北京大学官网北京大学新闻网 English
徐莉梅
点赞:
徐莉梅
点赞:
研究领域

1)相变与临界现象:

相变现象是自然界中的普遍现象,是统计物理、热力学理论以及凝聚态理论的重要部分。其中,简单的相变过程,如三态转变,可以用现有的平衡态统计物理和热力学进行描述。然而,复杂体系的相变依然存在许多未解决的问题。自然界中的复杂体系,包括液态水、硫、磷、硅等物质在液态中会展现出一系列类似的反常特性,例如结构、动力学和热力学的反常。根据液体-液体相变(LLPT)假说,这些复杂物质可能存在低密度液体(LDL)、高密度液体(HDL)以及它们之间的一级相变(LLPT)。液体-液体相变临界点(LLCP)和由此产生的临界涨落可能是复杂液体反常特性的根源。复杂体系中的相变,如LLPT,是重要有趣且重要物理现象。然而,为描述简单液体而发展的液态理论并不适用于具有液体多态性的复杂体系。对于LLPT的理论描述,和实验探测是该领域的一个重要问题。

代表性文献:

1. X. Yu, R. Huang, H. Song, L. Xu, et al. "Conformal Boundary Conditions of Symmetry-Enriched Quantum Critical Spin Chains", Phys. Rev. Lett. 129, 210601 (2021)

2. Y. Liu, G. Sun, A. Eltareb, GE. Lopez, N. Giovambattista, L. Xu, et al. "Nuclear quantum effects on the thermodynamic response functions of a polymorphic waterlike monatomic liquid", Phys. Rev. Res. 2, 013153 (2020)

3. R. Li, G. Sun, L. Xu, et al. "Anomalous properties and the liquid-liquid phase transition in gallium", The Journal of Chemical Physics, 145, 054506 (2016)

4. R. Z. Li, J. Chen, X. Z. Li, E. G. Wang, L. Xu*. “Rationalizing the liquid-liquid phase transition in high pressure hydrogen using the concept of the Widom line”. New Journal of Physics 17, 063023 (2015).

5. J. Luo, L. Xu*, E. Lascaris, H. E. Stanley, and S. V. Buldyrev, "Behavior of the Widom Line in Critical Phenomena", Phys. Rev. Lett. 112, 135701 (2014).

6. Z. Sun, D. Pan, L. Xu*, and E. G. Wang*,  “The role of proton ordering in adsorption preference of polar molecule on ice surface”, Proc. Natl. Acad. Sci. USA 109, 13177-13181 (2012)

7. L. Xu*, S. V. Buldyrev, F. W. Starr, F. Mallamace, and H. E. Stanley. “Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset.”, Nature Physics 5, 565-569 (2009).

8. L. Xu*, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, F. Sciortino and H. E. Stanley. “Relation between the widom line and the strong-fragile dynamic crossover in systems with a liquid-liquid phase transition.”, Proc. Natl. Acad. Sci. USA 102, 16558 (2005)


2)非平衡相变及动力学

复杂体系的非平衡相变(如玻璃相变)是统计物理学的核心问题,但目前尚无统一的理论框架,是science创刊125周年提出的一个世纪难题。非平衡的相变是指非平衡系统内,某些物理量达到某一临界值时出现空间或时间上较规则或对称性较高的有序结构的现象,如玻璃-玻璃转变过程。这一相变过程涉及生活和工业中多种常见的物质,如复杂液体、玻璃、胶体、颗粒物质、高分子聚合物、液晶等。对非平衡相变以及其动力学特征的研究,对我们的日常生活至关重要。然而经典液体理论、平衡态热力学、固体物理理论无法描述复杂无序系统的非平衡相变。对非平衡相变及动力学特征的描述仍缺乏完善的理论体系,这是物理学最前沿的课题之一。尽管目前非平衡相变仍面临着诸多难题,其中仍有一些有趣的现象可以进行发掘,如过冷区域中的受限液体。受限条件下的液体在诸多领域存在着重要的应用,同时受限液体在纳米尺度的结晶过程也是一个颇具挑战性的问题;另一方面,非晶体也是一个亟待讨论的话题。非晶体是一类与玻璃相似、结构具有高度复杂性的材料,但是会在应力条件下发生不可逆的结构转变,通过研究发现,这一过程实质上能够与拓扑性产生关联。通过对这些问题在结构、动力学等方面的分析,对非平衡相变的认识和理解也将得到进一步深入,将其从“世纪难题”转变为“世纪话题”。

代表性文献:

1. Y. Liu, G. Sun, L. Xu. "Glass polyamorphism in gallium: Two amorphous solid states and their transformation on the potential energy landscape", The Journal of Chemical Physics, 154, 134503 (2021)

2. Z. Wu, W. Kob, W. Wang, L. Xu, et al. "Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt", Nature communications, 9, 5334 (2018)

3. G. Sun, L. Xu, N. Giovambattista. "Anomalous Features in the Potential Energy Landscape of a Waterlike Monatomic Model with Liquid and Glass Polymorphism", Phys. Rev. Lett. 120, 035701 (2018)

4. S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, and L. Xu. 'Confined Water as Model of Supercooled Water'. Chemical Reviews (2015). 

5. G. Sun, N. Giovambattista, E. G. Wang, and L. Xu*, et al.“Effects of surface structure and solvophilicity on the crystallization of confined liquids”, Soft Matter 9, 11374 (2013).



3)界面水结构与动力学

水及离子水合物的表面性质在生物、化学、能源、材料等多个领域都发挥了重要作用,氢键网络的复杂性与动力学性质、质子传输机制以及水冰预融现象紧密相关。要想理解水的表面行为,了解离子在附着于衬底时如何进行排列,就需要对水内部的氢键网络结构进行深入研究。目前,通过密度泛函(DFT)计算和原子力显微镜(AFM)图像模拟等手段能够一定程度上推测出氢键网络的结构及其形成过程,同时通过机器学习等方法缩减AFM图像模拟过程所消耗的时间,从而实现对水和离子水合物表面行为的微观机理解释,并通过对这一机制的理解将水的表面特性实现更为广泛的应用。

代表性文献:

1. Y. Tian*, J. Hong*, D. Cao*, S. You*, Y. Song, et al. "Visualizing Eigen/Zundel cations and their interconversion in monolayer water on metal surfaces", Science 377, 315-319 (2022).

2. B. Tang*, Y. Song*, M. Qin*, et al. "Machine learning aided atomic structure identification of interfacial ionic hydrates from AFM images", National Science Review. nwac282 (2022).

3. D. Cao, Y. Song, J. Peng, et al. "Advances in Atomic Force Microscopy: Imaging of Two- and Three-Dimensional Interfacial Water", Front Chem. 9, 745446 (2021)

4. D. Cao, Y. Song, J. Peng, et al. "Advances in Atomic Force Microscopy: Weakly Perturbative Imaging of the Interfacial Water", Front Chem. 7, 626 (2019)

5. J. Peng, D. Cao, Z. He, et al. "The effect of hydration number on the interfacial transport of sodium ions", Nature 557, 701-705 (2018).