A., Hilz, P., Kiefer, D., Ma, W., Reinhardt, S., Schmid, T.E.,   Zlobinskaya, O., Schreiber, J., Wilkens, J.J., (2013) AIP Conference Proceedings,   1546, pp. 84-86.
    Low-temperature, directly depositing   individual single-walled carbon nanotubes for fabrication of suspended   nanotube devices, Zhao, Y., Liu, Z., Liu, G., Zheng, K., Hu, L., Ma, W., Ren,   Y., Gu, C., Xie, S., Sun, L., (2013) Journal of Physical Chemistry C, 117   (31), pp. 16256-16262.
    Divergence of laser-driven ion beams from   nanometer thick foils, Bin, J.H., Ma, W.J.*, Allinger, K., Wang, H.Y.,   Kiefer, D., Reinhardt, S., Hilz, P., Khrennikov, K., Karsch, S., Yan, X.Q.,   Krausz, F., Tajima, T., Habs, D., Schreiber, J., (2013) Proceedings of SPIE -   The International Society for Optical Engineering, 8779 .
    On the small divergence of laser-driven   ion beams from nanometer thick foils, Bin, J.H., Ma, W.J.*, Allinger, K.,   Wang, H.Y., Kiefer, D., Reinhardt, S., Hilz, P., Khrennikov, K., Karsch, S.,   Yan, X.Q., Krausz, F., Tajima, T., Habs, D., Schreiber, J.*, (2013) Physics   of Plasmas, 20 (7) .
    A repeated halving approach to fabricate   ultrathin single-walled carbon nanotube films for transparent   supercapacitors, Niu, Z., Zhou, W., Chen, J., Feng, G., Li, H., Hu, Y.,   Ma, W., Dong, H., Li, J., Xie, S., (2013) Small, 9 (4), pp. 518-524.
    Effect of supra-molecular microstructures   on the adhesion of SWCNT fiber/iPP interface, Gao, Y., Xie, M., Liu, L., Li,   J., Kuang, J., Ma, W., Zhou, W., Xie, S., Zhang, Z., (2013) Polymer, 54 (1),   pp. 456-463.
    Efficient and stable proton acceleration   by irradiating a two-layer target with a linearly polarized laser pulse,   Wang, H.Y., Yan, X.Q.*, Chen, J.E., He, X.T., Ma, W.J.*, Bin, J.H.,   Schreiber, J., Tajima, T., Habs, D., (2013) Physics of Plasmas, 20 (1) .
    High-strength laminated copper matrix   nanocomposites developed from a singlea walled carbon nanotube film with   continuous reticulate architecture, Niu, Z., Ma, W., Li, J., Dong, H.,   Ren, Y., Zhao, D., Zhou, W., Xie, S., (2012) Advanced Functional Materials,   22 (24), pp. 5209-5215. 
    A laser-driven nanosecond proton source   for radiobiological studies, Bin, J., Allinger, K., Assmann, W., Dollinger,   G., Drexler, G.A., Friedl, A.A., Habs, D., Hilz, P., Hoerlein, R., Humble,   N., Karsch, S., Khrennikov, K., Kiefer, D., Krausz, F., Ma, W., Michalski,   D., Molls, M., Raith, S., Reinhardt, S., R?per, B., Schmid, T.E., Tajima, T.,   Wenz, J., Zlobinskaya, O., Schreiber, J.*, Wilkens, J.J., (2012) Applied   Physics Letters, 101 (24) .
    Carbon nanotube film synthesized from   ethanol and its oxidation behavior in air, Ren, Y., Ma, W.-J., Zeng,   Q.-S., Li, J.-Z., Dong, H.-B., Zhou, W.-Y.*, (2012) Chinese Physics B, 21   (9).
    Electromagnetic interference shielding of   single-wall carbon nanotube buckypaper/epoxy composites, Liu, G., Ma,   W.-J., An, X.-F., Xie, S.-S., Yi, X.-S.*, (2012) Xinxing Tan Cailiao/New   Carbon Materials, 27 (2), pp. 100-104.
    Freestanding single-walled carbon   nanotube bundle networks: Fabrication, properties and composites, Zhou, W.,   Ma, W., Niu, Z., Song, L., Xie, S.*, (2012) Chinese Science Bulletin, 57   (2-3), pp. 205-224.
    Fission-fusion: A new reaction mechanism   for nuclear astrophysics based on laser-ion acceleration, Thirolf, P.G.,   Habs, D., Gross, M., Allinger, K., Bin, J., Henig, A., Kiefer, D., Ma, W.,   Schreiber, J., (2011) AIP Conference Proceedings, 1377, pp. 88-95.
    Superfast-response and   ultrahigh-power-density electromechanical actuators based on hierarchal   carbon nanotube electrodes and chitosan, Li, J.#, Ma, W.#, Song, L., Niu, Z.,   Cai, L., Zeng, Q., Zhang, X., Dong, H., Zhao, D., Zhou, W., Xie, S.*, (2011)   Nano Letters, 11 (11), pp. 4636-4641.
    Preparation of self-supporting   diamond-like carbon nanofoils with thickness less than 5 nm for laser-driven   ion acceleration, Ma, W., Liechtenstein, V.Kh., Szerypo, J., Jung, D.,   Hilz, P., Hegelich, B.M., Maier, H.J., Schreiber, J., Habs, D.*, (2011)   Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,   Spectrometers, Detectors and Associated Equipment, 655 (1), pp. 53-56.
    High performance, freestanding and   superthin carbon nanotube/epoxy nanocomposite films, Li, J., Gao, Y., Ma, W.,   Liu, L., Zhang, Z., Niu, Z., Ren, Y., Zhang, X., Zeng, Q., Dong, H., Zhao,   D., Cai, L., Zhou, W., Xie, S.*, (2011) Nanoscale, 3 (9), pp. 3731-3736.
    Macroscopic carbon nanotube assemblies:   Preparation, properties, and potential applications, Liu, L., Ma, W., Zhang,   Z.*, (2011) Small, 7 (11), pp. 1504-1520.
    Introducing the fission-fusion reaction   process: Using a laser-accelerated Th beam to produce neutron-rich nuclei   towards the N=126 waiting point of the r-process, Habs, D.*, Thirolf,   P.G., Gross, M., Allinger, K., Bin, J., Henig, A., Kiefer, D., Ma, W.,   Schreiber, J., (2011) Applied Physics B: Lasers and Optics, 103 (2), pp.   471-484.
    Compact-designed supercapacitors using   free-standing single-walled carbon nanotube films, Niu, Z., Zhou, W., Chen,   J., Feng, G., Li, H., Ma, W., Li, J., Dong, H., Ren, Y., Zhao, D., Xie, S.*,   (2011) Energy and Environmental Science, 4 (4), pp. 1440-1446.
    Laser particle acceleration: Status and   perspectives for nuclear physics, Thirolf, P.G., Habs, D., Gross, M.,   Allinger, K., Bin, J., Henig, A., Kiefer, D., Ma, W., Schreiber, J.*, (2011)   Acta Physica Polonica B, 42 (3-4), pp. 843-852.
    Fabrication and electrochemical   properties of free-standing single-walled carbon nanotube film   electrodes, Niu, Z.-Q., Ma, W.-J., Dong, H.-B., Li, J.-Z., Zhou, W.-Y.,   (2011) Chinese Physics B, 20 (2).
    Laser ion acceleration: Status and   perspectives for fusion, Thirolf, P.G., Habs, D., Gross, M., Allinger,   K., Bin, J., Henig, A., Kiefer, D., Ma, W., Schreiber, J., (2011) EPJ Web of   Conferences, 17.
    Axial compression of hierarchically   structured carbon nanotube fiber embedded in epoxy, Gao, Y., Li, J., Liu, L.,   Ma, W., Zhou, W., Xie, S., Zhang, Z., (2010) Advanced Functional Materials,   20 (21), pp. 3797-3803.
    Template synthesis and growth mechanism   of metal nanowire/carbon nanotube heterojunctions, Niu, Z., Zhou, W., Ma, W.,   Dong, H., Li, J., Zhang, X., Zeng, Q., Xie, S., (2010) Journal of Nanoscience   and Nanotechnology, 10 (11), pp. 7583-7586.
    Large third-order optical nonlinearity in   directly synthesized single-walled carbon nanotube films, Ma, W., Feng, B.,   Ren, Y., Zeng, Q., Niu, Z., Li, J., Zhang, X., Dong, H., Zhou, W., Xi, S.,   (2010) Journal of Nanoscience and Nanotechnology, 10 (11), pp. 7333-7335.
    Autofocused, enhanced proton acceleration   from a nanometer-scale bulged foil, Wang, H.Y., Yan, X.Q., Lu, Y.R., Zheng,   F.L., Guo, Z.Y., Ma, W.J., He, X.T., Tajima, T., Habs, D., Chen, J.E., (2010)   Physics of Plasmas, 17 (11), .
    Synthesis and physical properties of   macroscale carbon nanotube architectures, Xie, S.S.*, Ma, W.J., Zhou, W.Y.*,   (2010) INEC 2010 - 2010 3rd International Nanoelectronics Conference,   Proceedings, p. 31.
    ZnS/Zn2SnO4 biaxial nanowire   heterostructures, Shen, J., Ge, B., Dong, H., Zhang, N., Luo, S., Ma, W.,   Duan, X., Xie, S., Zhou, W.*, (2010) Physica E: Low-Dimensional Systems and   Nanostructures, 42 (5), pp. 1435-1440. 
    2005-2009 (as the first author)
    High-strength composite fibers: Realizing   true potential of carbon nanotubes in polymer matrix through continuous   reticulate architecture and molecular level couplings, Ma, W., Liu, L.,   Zhang, Z., Yang, R., Liu, G., Zhang, T., An, X., Yi, X., Ren, Y., Niu, Z.,   Li, J., Dong, H., Zhou, W., Ajayan, P.M., Xie, S.*, (2009) Nano Letters, 9   (8), pp. 2855-2861.
    Monitoring a micromechanical process in   macroscale carbon nanotube films and fibers, Ma, W., Liu, L., Yang, R.,   Zhang, T., Zhang, Z., Song, L., Ren, Y., Shen, J., Niu, Z., Zhou, W., Xie,   S.*, (2009) Advanced Materials, 21 (5), pp. 603-608.
    Directly synthesized strong, highly   conducting, transparent single-walled carbon nanotube films, Ma, W.,   Song, L., Yang, R., Zhang, T., Zhao, Y., Sun, L., Ren, Y., Liu, D., Liu, L.,   Shen, J., Zhang, Z., Xiang, Y., Zhou, W., Xie, S., (2007) Nano Letters, 7   (8), pp. 2307-2311. 


Research Field

  • Laser acceleration physics and technology


    1. Experimental research and application of laser ion acceleration

    The laser acceleration mechanism breaks through the bottleneck of the material ionization breakdown threshold in traditional accelerators and greatly increases the acceleration gradient to MeV/μm. Laser-accelerated ion beam is characterized of extremely small source size, short duration, and large energy spectrum width. It can be applied to inertial confinement fusion fast ignition, ion probe for magnetic confinement fusion, ionography, proton ultrasound, ion implantation to traditional accelerators, and cancer radiotherapy, etc. So far, theories predict a variety of laser acceleration schemes for ion beams such as radiation pressure acceleration, electrostatic shockwave acceleration, high-efficiency cascade acceleration, etc. However, there are many problems remain to be solved urgently such as how to verify these scheme experimentally and use these schemes to produce high-energy and high-quality ion beams. At the same time, novel applications in chemistry, materials science, and biomedicine based on the unique physical properties of laser-driven ion beams are also very promising research directions.


    2. Novel light source driven by ultra-intense laser

    When the ultra-intense laser interacts with plasma, it can accelerate electrons to almost the speed of light at the femtosecond and micron-meters space-time scale, driving the collective motion of a large number of electrons. In this process, ultra-high-brightness radiation of a band from terahertz to gamma is generated. Compared with traditional large light sources, these novel light sources have the advantages of small source size, high transient brightness, compact equipment, and high flexibility. In recent years, research on this type of novel light source has become a hotspot in the fields of laser plasma physics and novel accelerators. Among them, the use of PW-level high-power lasers to generate high-brightness gamma radiation has recently achieved many important breakthroughs. Theoretical studies have shown that near-critical density plasma can convert laser energy into high-energy photon most efficiently. Research on novel light sources based on near-critical density plasma has a wide space.


    3. Laser acceleration and laser nuclear physics research based on nano-targets

    New target materials play an important role in enhancing laser acceleration and understanding the physical process of laser acceleration. Among them, the nano-target has a unique scale effect, which has a strong influence on the laser acceleration process. For example, nanowire targets can promote the coupling of laser and plasma, enhance ion acceleration, and produce high-temperature and high-density systems. In the extreme environment formed by the laser and the nano-target, the study of the nuclear reaction cross section in the plasma environment can be carried out. This will provide new research ideas for laser nuclear physics and nuclear astrophysics.


    4. Key technologies of laser accelerators for medical application

    The use of laser acceleration in the medical field, such as laser proton radiotherapy systems, is expected to reduce the cost and size of cancer treatment devices and benefit a wider range of patients. Difficulties to be overcome include the production of protons above 100 MeV, the development of a repetitive frequency continuous target shooting system, the high-quality and mass preparation of advanced nano-targets, and the comprehensive diagnosis of laser acceleration processes.