北京大学官网北京大学新闻网 English
刘永岗
点赞:
刘永岗
点赞:
论文成果
  1. Wang, Z., Y. Liu*, X. Yin, M. Zhang, J. Zhang, F. Qiao (2023), The Effect of an Exponentially Decaying Upper-ocean Vertical Mixing on the Pacific Tropical Sea Surface Temperature, Physical Oceanography,https://doi.org/10.1175/JPO-D-23-0026.1

  2. Wu, J., Y. Liu* (2023), Response of the Snowball Earth Climate to Orbital Forcing at a High CO2 Level, Journal of Climate, https://doi.org/10.1175/JCLI-D-23- 0041.s1.

  3. Wei, Q., Y. Liu*, Q. Yan, T. Yao, M. Wang, H. Huang, Y. Hu* (2023), The Glacier-climate Interaction over the Tibetan Plateau and its surroundings during the Last Glacial Maximum, Geophysical Research Letters, GRL66172, https://doi.org/10.1029/2023GL103538.

  4. Zhang, S., Y. Hu*, J. Yang, X. Li, W. Kang, J. Zhang, Y. Liu, J. Nie (2023), The Hadley circulation in the Pangea era, Science Bulletin, 68(10), 1060-1068, https://doi.org/10.1016/j.scib.2023.04.021

  5. Wang, R., B. Shen*, X. Lang, B. Wen, R. N. Mitchell, H. Ma, Z. Yin, Y. Peng, Y. Liu, C. Zhou (2023), A Great late Edicaran ice age, National Science Review, 10(8), nwad117, https://doi.org/10.1093/nsr/nwad117.

  6. Zhao, L., Z. Guo, H. Yuan, X. Wang, H. Shen, J. Yang, B. Sun, N. Tan, H. Zhang, Y. Liu, Y. Li, J. Wang, W. Ji, R. Zhu (2023), Dynamic modeling of tectonic carbon processes: state of the art and conceptual workflow, Science China, 66(3), 456-471, https://doi.org/10.1007/s11430-022-1038-5

  7. Han, J., J. Nie*, Y. Hu, W. R. Boos, Y. Liu, J. Yang, S. Yuan, X. Li, J. Guo, J. Lan, Q. Lin, X. Bao, M. Wei, Z. Li, K. Man, Z. Yin (2023), Continental drift shifts tropical rainfall by altering radiation and coean heat transport, Science Advances, 9(10), eadf7209, doi: 10.1126/sciadv.adf7209.

  8. Bao, X., Y. Hu*, C. R., Scotese, X. Li, J. Guo, J. Lan, Q. Lin, S. Yuan, M. Wei, Z. Li, K. Man, Z. Yin, J. Han, J. Zhang, Q. Wei, Y. Liu, J. Yang, J. Nie (2023). Quantifying climate conditions for the formation of coals and evaporites, National Science Review, 10(6), nwad051, https://doi.org/10.1093/nsr/nwad051.

  9. Li, X., Y. Hu*, J. Yang, M. Wei, J. Guo, J. Lan, Q. Lin, S. Yuan, J. Zhang, Q. Wei, Y. Liu, J. Nie, Y. Xia, S. Hu (2023). Climate variations in the past 250 million years and contributing factors, Paleoceanography and Paleoclimatology, 38(2), e2022PA004503. https://doi.org/10.1029/2022PA004503

  10. Liu, P., Y. Liu*, S. Gu, P. Hoffman, S. Li (2023), A Positive Cooling Feedback for the Neoproterozoic Snowball Earth Initiation due to Weakening of Ocean Ventilation, Geophys. Res. Lett., 50(4), e2022GL102020, doi: 10.1029/2022GL102020

  11. Wu, Y., Y. Liu*, W. Zhou, J. Zhang (2022), The Mid-Holocene East Asian Summer Monsoon Simulated by PMIP4-CMIP6 and PMIP3-CMIP5: Model Uncertainty and Its Possible Sources, Gobal and Planetary Change, 219, doi: 10.1016/j.gloplacha.2022.103986

  12. You, Q.*, Z. Jiang*, X. Yue, W. Guo, Y. Liu, J. Cao, W. Li, F. Wu, Z. Cai, H. Zhu, T. Li, Z. Liu, J. He, D. Chen, N. Pepin, P. Zhai (2022), Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C, npj Climate and Atmospheric Science, 5(80), https://doi.org/10.1038/s41612-022-00303-0

  13. Liu, Y., Z. Wang, X. Yin, F. Qiao, M. Zhang, J. Wu (2022), The effect of wave-induced mixing on the climates during the Last Glacial Maximum and Pre-Industrial based on CESM1.2.2 simulations (in Chinese). Advances in Marine Science, 40(4): 800-814, doi: 10.12362/j.issn.1671-6647.20220629001

  14. Wu, S., Z. Liu, J. Du, Y. Liu (2022), Change of Global Ocean Temperature and Decadal Variability under 1.5 °C Warming in FOAM, J. Mar. Sci. Eng., 10, 1231, https://doi.org/10.3390/jmse10091231

  15. Zhao, Z., Y. Liu*, H. Dai (2022), Sea-glacier retreating rate and climate evolution during the marine deglaciation of a snowball Earth, Global and Planetary Changes, 215, 103877, doi: 10.1016/j.gloplacha.2022.103877

  16. Li, X., Y. Hu, J. Guo, J. Lan, Q. Lin, X. Bao, S. Yuan, M. Wei, Z. Li, K. Man, Z. Yin, J. Han, J. Zhang, C. Zhu, Z. Zhao, Y. Liu, J. Yang, J. Nie (2022), A high-resolution climate simulation dataset for the past 540 million years, Scientific Data, 9(371), doi: 10.1038/s41597-022-01490-4 

  17. Zhang, M., Y. Liu*, J. Zhu, Z. Wang, Z. Liu (2022), Impact of Dust on climate and AMOC during the Last Glacial Maximum Simulated by CESM1.2, Geophys. Res. Lett., 49, doi: 10.1029/2021GL096672

  18. Liu, Y., M. Zhang, Q. Lin, P. Liu, Y. Hu (2022), Dust evolution in the deep past and its climate impact (in Chinese). Earth Science Frontiers, 29(5): 285-299, doi: 10.13745/j.esf.sf.2021.9.51 

  19. Zhang, J., Y. Liu, X. Fang, T. Zhang, C. Zhu, and C. Wang (2021). Elevation of the Gangdese Mountains and Their Impacts on Asian Climate During the Late Cretaceous—a Modeling Study. Frontiers in Earth Science, 9, 810931, doi: 10.3389/feart.2021.810931

  20. Zhang, J., Y. Liu, S. Flögel, T. Zhang, C. Wang, and X. Fang (2021), Altitude of the East Asian Coastal Mountains and Their Influence on Asian Climate during Early Late Cretaceous, J Geophys Res – Atmos, 126, doi: 10.1029/2020JD034413

  21. Liu, Y., P. Liu, D. Li, and Y. Hu (2021), Influence of dust on the formation of Neoproterozoic snowball Earth, J Clim, 34: 6673-6689, doi: 10.1175/JCLI-D-20-0803.1

  22. Lang, X., Z. Zhao, H. Ma, K. Huang, S. Li, C. Zhou, S. Xiao, Y. Peng, Y. Liu, W. Tang, and B. Shen (2021), Cracking the superheavy pryrite enigma: possible roles of volatile organosulfur compound emission, National Science Review, 8, doi: 10.1093/nsr/nwab034

  23. Zhang, M., Y. Liu*, J. Zhang, and Q. Wen (2021), AMOC and climate response to dust reduction and greening of Sahara during the Mid-HoloceneJ Clim, 34:4893-4912, doi: 10.1175/JCLI-D-20-0628.1

  24. Zhao, Z., Y. Liu*, W. Li, H. Liu, and K. Man (2021), Climate change of over 20°C induced by continental movement on a synchronously rotating exoplanet, Astrophys J Lett910(L8), 10.3847/2041-8213/abebe6

  25. Cheng, L., Y. Song, Y. Wu, Y. Liu, H. Liu, H. Chang, X. Zong, S. Kang (2021), Drivers for asynchronous patterns of dust accumulation in central and eastern Asia and in Greenland during the Last Glacial Maximum, Geophys Res Lett, 48, doi: 10.1029/2020GL091194

  26. Wu, J., Y. Liu*, Z. Zhao (2021), How should snowball Earth deglaciation start? J Geophys Res – Atmos, 126, doi: 10.1029/2020JD033833. (IF = 3.4)

  27. Liu, X., L. Cong, X. Li, D. Madsen, Y. Wang, Y. Liu, and J. Peng, Climate conditions on the Tibetan Plateau during the last glacial maximum and implications for the survival of Paleolithic foragers, Front. Earth Sci., 26, doi: 10.3389/feart.2020.606051, 2020.

  28. Liu, P., Y. Liu*, Y. Peng, J.-F. Lamarque, M. Wang, and Y. Hu*, Large influence of dust on the Precambrian Climate, Nature Comms., 11, doi:10.1038/s41467-020-18258-2, 2020. (IF = 12.1)

  29. Qu, Y., Y. Liu*, S. Jevrejeva, and L. Jackson, Future sea level rise along the coast of China and adjacent region under 1.5 °C and 2.0 °C global warming, Adv. Clim. Chang. Res., doi:10.1016/j.accre.2020.09.001, 2020 (IF = 4.0; 引用次数 0)

  30. Liu, Y., J. Yang, H. Bao, B. Shen, and Y. Hu (2020), Large equatorial season cycle during Marinoan snowball Earth, Sci. Adv., doi: 10.1126/sciadv.aay2471. (IF = 12.8)

  31. Liu, Y., Y. Wu, Z. Lin, Y. Zhang, J. Zhu, and C. Yi (2020), Simulated impact of the Tibetan glacier expansion on the Eurasian climate and glacial surface mass balance during the last glacial maximum, J. Clim., doi: 10.1175/JCLI-D-19-0763.1. (IF = 4.9)

  32. Liu, Y. (2019), Large true polar wander in a sea level model with application to the Neoproterozoic snowball Earth events, Earth Planet. Sci. Lett., 520, 40-49, doi:10.1016/j.epsl.2019.05.032. (IF = 4.7)

  33. Zhang, J., Y. Liu, X. Fang, C. Wang, and Y. Yang (2019), Large dry-humid fluctuations in Asia during the Late Cretaceous due to the orbital forcing: A modeling study, Palaeogeogr. Palaeoclimatol. Palaeoecol., 553, doi:10.1016/j.palaeo.2019.06.003. (IF = 2.6)

  34. Liu, P., Y. Liu, Y. Hu, J. Yang, and S. A. Pisarevsky (2019), Warm climate in the “Boring Billion” Era, Acta Geologica Sinica, 93 (sup. 1): 40-43. (IF = 1.4)

  35. Wu, Y., Y. Liu*, C. Yi, P. Liu (2019), Impact of Tibetan Glacier Change on the Asian Climate during the Last Glacial Maximum, Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 55, 1, 159-170, doi:10.13209/j.0479-8023.2018.094.

  36. Liu, Y., W. R. Peltier, J. Yang, and Y. Hu (2018), Influence of Surface Topography on the Critical Carbon Dioxide Level Required for the Formation of a Modern Snowball Earth, J. Clim., 10.1175/JCLI-D-17-0821.1(IF = 4.9)

  37. Lang, X., B. Shen, Y. Peng, S. Xiao, C. Zhou, H. Bao, A. J. Kaufman, K. Huang, P. W. Crockford, Y. Liu, W. Tang, and H. Ma. (2018), Transient marine euxinia at the end of the terminal Cryogenian glaciation, Nature Comms., doi: 10.1038/s41467-018-05423-x(IF = 11.9)

  38. Liu, Y., R. Hallberg, O. Sergienko, B. L. Samuels, M. Harrison, and M. Oppenheimer (2018a), Climate response to the meltwater runoff from Greenland ice sheet: evolving sensitivity to discharging locations, Clim. Dyn., doi:10.1007/s00382-017-3980-7. (IF = 4.0)

  39. Liu, Y., M. Zhang, Z. Liu, Y. Xia, Y. Huang, Y. Peng, and J. Zhu (2018b), A Possible Role of Dust in Resolving the Holocene Temperature Conundrum, Sci Rep.8(4434), doi:10.1038/s41598-018-22841-5. (IF = 4.3)

  40. Wei, Q., Y. Hu, Y. Liu*, D. N. C. Lin, J. Yang, and A. P. Showman (2018), Young Surface of Pluto’s Sputnik Planitia Caused by Viscous Relaxation, The Astrophysical Journal Letters, 856(L14), doi: 10.3847/2041-8213/aab54f. (IF = 8.4)

  41. Hu, Y. Y., Y. W. Wang, Y. Liu, and J. Yang (2017), Climate and Habitability of Kepler 452b Simulated with a Fully Coupled Atmosphere-Ocean General Circulation Model, Astrophys J Lett835(1), doi:10.3847/2041-8213/aa56c4. (IF = 8.4)

  42. Liu, Y., W. R. Peltier, J. Yang, G. Vettoretti, and Y. W. Wang (2017), Strong effects of tropical ice-sheet coverage and thickness on the hard snowball Earth bifurcation point, Clim Dynam48(11), 3459-3474, doi:10.1007/s00382-016-3278-1. (IF = 4.0)

  43. Yang, J., F. Ding, R. M. Ramirez, W. R. Peltier, Y. Y. Hu, and Y. Liu (2017), Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse, Nat Geosci10(8), 556-560, doi:10.1038/NGEO2994. (IF = 14.5)

  44. Zhang, Y. X., M. X. Wu, D. L. Li, Y. Liu, and S. C. Li (2017), Spatiotemporal Decompositions of Summer Drought in China and Its Teleconnection with Global Sea Surface Temperatures during 1901-2012, J Climate30(16), 6391-6412, doi:10.1175/JCLI-D-16-0405.1. (IF = 4.9)

  45. Wang, Y. W., Y. Liu, F. Tian, J. Yang, F. Ding, L. J. Zhou, and Y. Y. Hu (2016), Effects of Obliquity on the Habitability of Exoplanets around M Dwarfs, Astrophys J Lett823(1), doi:10.3847/2041-8205/823/1/L20. (IF = 8.4)

  46. Yang, J., Y. Liu, Y. Y. Hu, and D. S. Abbot (2014), Water Trapping on Tidally Locked Terrestrial Planets Requires Special Conditions, Astrophys J Lett796(2), doi:10.1088/2041-8205/796/1/L1. (IF = 8.4)

  47. Liu, Y., and W. R. Peltier (2013a), Sea level variations during snowball Earth formation and evolution: 2. The influence of Earth's rotation, J Geophys Res-Sol Ea118, 1-21, doi:10.1002/jgrb.50294. (IF = 3.6)

  48. Liu, Y., and W. R. Peltier (2013b), Sea level variations during snowball Earth formation: 1. A preliminary analysis, J Geophys Res118, 1-15, doi:10.1002/jgrb.50293. (IF = 3.6)

  49. Liu, Y., W. R. Peltier, J. Yang, and G. Vettoretti (2013), The initiation of Neoproterozoic "snowball" climates in CCSM3: the influence of paleocontinental configuration, Clim. Past9, 2555-2577, doi:10.5194/cp-9-2555-2013. (IF = 3.5)

  50. Liu, Y., and W. R. Peltier (2011), A carbon cycle coupled climate model of Neoproterozoic glaciation: Explicit carbon cycle with stochastic perturbations, J Geophys Res-Atmos116, doi:10.1029/2010jd015128. (IF = 3.6)

  51. Liu, Y., and W. R. Peltier (2010), A carbon cycle coupled climate model of Neoproterozoic glaciation: Influence of continental configuration on the formation of a "soft snowball", J Geophys Res-Atmos115, doi:10.1029/2009jd013082. (IF = 3.6)

  52. Peltier, W. R., and Y. Liu (2008), reply to Hoffman et al. and Godderis and Donnadieu, Nature456, E9-E10, doi:10.1038/nature07653(2008). (IF = 40.1)

  53. Peltier, W. R., Y. Liu, and J. W. Crowley (2007), Snowball Earth prevention by dissolved organic carbon remineralization, Nature450(7171), 813-818, doi:10.1038/Nature06354. (IF = 40.1)

  54. Chen, X. B., S. X., Zang, Y. Liu, and R. Q. Wei (2005), Present-day horizontal motion of Ordos block and its interaction with surrounding block, Journal of University of Chinese Academy of Science (in Chinese), 22(3), 209-314. (IF = 0.8)

  55. Zang, S. X., R. Q. Wei, and Y. Liu (2005), Three-dimensional rheological structure of the lithosphere in the Ordos block and its adjacent area, Geophys J Int163(1), 339-356, doi:10.1111/j.1365-246X.2005.02745.x. (IF = 2.8)

  56. Zang, S. X., Q. Y. Chen, J. Y. Ning, Z. K. Shen, and Y. Liu (2002a), Determination of Euler parameters of Philippine Sea plate and the inferences, Sci China Ser D45(2), 133-142, doi: 10.1007/BF02879790 (IF = 2.3)

  57. Zang, S. X., Q. Y. Chen, J. Y. Ning, Z. K. Shen, and Y. Liu (2002b), Motion of the Philippine Sea plate consistent with the NUVEL-1A model, Geophys J Int150(3), 809-819, doi: 10.1046/j.1365-246X.2002.01744.x (IF = 2.8)

  58. Zang, S. X, Y. Liu and J. Y. Ning, (2002), The thermal structure of lithosphere in North China, Chinese Journal of Geophsics, 45 (1): 51-62, doi:10.1002/cjg2.216. (IF = 0.8)


研究方向

overhead_picture1.png


主要通过地球系统模拟的手段来对以下科学问题进行研究


1. 古气候


  • 第四纪冰期-间冰期旋回

   第四纪气候在冰期与间冰期间剧烈振荡,并且有显著的轨道周期,但轨道变化如何引起气候以及碳循环的大幅变化仍很不清楚,阻碍了我们对未来气候演化的理解。将从植被、沙尘、冰盖、海洋生物碳循环与气候系统的相互作用来系统理解冰期-间冰期旋回的机制和动力学。


  • 冰雪地球

   冰雪地球是发生在20多亿年前和6亿多年前的全球冰封事件,与地球生命的演化和大气氧气的演化在时间上都有很强的相关性,但是该事件的形成与终结机制以及事件的规模都很不确定,尤其是对于事件的规模仍有很大争议。


2. 物理海洋


主要关注大尺度海洋环流尤其是经向翻转流(MOC)对外强迫(包括轨道、潮汐、冰川融水等)的响应及机制。


3. 冰川动力学


主要关注冰川和冰盖与大气海洋的相互作用,目前已经研究了青藏高原冰川与大气之间的相互作用,指出青藏高原边缘冰川的生长显著影响其内部的水汽输送,进而影响内部的温度、降水以及冰川的生长。未来将进一步研究格陵兰岛冰盖和南极冰盖与气候的相互作用。


4. 大陆风化


大陆风化主要指硅酸盐风化,在长时间尺度上是大气二氧化碳最重要的汇,是保持气候稳定的关键过程,但是风化模拟存在非常大的不确定性。已经独立发展了一个大陆硅酸盐风化模式,未来将进一步发展该模式,并用其来理解大陆风化在过去和未来气候变化中的作用。


研究团队


林琪凡(2019-2024)    :显生宙沙尘演化及气候影响

左浩悦(2019-2024)    :大陆硅酸盐风化模拟

梅杰    (2020-2025)    :海洋经向翻转流

伍家成(2020-2025)    :冰雪地球的形成与消融

刘浩波(2022-2027)    :进动对气候的影响

欧彦宁(2023-2028)    :中全新世气候



硕士

于浩男(2021-2024):深时气候的轨道敏感性



博士后


张旭(2021-现在) - 神户大学博士(2021)

                研究方向:区域海洋与风暴潮模拟

Estanislao Gavilan(2021-现在) - 英国 Newcastle University博士(2018)

                研究方向:北极洋流

吴晟(2021-现在;与北京大学胡永云教授共同指导) - 北京大学博士(2021),

                研究方向:年代际振荡

魏强(2021-现在;与北京大学胡永云教授共同指导) - 北京大学博士(2021)

                研究方向:冰川与冰盖动力学


前组员


photo1.jpg



王卓群(2018-2023)    :博士,海洋上层垂向混合对海表温度的影响

赵洲峤(2017-2022)    :博士,现在新能源公司工作

                                           博士论文:冰雪地球终结期的海冰消退与环境演变

魏强(2015-2021)        :与北京大学胡永云教授共同指导的博士,现为北京大学博士后

                                           博士论文:末次盛冰期青藏高原冰川规模模拟研究

张铭(2016-2021)        :博士,现为博士后

                                           博士论文:间冰期与冰期中沙尘对气候的影响研究

刘鹏(2015-2020)        :与北京大学胡永云教授共同指导的博士,现为青岛海洋大学博士后

                                           博士论文:元古代气候演化和大气氧含量研究

毋宇斌(2016-2022)    :硕士(2016-2018),与北京青藏高原研究所易朝路研究员共同指导

                                           硕士论文:青藏高原冰川规模变化对全球气候影响的敏感性试验

                                           博士(2018-2022),与中科院地球与环境研究所周卫健研究员共同指导

                                           博士论文:东亚季风降水对轨道强迫响应的模拟不确定性研究

何韬(2016-2018)        :硕士,与南京师范大学刘健教授共同指导,现在新能源公司工作

                                           硕士论文:末次盛冰期全球冰盖变化的模拟对比与评估


瞿颖(2019-2021)        :博士后,现为苏州科技大学讲师

                                           研究方向:海平面变化

科研项目

暂无内容