博士生导师
硕士生导师
学位:博士学位
性别:男
毕业院校:香港科技大学
学历:研究生(博士后)
在职信息:在职
所在单位:北京大学物理学院
电子邮箱:
离子液体场效应晶体管,低维超导、拓扑、磁性、铁电等有序态,二维范德瓦尔斯材料及异质结
(#同等贡献;*通讯作者)
37. Ferroelectricity with gate-specific screening in van der Waals heterostructures.
Ruirui Niu#, Zhuoxian Li#, Xiangyan Han#, Zhuangzhuang Qu#, Qianling Liu, Zhiyu Wang, Chunrui Han*, Chunwen Wang, Yangliu Wu, Chendi Yang, Ming Lv, Kaining Yang, Kenji Watanabe, Takashi Taniguchi, Kaihui Liu, Jinhai Mao, Wu Shi, Renchao Che, Wu Zhou, Jiamin Xue, Menghao Wu, Bo Peng*, Zheng Vitto Han*, Zizhao Gan, Jianming Lu*
Accepted, Nature Nanotechnology (2024), arXiv:2403.17326
36. Fractional quantum Hall phases in high mobility n-type molybdenum disulfide transistors.
Zhao, S. #, Huang, J. #, Crépel, V. #, Wu, X., Zhang, T., Wang, H., Han, X., Li, Z., Xi, C., Pan, S., Wang, Z., Watanabe, K., Taniguchi, T., Sacépé, B., Zhang, J.*, Wang, N. *, Lu, J. *, Regnault, N. * & Han, Z. V. *
Accepted, Nature Electronics (2024), arXiv:2308.02821
35. Suppression of symmetry-breaking correlated insulators in a rhombohedral trilayer graphene superlattice.
Han, X., Zou, Y., Liu, Q., Wang, Z., Niu, R., Qu, Z., Li, Z., Han, C., Watanabe, K., Taniguchi, T., Song, Z., Mao, J., Han, Z. V., Cheng, Z. G., Gan, Z. & Lu, J. *
Accepted, Nature Communications (2024).
34. Engineering the band topology in a rhombohedral trilayer graphene moiré superlattice.
Han, X., Liu, Q., Wang, Y., Niu, R., Qu, Z., Wang, Z., Li, Z., Han, C., Watanabe, K., Taniguchi, T., Song, Z., Liu, J., Mao, J., Han, Z. V., Chittari, B. L. *, Jung, J. *, Gan, Z. & Lu, J. *
Nano Lett. 24, 6286 (2024).
33. Co-doped BaFe2As2 Josephson junction fabricated with a focused helium ion beam.
Chen Z W, Zhang Y*, Ma P*, Xu Z T*, Li Y L, Wang Y, Lu J M, Ma Y W, Gan Z Z.
Chin. phys. B 33, 047405 (2024). 封面
32. Electron-Induced Chirality-Selective Routing of Valley Photons via Metallic Nanostructure.
Zheng, L. #, Dang, Z. #, Ding, D. #, Liu, Z., Dai, Y., Lu, J. & Fang, Z.*
Adv. Mater. 35, 2204908 (2023).
31. Disorder-tuned conductivity in amorphous monolayer carbon.
Tian, H. #, Ma, Y. #, Li, Z. #, Cheng, M. #, Ning, S. #, Han, E., Xu, M., Zhang, P.-F., Zhao, K., Li, R., Zou, Y., Liao, P., Yu, S., Li, X., Wang, J., Liu, S., Li, Y., Huang, X., Yao, Z., Ding, D., Guo, J., Huang, Y., Lu, J., Han, Y., Wang, Z., Cheng, Z. G., Liu, J., Xu, Z., Liu, K., Gao, P., Jiang, Y., Lin, L., Zhao, X., Wang, L., Bai, X., Fu, W., Wang, J.-Y., Li, M., Lei, T., Zhang, Y., Hou, Y., Pei, J., Pennycook, S. J., Wang, E., Chen, J. *, Zhou, W. * & Liu, L. *
Nature 615, 56–61 (2023).
30. Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure.
Niu, R., Han, X., Qu, Z., Wang, Z., Li, Z., Liu, Q., Han, C. * & Lu, J. *
Chin. Phys. B 32, 017202 (2023). Highlighted
29. Strong Piezoelectricity and Improved Rectifier Properties in Mono- and Multilayered CuInP2S6.
Jiang, X. #, Zhang, X. #, Niu, R. #, Ren, Q., Chen, X., Du, G., Chen, Y., Wang, X., Tang, G., Lu, J. *, Wang, X. * & Hong, J. *
Adv. Funct. Mater. 33, 2213561 (2023).
28. Chemical Potential Characterization of Symmetry-Breaking Phases in a Rhombohedral Trilayer Graphene.
Han, X., Liu, Q., Wang, Y., Niu, R., Qu, Z., Wang, Z., Li, Z., Han, C., Watanabe, K., Taniguchi, T., Song, Z., Mao, J., Han, Z. V., Gan, Z. & Lu, J. *
Nano Lett. 23, 6875–6882 (2023).
27. Spontaneous isospin polarization and quantum Hall ferromagnetism in a rhombohedral trilayer graphene superlattice.
Han, X., Liu, Q., Niu, R., Qu, Z., Wang, Z., Li, Z., Han, C. *, Watanabe, K., Taniguchi, T., Gan, Z. & Lu, J. *
Chin. Phys. B 32, 117201–117201 (2023). Highlighted
26. Tunable correlation in twisted monolayer–trilayer graphene.
Ding, D., Niu, R., Han, X., Qu, Z., Wang, Z., Li, Z., Liu, Q., Han, C. * & Lu, J. *
Chin. Phys. B 32, 067204 (2023). 封面
25. Giant ferroelectric polarization in a bilayer graphene heterostructure.
Niu, R., Li, Z., Han, X., Qu, Z., Ding, D., Wang, Z., Liu, Q., Liu, T., Han, C., Watanabe, K., Taniguchi, T., Wu, M., Ren, Q., Wang, X., Hong, J., Mao, J., Han, Z., Liu, K., Gan, Z. & Lu, J. *
Nat. Commun. 13, 6241 (2022).
24. Unravelling the electromechanical coupling in a graphene/bulk h-BN heterostructure.
Jiang, X. #, Zhang, X. #, Han, X., Lu, J., Wang, X. * & Hong, J. *
Nanoscale 14, 15869–15874 (2022).
23. Manipulation of current rectification in van der Waals ferroionic CuInP2S6.
Jiang, X., Wang, X. *, Wang, X. *, Zhang, X., Niu, R., Deng, J., Xu, S., Lun, Y., Liu, Y., Xia, T., Lu, J. & Hong, J. *
Nat. Commun. 13, 574 (2022).
22. Multivalley Superconductivity in Monolayer Transition Metal Dichalcogenides.
Ding, D., Qu, Z., Han, X., Han, C., Zhuang, Q., Yu, X.-L., Niu, R., Wang, Z., Li, Z., Gan, Z., Wu, J. * & Lu, J. *
Nano Lett. 22, 7919–7926 (2022).
21. High-temperature superconducting YBa2Cu3O7−𝛿 Josephson junction fabricated with a focused helium ion beam.
Chen Z W, Li Y L, Zhu R, Xu J, Xu T Q, Yin D L, Cai X W, Wang Y, Lu J M, Zhang Y*, Ma P*.
Chin. Phys. Lett. 39, 077402 (2022). 封面
20. Odd-Even Layer-Number Effect and Layer-Dependent Magnetic Phase Diagrams in MnBi2Te4.
Yang, S. #, Xu, X. #, Zhu, Y. #, Niu, R., Xu, C., Peng, Y., Cheng, X., Jia, X., Huang, Y. *, Xu, X., Lu, J. * & Ye, Y. *
Phys. Rev. X 11, 011003 (2021).
19. Light Controllable Electronic Phase Transition in Ionic Liquid Gated Monolayer Transition Metal Dichalcogenides.
Qin, M., Han, X., Ding, D., Niu, R., Qu, Z., Wang, Z., Liao, Z.-M., Gan, Z., Huang, Y., Han, C., Lu, J. * & Ye, J. *
Nano Lett. 21, 6800–6806 (2021).
18. Recent progresses in two-dimensional Ising superconductivity.
Li, W., Huang, J., Li, X., Zhao, S. *, Lu, J. *, Han, Z. V. * & Wang, H. *
Mater. Today Phys. 21, 100504 (2021).
17. 离子液体调控超导研究
曲壮壮,江星宇,路建明*,陈其宏*,叶剑挺
中国科学:物理学 力学 天文学51, 047410 (2021)
16. Josephson coupled Ising pairing induced in suspended MoS 2 bilayers by double-side ionic gating
O. Zheliuk, J. M. Lu, Q. H. Chen, A. A. E. Yumin, S. Golightly, and J. T. Ye*
Nat. Nanotechnol. 14, 1123 (2019).
15. Emergence of a real-space symmetry axis in the magnetoresistance of the one-dimensional conductor Li0.9Mo6O17
J. Lu#, X. Xu#, M. Greenblatt, R. Jin, P. Tinnemans, S. Licciardello, M. R. van Delft, J. Buhot, P. Chudzinski, and N. E. Hussey*
Sci. Adv. 5, eaar8027 (2019).
14. Electrical resistivity across a nematic quantum critical point
S. Licciardello, J. Buhot, J. Lu, J. Ayres, S. Kasahara, Y. Matsuda, T. Shibauchi, and N. E. Hussey*
Nature 567, 7747 (2019).
13. Highly Conductive Metallic State and Strong Spin–Orbit Interaction in Annealed Germanane
Q. Chen, L. Liang, G. Potsi, P. Wan, J. Lu, T. Giousis, E. Thomou, D. Gournis, P. Rudolf, and J. Ye*
Nano Lett. 19, 1520 (2019).
12. Full superconducting dome of strong Ising protection in gated monolayer WS2,
J. Lu, O. Zheliuk, Q. Chen, I. Leermakers, N. E. Hussey, U. Zeitler, and J. Ye*
Proc. Natl. Acad. Sci. 115, 3551 (2018).
11. Inducing ferromagnetism and Kondo effect in platinum by paramagnetic ionic gating,
L. Liang, Q. Chen, J. Lu, W. Talsma, J. Shan, G. R. Blake, T. T. M. Palstra, and J. Ye*
Sci. Adv. 4, eaar2030 (2018).
10. Continuous Low-Bias Switching of Superconductivity in a MoS2 Transistor
Q. Chen, J. Lu, L. Liang, O. Zheliuk, A. A. E. Yumin, and J. Ye*
Adv. Mater. 30, 1800399 (2018).
9. Monolayer Superconductivity in WS2,
O. Zheliuk, J. Lu, J. Yang, and J. Ye*
Phys. Status Solidi B 11, 1700245 (2017).
8. Role of Defects in Tuning the Electronic Properties of Monolayer WS2 Grown by Chemical Vapor Deposition
J. Yang, P. Gordiichuk, O. Zheliuk, J. Lu, A. Herrmann, and J. Ye*
Phys. Status Solidi B 11, 1700302 (2017).
7. High Quality Superconductor–Normal Metal Junction Made on the Surface of MoS2 Flakes,
Q. Chen, L. Liang, A. Ali El Yumin, J. Lu, O. Zheliuk, and J. Ye*
Phys. Status Solidi B 254, 1700181 (2017).
6. Inducing and Manipulating Heteroelectronic States in a Single MoS2 Thin Flake
Q. H. Chen, J. M. Lu, L. Liang, O. Zheliuk, A. Ali, P. Sheng, and J. T. Ye*
Phys. Rev. Lett. 119, 147002 (2017).
5. Evidence for two-dimensional Ising superconductivity in gated MoS2,
J. M. Lu, O. Zheliuk, I. Leermakers, N. F. Q. Yuan, U. Zeitler, K. T. Law, and J. T. Ye*
Science 350, 1353 (2015).
4. Negative correlation between charge carrier density and mobility fluctuations in graphene,
J. Lu, J. Pan, S.-S. Yeh, H. Zhang, Y. Zheng, Q. Chen, Z. Wang, B. Zhang, J.-J. Lin, and P. Sheng*
Phys. Rev. B 90, 085434 (2014).
3. Large-scale Mesoscopic Transport in Nanostructured Graphene,
Haijing Zhang, Jianming Lu, Wu Shi, Zhe Wang, Ting Zhang, Mingyuan Sun, Yuan Zheng, Qihong Chen, Ning Wang, Juhn-Jong Lin, Ping Sheng*
Phys. Rev. Lett. 110, 066805 (2013).
2. Graphene Magnetoresistance Device in van der Pauw Geometry,
J. Lu, H. Zhang, W. Shi, Z. Wang, Y. Zheng, T. Zhang, N. Wang, Z. Tang, and P. Sheng*
Nano Lett. 11, 2973 (2011).
1. Field Electron Emission Characteristics and Physical Mechanism of Individual Single-Layer Graphene,
Z. Xiao, J. She, S. Deng, Z. Tang, Z. Li, J. Lu, and N. Xu*
ACS Nano 4, 6332 (2010).