北京大学官网北京大学新闻网 English
史俊杰
点赞:
史俊杰
点赞:
论文成果
Origin of the wide band gap from 0.6 to 2.3 eV in photovoltaic material InN: quantum confinement from surface nanostructure.J. Mater. Chem. A,4,17412-17418,2016,10.1039/c6ta07700e Anomalous Light-Emission and Wide Photoluminescence Spectra in Graphene Quantum Dot: Quantum Confinement from Edge Microstructure.J. Phys. Chem. Lett.,7,2888-2892,2016,10.1021/acs.jpclett.6b01309 Band Gap Opening of Graphene by Forming Heterojunctions with 2D Carbonitrides Nitrogenated Holey Graphene, g-C3N4, and g-CN: Electric Field Effect.J. Phys. Chem. C,120,11299–11305,2016,10.1021/acs.jpcc.6b03308 Improvement of n-type conductivity in hexagonal boron nitride monolayer by doping, strain and adsorption.RSC Advances,6,29190-29196,2016,10.1039/c5ra25141a Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations.Sci. Rep.,6,21786,2016,10.1038/srep21786 Breakthrough of the p-type doping bottleneck in ZnO by inserting ultrathin ZnX (X=S, Se and Te) layer doped with NX or AgZn.J. Phys. D: Appl. Phys.,49,095104,2016,10.1088/0022-3727/49/9/095104 Origin of 3.45 eV Emission Line and Yellow Luminescence Band in GaN Nanowires: Surface Microwire and Defect.ACS Nano,9,9276-9283,2015,10.1021/acsnano.5b04158 Enhancement of TE polarized light extraction efficiency in nanoscale (AlN)m/(GaN)n (m>n) superlattice substitution for Al-rich AlGaN disorder alloy: ultra-thin GaN layer modulation.New J. Phys.,16,113065,2014,10.1088/1367-2630/16/11/113065 Reducing Mg Acceptor Activation-Energy in Al0.83Ga0.17N Disorder Alloy Substituted by Nanoscale (AlN)5/(GaN)1 Superlattice Using MgGa δ-Doping: Mg Local-Structure Effect.Sci. Rep.,4,6710,2014,10.1038/srep06710 Light emission from several-atom In-N clusters in wurtzite Ga-rich InGaN alloys and InGaN/GaN strained quantum wells.Acta Materialia,59,2773-2782,2011,10.1016/j.actamat.2011.01.016
共20条  2/2 
下页尾页  
加载更多