北京大学官网北京大学新闻网 English
吕劲
点赞:
吕劲
点赞:
学术动态

2021年:

祝贺史博文在Nanoscale发表Na3Bi拓扑晶体管论文!

祝贺课题组亚10nm晶体管大综述被Physics Reports顶级期刊接收!

祝贺杨晨在Applied Surface Science发表Fe2P-CdS光催化材料实验+计算合作论文!

祝贺杨洁在Physical Review Applied发表CrPS4磁隧穿结论文!

祝贺马佳辰、杨晨在Nanoscale发表离子电池层间距研究论文!

祝贺徐琳在ACS Applied Materials & Interfaces发表CNT晶体管论文!

祝贺唐昊在Physical Review Applied发表Bi2O2X光电晶体管论文!

祝贺吕劲老师入选2020年全球排名前2%顶尖科学家生涯影响力榜单和年度影响力榜单!

祝贺吕劲老师入选2020年爱斯维尔高被引中国学者(物理)!

祝贺课题组金属半导体接触大综述被Reports on Progress in Physics顶级期刊接收!

祝贺刘士琦在Nanoscale 发表Si-Fin晶体管论文!

祝贺马佳辰在Journal of Materials Chemistry A发表固态电池隔膜论文!

祝贺杨晨在Carbon发表打孔石墨Na/K离子电池负极论文!

祝贺杨晨在Physical Review B发表MoSi2X4谷电子学论文!


研究领域

主要研究领域:

由于计算方法的深入发展和过去几十年中高速计算机的出现和普及,随着物理学基础理论的进一步突破,物理学家们逐步可以应用一些更严格和更全面的复杂模型,来定量研究实际的复杂体系的物理性质。基于物理学基本原理的数值计算和模拟已经成为将理论物理和实验物理紧密联系在一起的一座重要桥梁:它不仅能够弥补简单的解析理论模型难以完全描述复杂物理现象的不足,而且可以克服实验物理中遇到的许多困难,例如直接模拟实验上不能实现或技术条件要求很高、实验代价昂贵的物理系统等。

除了研究静态的性质,密度函数理论和非平衡格林函数方法结合可以计算凝聚态材料的量子输运性质,把凝聚态计算物理的研究能力向接近实验方向大大提高了一步。纳米材料是指晶粒尺寸为纳米级的超细材料,是目前材料科学研究的一个热点,其相应发展起来的纳米技术被公认为是21世纪最具有前途的科研领域之一。由于量子限制效应,表面效应,边缘效应,减小的短沟道效应和增强的库仑相互作用,使得纳米材料常常显示出有别于相应的块材的新奇性质。晶体管是上个世纪最重要的发明之一,是信息社会的物质基础。摩尔发现每隔两年,集成电路上的晶体管数目就会翻一番。单个芯片上晶体管的集成度已经达到几十亿。未来的晶体管将工作在10纳米以下。   

本团队现在致力于利用格林函数方法研究以石墨烯,硅烯,MoS2为代表低维纳米体系的量子调控,增强的准粒子效应和激子效应,谷电子学,旋轨耦合,拓扑性质,并利用这些纳米材料设计纳米电子器件(如场效应管,隧穿场效应管,谷器件),纳米光电子器件和自旋电子器件(自旋阀,自旋过滤器,自旋场效应管),希望把摩尔定律延续到10纳米以下。

目前兴趣:

1. 二维晶体管的表演极限

2. 二维材料的电接触

3. 离子电池器件

4. 二维光电器件

5. 二维磁性器件

主要贡献:

在二维材料器件第一型原理模拟方面是国际领先的小组之一。其中硅烯的晶体管第一性原理模拟工作是二维晶体管第一型原理模拟工作中引用最高的论文(引用800多次)。

1. 用第一性原理量子输运方法,探索了MoS2、黑磷、砷烯、锑烯等二维半导体器件在亚10 nm 的表演极限行为,预测这些二维半导体材料有优秀的器件表现,超过目前的硅基器件,足以满足国际半导体技术线路图未来十年的要求和延续摩尔定律。获得基金委重大研究计划资助。

2.  发展了研究二维材料与金属界面的系统方法,能够精确确定出界面处的肖特基势垒。并通过范德瓦尔斯型接触,实现肖特基势垒的降低和调节。

3. 提出了一系列调控狄拉克材料硅烯、石墨烯能隙的方案,并通过器件模拟演示出来。撰写了目前关于硅烯的最全面综述。

4. 发现了最大体能隙的拓扑绝缘体,在BNC体系中预测并实验观测到了谷极化现象。

在凝聚态计算物理领域发表SCI文章250余篇,包括:Progress in Materials Science 1篇), NPG Asia Materials (2), Physical Review Letters (2) Journal of the American Chemical Society7篇), Nano Letters (4篇),Advanced Materials (4篇), Advanced Functional Materials (1篇),  ACS Nano 4篇),Angewandte Chemie (1), 2D Materials (2 )Chemistry of Materials (3 )Small (2),  Scientific Reports (9)。被NatureScienceNature Materials, Nature Nanotechnology, Physical Review Letters, Journal of the American Chemical SocietySCI杂志引用超过8000,他引7000多次, 单篇最高它引超过800次,H因子47 Web of science)。有12篇论文进入ESI高被引用论文,有1篇进入ESI热点论文。22篇论文引用超过100次。

20136月出版的《科学中国人》杂志,201853日的 《科技日报》有专题报道,新华网,中国新闻,澎湃新闻等各大网站进行了转载。

Nature Commnications, Physical Review Letters/Physical Review B, Journal of the American Chemical Society, Nano Letters, Acs Nano, Acs: Applied Materials & Interfaces, Angewandte Chemie,Advanced Materials, Advanced Functional Materials, Small, 2D Materials, Nanoscale, Journal of Physical Chemistry BJournal of Chemical Physics, Applied Physics Letters, Nanotechnology, Europe Physics Letters, ChemPhysChem, Computational Theoretical Chemistry, Theoretical Chemistry Account, Journal of Computational Chemistry, Chemical Physics Letters, Physica E, Physica B, Physics Letter A, Solid State Communications, Journal of the American Ceramic Society, Physica Status Solidi B, Solid State Science, Journal of Material Chemistry, Journal of Nanomaterials 等90多种国际期刊审稿人。

Research ID: http://www.researcherid.com/rid/H-4248-2013

                  代表性工作:

电场可调控的硅烯能隙

随着物理微裂解生产石墨烯的简单方法在2004 年的出现,真实的二维单原子层材料第一次出现在人们面前。石墨烯具有异常高的载流子迁移率,但零能隙的特点阻止了它直接做成高表现的场效应管。打开一个可控的能隙,并保持较高的迁移率是石墨烯研究最重要和急迫的主题之一。至今对单层石墨烯要实现可调的能隙仍然缺乏好的方法。由蜂窝状的硅原子构成的硅烯是近年来发现的一种新的二维单原子材料。硅烯也具有异常高的迁移率,但零能隙的特点也阻止了它直接做成有效的场效应管。倪泽远,郑家新,罗光富等利用第一性原理的密度泛函方法证明了具有起皱结构的单层的硅烯和锗烯可以被垂直平面的电场打开能隙并且打开的能隙随电场强度线性增加,同时高的载流子迁移率也能够保持。为了在场效应管中保护化学活性较高的硅烯,他们提出了利用六角硼氮片作为缓冲层,隔离硅烯与SiO2 绝缘衬底。在该模型下,他们利用非平衡格林函数方法计算证明了硅烯制成的场效应管在室温下具有电流开关效应,开关比是无电场时的8到50 倍。该工作对于制备有效的硅烯场效应管具有重要的指导作用,发表在Nano Letters 12, 113 (2012)。被引用次数在该年 Nano Letters 发表的1000多篇论文排12。已经被SCI引用超过800次,进入ESI高被引论文。

图片13.png

                  硅烯场效应管模型,透射谱随门压的变化,能隙随电场的变化。  

基于狄拉克材料的全金属晶体管

因为硅基半导体性能提升正趋于其物理极限,使用金属替代半导体作为场效应晶体管的沟道材料一直是人们的追求。全金属的场效应管可以以更低的能量损耗工作在更短的沟道长度,并且具备更好的高频表现。狄拉克材料石墨烯、硅烯和锗烯都有超薄的单原子层厚度和极高的电子迁移率,在高速电子器件方面有很大的应用潜力。但是他们本身能隙为零,做成的晶体管尽管有一定的开关比,但数值太低(10左右)。任何可成功替代硅基互补式金属氧化物半导体场效应管的逻辑器件必须具有高达104~107的开关比,这要求器件具有一个大于0.4 eV的输运能隙。但之前传统打开能隙的方案由于获得的能隙较小(< 0.3 eV), 相应器件的电流开关比只有1000以下。我们发现在垂直异质狄拉克材料中由于能量动量失配,费米面附近的电子从一个狄拉克材料输运到另一个狄拉克材料在无声子协助的情况下是被禁止的。尽管垂直异质狄拉克材料本身是全金属性的,在其单门场效应管中却可以观察到一个大于0.4 eV的输运能隙,而且开关比高达107。这样一个奇特的性质不受异质材料的相对旋转的影响,还可以扩展到同质的双层旋转石墨烯中。该理论为实现基于狄拉克材料的全金属高表现场效应管提供了一个新的途径。相关工作以“All-metallic Vertical Transistors Based on Stacked Dirac Materials”为题,在线发表于材料科学顶级期刊《先进功能材料》(Adv. Funct. Mater. (2014), DOI: 10.1002/adfm.201402904)上。论文的第一作者是北京大学物理学院与麻省理工学院联合培养的博士生王洋洋。

图片4.png

石墨烯/硅烯垂直异质结构的单门场效应管。(上图)原理示意图,(左下图) 模型示意图,(右下图)器件的转移曲

大能隙拓扑绝缘体

拓扑绝缘体因为存在奇异的导电的表面态,近些年来在科学界引起了极大的关注。二维的拓扑绝缘体在边缘可以表现出自旋量子霍尔效应,故又叫做量子自旋霍尔绝缘体,有望作为自旋电子器件材料。能隙是拓扑绝缘体的最重要的指标之一。拓扑绝缘体如果体能隙小,制备过程中带来的掺杂或者温度会使其体内产生载流子,从而对表面的金属态产生不受欢迎的干扰。寻找大体能隙材料,一直是拓扑绝缘体研究的一个重要努力方向。按体带隙可将拓扑绝缘分为不同的代:第一代以BixSb1-x为代表,体能隙大约0.1 eV,第二代以Bi2Se3为代表,体能隙约为0.3 eV。杨金波课题组和吕劲课题组通过第一性原理计算,预测六角蜂巢状的功能化的Bi和Sb单层(BiX/SbX, X = H, F, Cl, Br)是稳定的拓扑绝缘体, 其体能隙可超过1 eV, 为目前拓扑绝缘体的体能隙的最大值,有望成为第三代拓扑绝缘体。低能模型显示大的体能隙是由于Bi 的Px 和Py 在位型的自旋轨道耦合打开狄拉克锥而形成。这种材料还有谷自由度,存在强烈而新奇的谷赝自旋和自旋的耦合,在电场的调控下可以表现出谷选择的元二色性,即两个不同的谷分别吸收左旋和右旋的园偏振光。相关工作以“Quantum spin Hall and quantum valley Hall insulators of BiX/SbX (X = H, F, Cl, and Br) monolayer with a record bulk band gap”为题,发表于自然出版集团《NPG Asia Materials》 6: e147, 2014;doi:10.1038/am.2014.113上。

图片5.png

量子自旋霍尔绝缘体BiX/SbX单层的结构(a),能带(灰色和红色分别对应不考虑和考虑自旋轨道耦合的结果)(b), 电场下倒空间的圆极化程度(反映K,K¢谷分别吸收左旋和右旋的园偏振光的程度)(c),拓扑绝缘体按体能隙的代划分(d)。

单面吸附打开硅烯能隙

硅烯都具有极高的载流子迁移率,但它们的能隙为零,因而不能直接去做高表现的场效应管。打开石墨烯和硅烯的能隙同时不失高的载流子迁移率是它们走向电子器件应用的关键。基于密度泛函理论计算,我们发现表面吸附方法可以在保有硅烯高迁移率的同时,有效地破坏硅烯的对称性,从而打开能隙。能隙的大小可以通过改变吸附浓度加以调节,最高可以达到0.5 eV。通过对钠原子吸附的硅烯场效应管模型的量子输运模拟显示该器件的开关比可高达108,满足高表现逻辑器件的需要。该理论为硅烯作为高表现的场效应管提供了一个新的实现途径。进入ESI高被引论文.相关工作最近发表在自然出版集团新刊Scientific Reports 2, 853 (2012);  

图片6.png

基于Na吸附的硅烯结构的单门场效应管。(上图) 模型示意图,
(左下图)碱金属吸附打开硅烯能隙以及门压对费米面的调控示意图,(右下图)器件的转移曲线。

利用石墨烯/BN三明治结构打开石墨烯能隙

石墨烯在常温下在SiO2衬底上其电子迁移率超过15000 cm2/V·s,比硅晶体高1个数量级,极有可能用于切换速度更快的新一代电子元件。但是纯石墨烯本身是零能隙的半导体,不能直接作为高效的室温场效应晶体管。如何在保持石墨烯高迁移率的同时,打开一个可控的能隙是目前石墨烯领域最重要的课题之一。  我们提出一种解决方案,即把石墨烯夹在平面的六角BN片之间,形成一个三明治结构。六角BN片与常用的SiO2 衬底比不存在悬挂键,可以减少石墨烯不规则度、自掺杂和化学活性,有利于提高石墨烯电子迁移率。另外六角BN片晶格尺寸与石墨烯基本匹配,但BN化学势不同,当这两种材料复合在一起,石墨烯的AB格子对称性将受到破坏。他们发现在合适的堆叠方式下,石墨烯可以打开0.16 eV的能隙。如果对BN/石墨烯/BN复合结构加上垂直电场,能隙可以进一步提高到0.34 eV。考虑多体效应作GW修正后,能隙可增加50%以上,可以满足实际逻辑器件的需要。通过有效质量计算,他们发现石墨烯的高迁移率在能隙打开后仍然可以维持。第一性原理量子输运计算也显示基于此三明治结构的双门场效应管具有电场增强的输运能隙,且电流开关比相比纯单层石墨烯场效应管大8倍。理论上讲,BN/石墨烯/BN片三明治结构是目前连续调控单层石墨烯能隙又能维持高迁移率的最有效的方法之一。相关工作发表在《Nature》子刊 《NPG Asia Materials》《自然亚洲材料》4,e6(2012); doi:10.1038/am.2012.10上。进入ESI高被引论文

图片3.png

基于BN片/石墨烯/BN片三明治结构的双门场效应管。(上图) 模型示意图, (左下图)透射谱,(右下图)转移曲线。插图为单层纯石墨烯的转移曲线。

用修饰的石墨烯构造二维的巨磁阻器件

从维度上分,材料总可以归为零维,一维,二维和三维。2004年石墨烯的发现使得真实的二维材料第一次出现在人们的面前,在科学界掀起了研究的热潮,并且获得了2010年的诺贝尔物理奖。除了具有极高的载流子迁移率,可以做成高表现的场效应晶体管,石墨烯还具有较长的自旋弛豫时间和长度,这使得其在自旋电子学领域内也有着重要的潜在应用价值。但基于纯石墨烯的自旋阀其磁阻较低,实验报道的值只有10%左右。二维材料的一个显著特点是有两个暴露的表面,从而提供了结构调制的自由度。本科生李林泽等通过密度泛涵第一性原理的模拟,发现可以通过在石墨烯的一侧进行化学修饰或者两侧进行不同的化学修饰的办法大大提高石墨烯器件在自旋电子器件上的表现。一面修饰氧另一面修饰氢的石墨烯(O-graphene-H)具有高自旋极化的铁磁基态,在0.6 V偏压下其自旋过滤效率可达54%。单面修饰氟的石墨烯(F-graphene)的反铁磁基态能隙为1.17 eV,具有半导体性质,而其激发态是铁磁金属态。通过控制外界磁场便可以使该结构在铁磁和反铁磁状态之间转变,从而达到控制电流的目标。计算表明,该器件的室温磁阻可达2200%,比目前实验上的磁阻最高值高一个数量级。该工作为石墨烯材料在自旋电子学领域的应用开辟了新的道路,研究成果发表在ACS Nano  4, 2061 (2011).

图片7.png

 基于O-graphene-H的自旋过滤器和基于F-graphene的自旋阀的两电极模型以及它们的I-V曲线。自旋过滤器装置少数自旋的电流明显大于多数自旋,而自旋阀装置,铁磁态的电流明显大于反铁磁态。

复合低维纳米结构纳米Burrito的合成与表征

纳米碳管为准1维,C60为0维结构,C60能装到碳管中形成所谓的纳米豆荚复合结构。纳米带是一个受限的2维材料,能否把准1维纳米管和2维的纳米带结合起来呢? 与纳米碳管可能同样重要的是MoS2无机纳米管的发现, 随后MoS2纳米三角团簇和富勒烯状MoS2纳米结构也被发现。MoS2纳米结构在纳米润滑,光催化,氢气制备,太阳能电池等领域有广泛的应用前景。目前实验获得的MoS2带其宽度大于50nm,而且边缘及其不规则,使得量子限制效应和边缘效应都不明显,对于器件的应用也非常不利。我们利用纳米碳管作为模版,生成了宽度为1-4nm,层数1-3,而且宽度和边缘都非常均匀的MoS2纳米带。EDX,EELS,Raman均证实了纳米带的MoS2组分。这也是实验上首次制备出纳米带与纳米管复合体(我们命名为Nanoburrito)。有意思的透射电镜只观察到了zigzag边MoS2纳米带。我们通过计算发现MoS2的锯齿边的形成能确实比扶手边更稳定。解释了为何实验上只看到锯齿边。尽管MoS2块材是非磁的半导体,我们预言自由状态的锯齿边的超细MoS2纳米带总是具有磁性(复合时磁性被淬灭),其最稳定钝化方式为Mo边用50% S钝化,对应的电子结构为半极金属(half-metal)。有限长度的MoS2纳米带显示了高达90%的自旋过滤效应。因而开辟了MoS2可以作为自旋器件的新用途。(Journal of the American Chemical Society, 132, 13840 (2010))。

图片1.png

超细的MoS2纳米带HRTEM 图和相应的模型。纳米带有相当平整的边缘,且呈现锯齿状。基于有限MoS2 纳米带的两电极模型和自旋极化的透射率。费米面处蓝色自旋的透射率明显大于红色的自旋。

三明治结构的半金属有机纳米线

      与传统的半导体器件相比,自旋电子器件具有以下优点:速度快,体积小,耗能低,非易失等优点。为了发展自旋电子器件,需要寻找具有铁磁态的材料,最好是只传输一种自旋态的半金属(half metallic)材料。有机半金属器件具有长的自旋驰豫时间,便宜,重量轻,有弹性等优点。有机配合基(例如苯环等)可以与金属原子结合形成金属有机物,如果由过渡金属元素和有机配合基相互作用,过渡金属原子上剩余的未配对电子间有可能会相互耦合而形成分子磁体。我们设计出了基于多层钒茂,多层钒苯茂,多层钒蒽三类三明治结构(此三种三明治结构实验上已经合成)的半金属有机纳米线,证明了它们有限团簇结构可以保持线性的结构,计算了它们有限团簇的量子输运特性,观察到了高达90%的极化率,从而适合于作自旋过滤器(Nano Lett 8, 3640 (2008))   。

图片2.png

钒茂链的结构,自旋极化的电子结构和透射系数

    经过十余年的广泛研究,现在人们已经普遍意识到纳米碳管在未来的纳米电子学中极有可能作为重要的结构建筑单元。依赖于螺旋度和直径,纳米碳管可以是金属型或者半导体型。大规模器件制备要求纳米碳管有均匀的电子特性。但是实验室合成的纳米碳管总是金属型和半导体型的混合物,这成了阻碍纳米碳管广泛应用的主要因素。我们通过第一性原理研究了发现胺分子对金属纳米碳管具有的选择性物理吸附(JACS 127, 10287 (2005);  128, 5114 (2005);  128, 12239 (2006)Small 3, 1566(2007) )。实验上利用胺已经成功地分离出金属纳米碳管,这为分离金属纳米碳管开辟了一条新的路径。

分子与纳米碳管非共价选择吸附理论

图片8.png

胺分离后碳管吸收光谱的变化,在溶液中,金属管的吸收峰M11明显增强,
而半导体管的吸收峰S22 明显减弱。证明溶液中金属管被显著富集。

芳香分子奈和蒽,它们和扶手型金属管匹配,计算显示它们确实和金属管作用比据齿型半导体管强。pyrene和联苯,这两种芳香分子和锯齿状半导体纳米碳管结构匹配,结果计算发现它们和半导体管作用更强。 我们提出选用结构匹配的芳香分子可以得到具有希望电子性质的纳米碳管这一具有革命性的思想。这样就可以控制分离出的纳米碳管产物的电子结构。在此基础进一步推广,选用结构和管壁匹配的芳香分子,可以控制分离出的纳米碳管的螺旋度。把按照电子结构分离纳米碳管提高到了按照螺旋度分离纳米碳管。这是纳米碳管分离的终极目标。

图片9.png

萘和Pyrene 在金属(6,6)和半导体(10,0)上的最优位型和吸附能。
萘倾向于吸附与之结构匹配的金属管而Pyrene倾向吸附与之结构匹配的半导体管

利用芳香分子分离不同金属性的纳米碳管的在实验上已经取得成功,见Nature Nanotechnology 1, 60 (2006),该文指名引用了我们的理论工作,作为他们分离工作的理论依据。最近,利用大的芳香分子多聚体,实验上已经能够成功分离出特定螺旋度的纳米碳管(Nature Nanotech. 2, 640–646 (2007);2, 361(2007); Nano Lett 7, 3013(2007))。在新近的Nature 450, 486(2007) 上的一篇综述文章介绍了按照螺旋度分离纳米碳管的进展,其中引用唯一的一篇该领域的理论工作就是我们的2006年JACS文章。

有机分子和有机金属分子掺杂的纳米碳管

    纳米碳管在分子电子装置上具有很大的应用前景,用单根纳米碳管做场效应管在98年实验上已经实现(Nature 393, 49(1998))构造更加复杂的分子电子装置的关键是对纳米碳管实现电子空穴双向可控而且空气稳定的掺杂。在这一问题直到去年才实验上取得突破(Nature Material 2, 683(2003)),日本的一个研究小组发现用有机分子掺入纳米碳管内部解决了上述问题,因此有机分子掺杂的纳米碳管很有可能成为最先应用的纳米碳管电子元件。我们首先确定了有机分子在纳米碳管的位置,计算了有机分子掺杂的纳米碳管的能带,证实有机分子确实可以对纳米碳管实现双向可控而且空气稳定的掺杂;同时预言有机金属分子CoCp2也可以稳定地掺入纳米碳管中,并且有更大的电子掺杂浓度(Phys. Rev. Lett.93, 116804(2004))。我们的预言半年后就被牛津大学的发表在(Nature Materials 4, 481(2005))上的实验所证实并引用。

图片10.png

图片11.png

有机分子在纳米碳管的位置图   有机分子掺杂的纳米碳管的能带

金属掺杂的硅团簇

硅是最重要的半导体材料,但纯的硅团簇倾向于sp3杂化,不能象碳团簇那样通过sp2杂化形成笼状的化学性质稳定的富勒烯结构(Nature (London) 392 (1998) 582),故不适合做自组织材料的建筑单元,因此不象富勒烯受人瞩目。最近日本的学者通过实验并结合第一性原理发现,掺入金属可终止剩余的悬挂键,得到化学性质稳定的硅笼(H. Hiura, et al., Phys. Rev. Lett. 86 (2001) 1733)。我们通过大尺度范围内的金属掺杂的硅团簇的结构与电子性质研究揭示,硅团簇必须位于特定的尺寸(10 ≤ n≤ 16)才可能形成化学性质稳定的硅笼。若干种新的化学性质稳定的硅笼被我们揭示出。通过对生长模式的研究,我们预言了若干个特殊热力学稳定点的存在,其结果与实验上观察到的团簇分布幻数恰当地吻合。发表在Physical Review Letters 90 , 115506 (2003)

图片12.png

全部论文

2022

1.       Qiuhui Li, Shibo Fang, Shiqi Liu, Lin Xu, Linqiang Xu, Chen Yang, Jie Yang, Bowen Shi, Jiachen Ma, Jinbo Yang, Ruge Quhe, Jing Lu*, Performance Limit of Ultrathin GaAs Transistors. ACS Appl. Mater. Interfaces 14, 23597-23609 (2022).

2.       Linqiang Xu, Ruge Quhe, Qiuhui Li, Shiqi Liu, Jie Yang, Chen Yang, Bowen Shi, Hao Tang, Ying Li, Xiaotian Sun, JinBo Yang, Jing Lu*, Device performance and strain effect of sub-5 nm monolayer InP transistors. J. Mater. Chem. C 10, 2223-2235 (2022).

3.       Baochun Wu, Jie Yang, Ruge Quhe, Shiqi Liu, Chen Yang, Qiuhui Li, Jiachen Ma, Yuxuan Peng, Shibo Fang, Junjie Shi, Jinbo Yang, Jing Lu*, Honglin Du, Scaling Behavior of Magnetoresistance with the Layer Number in CrI3 Magnetic Tunnel Junctions. Phys. Rev. Appl. 17, 034030 (2022).

4.       Yuhang Liu, Hong Li*, Fengbin Liu, Shuai Sun, Gang Zhou, Tao Qing, Shaohua Zhang, Jing Lu*, Engineering Schottky barrier in vertical graphene/InN heterostructure. Solid State Commun. 348-349, 114770 (2022).

5.       Hong Li*, Yuhang Liu, Zhonghao Bai, Jie Xiong, Fengbin Liu, Gang Zhou, Tao Qing, Shaohua Zhang, Jing Lu*, Ohmic contact in graphene and hexagonal III-V monolayer (GaP, GaAs, InP, and InAs) van der Waals heterostructures: Role of electric field. Phys. Lett. A 433, 128029 (2022).

6.       Qida Wang, Peipei Xu, Hong Li*, Fengbin Liu, Shuai Sun, Gang Zhou, Tao Qing, Shaohua Zhang, Jing Lu*, Device simulation of GeSe homojunction and vdW GeSe/GeTe heterojunction TFETs for high-performance application.     J. Comput. Electron. 21, 401-410 (2022).

7.       Jie Yang, Jun Zhou, Jing Lu, Zhaochu Luo, Jinbo Yang*, Lei Shen*, Giant tunnelling electroresistance through 2D sliding ferroelectric materials. Mater. Horiz. 9, 1422-1430 (2022).

8.       Ying Guo*, Gaoyang Zhao*, Feng Pan, Ruge Quhe, Jing Lu*, The Interfacial Properties of Monolayer MX–Metal Contacts. J. Electron. Mater. (2022).

9.       Shunning Li, Zhefeng Chen, Zhi Wang, Mouyi Weng, Jianyuan Li, Mingzheng Zhang, Jing Lu, Kang Xu, Feng Pan, Graph-based discovery and analysis of atomic-scale one-dimensional materials. Natl. Sci. Rev. 9, nwac028 (2022).

10.    Guanghao Wei, Rui Hu, Qiuhui Li, Wenlong Lu, Hanyu Liang, Hexin Nan, Jing Lu, Juan Li, Qing Zhao, Oligonucleotide Discrimination Enabled by Tannic Acid-Coordinated Film-Coated Solid-State Nanopores. Langmuir 38, 6443-6453 (2022).

11.    Shiying Guo, Hengze Qu, Wenhan Zhou, Shengyuan A. Yang, Yee Sin Ang, Jing Lu, Haibo Zeng, Shengli Zhang, High-Performance and Low-Power Transistors Based on Anisotropic Monolayer β-TeO2Phys. Rev. Appl. 17, 064010 (2022).

 

2021

12.    Schottky barrier heights in two-dimensional field-effect transistors: from theory to experiment. Yangyang Wang, Shiqi Liu, Qiuhui Li, Ruge Quhe, Chen Yang, Ying Guo, Xiuying Zhang, Yuanyuan Pan, Jingzhen Li, Han Zhang, Lin Xu, Bowen Shi, Hao Tang, Ying Li, Jinbo Yang, Zhiyong Zhang, Lin Xiao*, Feng Pan*Jing Lu*Rep. Prog. Phys., 84 (5), 056501 (2021).

13.    Sub-10 nm two-dimensional transistors: theory and experiment. Ruge Quhe, Lin Xu, Shiqi Liu, Chen Yang, Yangyang Wang, Hong Li, Jie Yang, Qiuhui Li, Bowen Shi, Ying Li, Yuanyuan Pan, Xiaotian Sun, Jingzhen Li, Mouyi Weng, Han Zhang, Ying Guo, Linqiang Xu, Hao Tang, Jichao Dong, Jinbo Yang, Zhiyong Zhang, Ming Lei, Feng Pan, and Jing Lu*Phys. Rep., 938:1-72 (2021).

14.    Layer-Dependent Giant Magnetoresistance in Two-Dimensional CrPS4 Magnetic Tunnel Junctions. Jie Yang, Shibo Fang, Yuxuan Peng, Shiqi Liu, Baochun Wu, Ruge Quhe, Shilei Ding, Chen Yang, Jiachen Ma, Bowen Shi, Linqiang Xu, Xiaotian Sun, Guang Tian, Changsheng Wang, Junjie Shi, Jing Lu*, and Jinbo Yang*. Phys. Rev. Appl., 16(2):024011 (2021).

15.    Performance limit of monolayer MoSi2N4 transistors. Xiaotian Sun, Zhigang Song, Nannan Huo, Shiqi Liu, Chen Yang, Jie Yang, Weizhou Wang and Jing Lu*. J. Mater. Chem. C, 9, 14683-14698 (2021).

16.    Layer-Dependent Photoabsorption and Photovoltaic Effects in Two-Dimensional Bi2O2X (X = S, Se, and Te). Hao Tang, Bowen Shi, Yangyang Wang, Chen Yang, Shiqi Liu, Ying Li, Ruge Quhe, and Jing Lu*Phys. Rev. Appl., 15(6):064037 (2021).

17.    Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length? Lin Xu, Jie Yang, Chenguang Qiu, Shiqi Liu, Weijun Zhou, Qiuhui Li, Bowen Shi, Jiachen Ma, Chen Yang, Jing Lu*, and Zhiyong Zhang*. ACS Appl. Mater. Interfaces., 13(27):31957-31967 (2021).

18.    Device performance limit of monolayer SnSe2 MOSFET. Hong Li*, Jiakun Liang, Qida Wang, Fengbin Liu, Gang Zhou, Tao Qing, Shaohua Zhang, and Jing Lu*Nano Res., (2021). DOI: 10.1007/s12274-021-3785-1

19.    Phase transition and topological transistors based on monolayer Na3Bi nanoribbons. Bowen Shi, Hao Tang, Zhigang Song, Jingzhen Li, Lianqiang Xu, Shiqi Liu, Jie Yang, Xiaotian Sun, Ruge Quhe, Jinbo Yang, and Jing Lu*Nanoscale., 13(35):15048-15057 (2021).

20.    Improvement of alkali metal ion batteries via interlayer engineering of anodes: from graphite to graphene. Jiachen Ma, Chen Yang, Xinjie Ma, Shiqi Liu, Jie Yang, Linqiang Xu, Jingsong Gao, Ruge Quhe, Xiaotian Sun, Jinbo Yang, Feng Pan, Xiaoyu Yang*, and Jing Lu*Nanoscale., 13(29):12521-12533 (2021).

21.    Sub-5 nm Gate Length Monolayer MoTe2 Transistors. Qiang Li, Jie Yang, Qiuhui Li, Shiqi Liu, Linqiang Xu, Chen Yang, Lin Xu, Ying Li, Xiaotian Sun, Jinbo Yang, and Jing Lu*J. Phys. Chem. C., 125(35):19394-19404 (2021).

22.    Ultrathin Fe2P nanosheet co-catalyst CdS nanorod: The promising photocatalyst with ultrahigh photocatalytic H-2 production activity. Zhibin Liang, Chen Yang, Jing Lu*, and Xinfa Dong*. Appl. Surf. Sci., 566:150732 (2021).

23.    Is graphite nanomesh a promising anode for the Na/K-Ions batteries? Chen Yang, Xiaotian Sun, Xiuying Zhang, Jingzhen Li, Jiachen Ma, Ying Li, Linqiang Xu, Shiqi Liu, Jie Yang, Shibo Fang, Qiuhui Li, Xiaoyu Yang*, Feng Pan, Jing Lu*, Dapeng Yu. Carbon, 176, 242-252 (2021).

24.    Sub-5 nm Monolayer MoS2 Transistors toward Low-Power Devices. Han Zhang*, Bowen Shi, Lin Xu, Junfeng Yan, Wu Zhao, Zhiyong Zhang, Zhiyong Zhang, Jing Lu*ACS Appl. Electron. Mater., 3 (4), 1560-1571 (2021).

25.    Can ultra-thin Si FinFETs work well in the sub-10 nm gate-length region? Shiqi Liu, Jie Yang, Lin Xu, Jingzhen Li, Chen Yang, Ying Li, Bowen Shi, Yuanyuan Pan, Linqiang Xu, Jiachen Ma, Jinbo Yang, Jing Lu*. Nanoscale, 13 (10), 5536-5544 (2021).

26.    Two-dimensional materials as a stabilized interphase for the solid-state electrolyte Li10GeP2S12 in lithium metal batteries. Jiachen Ma, Ruge Quhe*, Zheyu Zhang, Chen Yang, Xiuying Zhang, Jingzhen Li, Lin Xu, Jie Yang, Bowen Shi, Shiqi Liu, Linqiang Xu, Xiaotian Sun, Jing Lu*. J. Mater. Chem. A, 9 (8), 4810-4821 (2021).

27.    Layer-Controlled Low-Power Tunneling Transistors Based on SnS Homojunction. Jiakun Liang, Hong Li*, Fengbin Liu, Jing Lu*. Adv. Theory Simul., 4 (5), 2000290 (2021).

28.    Van der waals BP/InSe heterojunction for tunneling field-effect transistors. Hong Li*, Qida Wang, Peipei Xu, Jing Lu*. J. Mater. Sci., 56 (14), 8563-8574 (2021).

29.    Bilayer Tellurene: A Potential p-Type Channel Material for Sub-10 nm Transistors. Qiuhui Li, Lin Xu, Shiqi Liu, Jie Yang, Shibo Fang, Ying Li, Jiachen Ma, Zhiyong Zhang, Ruge Quhe, Jinbo Yang, Jing Lu*. Adv. Theory Simul., 4 (2), 2000252 (2021).

30.    High-Performance Spin Filters and Spin Field Effect Transistors Based on Bilayer VSe2. Baochun Wu, Ruge Quhe, Jie Yang, Shiqi Liu, Junjie Shi, Jing Lu*, Honglin Du*. Adv. Theory Simul., 4 (2), 2000238 (2021).

31.    An air-stable iron/manganese-based phosphate cathode for high performance sodium-ion batteries. Ning Wang, Jiachen Ma, Zhaolu Liu, Jie Xu, Deqiang Zhao, Nan Wang, Chen Yang, Yongjie Cao*, Jing Lu*, JunxiZhang*. Chem. Eng. J. 133798(2021).

32.    Laser ablation of pristine Fe foil for constructing a layer-by-layer SiO2/Fe2O3/Fe integrated anode for high cycling-stability lithium-ion batteries. Zhongyuan Zhang, Chen Yang, Canfeng Fang, Wenfei Yang, Xue Zhang, Zhiguo Rong, Xiyang Li, Youngguan Jung, Jing Lu, Xinglong Dong*. Phys. Chem. Chem. Phys., 23 (17), 10365-10376 (2021).

33.    Correlating the electronic structures of metallic/semiconducting MoTe2 interface to its atomic structures. Bo Han, Chen Yang, Xiaolong Xu, Yuehui Li, Ruochen Shi, Kaihui Liu, Haicheng Wang*, Yu Ye*, Jing Lu, Dapeng Yu, Peng Gao*. Natl. Sci. Rev., 8 (2) (2021).

34.    Valley pseudospin in monolayer MoSi2N4 and MoSi2As4. Chen Yang, Zhigang Song*, Xiaotian Sun, Jing Lu. Phys. Rev. B, 103 (3), 035308 (2021).

35.    Reaction Mechanism and Structural Evolution of Fluorographite Cathodes in Solid-State K/Na/Li Batteries. Zhengping Ding*, Chen Yang, Jian Zou, Shulin Chen, Ke Qu, Xiumei Ma, Jingmin Zhang, Jing Lu, Weifeng Wei, Peng Gao*, Liping Wang*. Adv. Mater., 33 (3), 2006118 (2021).

36.    In situ TEM revealing the effects of dislocations on lithium-ion migration in transition metal dichalcogenides. Ruiwen Shao*, Chengkai Yang, Chen Yang, Shulin Chen, Weikang Dong, Bairong Li, Xiumei Ma, Jing Lu, Lixin Dong, Peng Gao*, Dapeng Yu. J. Energy Chem., 58, 280-284 (2021).

37.    Bulk and surface degradation in layered Ni-rich cathode for Li ions batteries: Defect proliferation via chain reaction mechanism. Chengkai Yang*, Ruiwen Shao*, Qian Wang, Tianyi Zhou, Jing Lu, Ning Jiang, Peng Gao, Wen Liu, Yan Yu*, and Henghui Zhou*. Energy Storage Mater., 35:62-69 (2021).

38.    Anomalous heavy doping in chemical-vapor-deposited titanium trisulfide nanostructures. Mengxing Sun, Jingzhen Li, Qingqing Ji*, Yuxuan Lin, Jiangtao Wang, Cong Su, Ming-Hui Chiu, Yilin Sun, Huayan Si, Tomás Palacios, Jing Lu, Dan Xie*, and Jing Kong*. Phys. Rev. Mater.5(9):094002 (2021).

39.    Oxygen Vacancy-Induced Nonradical Degradation of Organics: Critical Trigger of Oxygen (O2) in the Fe–Co LDH/Peroxymonosulfate. Liying Wu, Zhiqiang Sun*, Yufei Zhen, Shishu Zhu, Chen Yang, Jing Lu, Yu Tian, Dan Zhong, Jun Ma*. System. Environ. Sci. Technol., 55(22):15400-15411 (2021).

 

 

2020

40.    A New Polyanion Na3Fe2(PO4)P2O7 Cathode with High Electrochemical Performance for Sodium-Ion Batteries, Yongjie Cao†, Chen Yang†, Yao Liu, Xiuping Xia, Deqiang Zhao, Yuanjie Cao, Haishen Yang, Junxi Zhang*, Jing Lu* and Yongyao Xia*, ACS Energy Lett., 5, 3788-3796 (2020)

41.    Gate-tunable high magnetoresistance in monolayer Fe3GeTe2 spin valves, Jie Yang, Ruge Quhe, Shiqi Liu, Yuxuan Peng, Xiaotian Sun, Liang Zha, Baochun Wu, Bowen Shi, Chen Yang, Junjie Shi, Guang Tian, Changsheng Wang, Jing Lu* and Jinbo Yang*, Phys. Chem. Chem. Phys., 22, 25730-25739 (2020)

42.    Sub-5-nm Monolayer Silicane Transistor: A First-Principles Quantum Transport Simulation, Yuanyuan Pan, Jingrou Dai, Lin Xu, Jie Yang, Xiuying Zhang, Jiahuan Yan, Jingzhen Li, Bowen Shi, Shiqi Liu, Han Hu, Mingbo Wu* and Jing Lu*, Phys. Rev. Appl. 14, 024016 (2020)

43.     Direct Observation of Li Migration into V5S8: Order to Antisite Disorder Intercalation Followed by the Topotactic-Based Conversion Reaction, Shulin Chen†, Chen Yang†, Ruiwen Shao, Jingjing Niu, Mei Wu, Jian Cao, Xiumei Ma, Jicai Feng, Xiaosong Wu, Jing Lu*, Liping Wang*, Junlei Qi*, Peng Gao*, ACS Appl. Mater. Interfaces 12 (32), 36320-36328 (2020).

44.     Sub-5 nm monolayer germanium selenide (GeSe) MOSFETs: towards a high performance and stable device, Ying Guo, Feng Pan, Gaoyang Zhao, Yajie Ren, Binbin Yao, Hong Li, Jing Lu*, Nanoscale 12 (28), 15443-15452 (2020).

45.    Crepe Cake Structured Layered Double Hydroxide/Sulfur/Graphene as a Positive Electrode Material for Li-S Batteries, Shengtang Liu, Xiuying Zhang, Shitao Wu, Xi Chen, Xiaojing Yang, Wenbo Yue*, Jing Lu*, Wuzong Zhou*, ACS nano 14 (7), 8220–8231 (2020).

46.    Performance Limit of Monolayer WSe2 Transistors; Significantly Outperform Their MoS2 Counterpart, Xiaotian Sun*, Lin Xu, Yu Zhang, Weizhou Wang*, Shiqi Liu, Chen Yang, Zhiyong Zhang, Jing Lu*, ACS Appl. Mater. Interfaces 12, 20633-20644 (2020).

47.    Holey graphite: A promising anode material with ultrahigh storage for lithium-ion battery, Chen Yang†, Xiuying Zhang†, Jingzhen Li, Jiachen Ma, Linqiang Xu, Jie Yang, Shiqi Liu, Shibo Fang, Ying Li, Xiaotian Sun, Xiaoyu Yang, Feng Pan, Jing Lu*, Dapeng Yu, Electrochim. Acta 346, 136244 (2020).

48.    First-principles simulation of monolayer hydrogen passivated Bi2O2S2-metal interfaces, Linqiang Xu†, Shiqi Liu†, Han Zhang, Xiuying Zhang, Jingzhen Li, Jiahuan Yan, Bowen Shi, Jie Yang, Chen Yang, Lianqiang Xu, Xiaotian Sun, Jing Lu*, Phys. Chem. Chem. Phys. 22, 7853-7863 (2020).

49.    Monolayer Honeycomb Borophene: A Promising Anode Material with a Record Capacity for Lithium-Ion and Sodium-Ion Batteries, Jingzhen Li, Georgios A. Tritsaris, Xiuying Zhang, Bowen Shi, Chen Yang, Shiqi Liu, Jie Yang, Linqiang Xu, Jinbo Yang, Feng Pan, Efthimios Kaxiras*, Jing Lu*, J. Electrochem. Soc. 167, 090527 (2020).

50.    Ohmic contact in graphene/SnSe2 Van Der Waals heterostructures and its device performance from ab initio simulation. Hong Li*, Peipei Xu, Jiakun Liang, Fengbin Liu, Jing Luo, Jing Lu*, J. Mater. Sci. 55, 4321-4331 (2020).

51.    Ohmic contacts of monolayer Tl2O field-effect transistors, Yuanyuan Pan, Jingrou Dai, Zihui Liu, Mingbo Wu*, Han Hu*, Jing Lu*, J. Mater. Sci. 55, 11439–11450 (2020).

52.    Device performance limits and negative capacitance of monolayer GeSe and GeTe tunneling field effect transistors, Peipei Xu, Jiakun Liang, Hong Li*, Fengbin Liu, Jun Tie, Zhiwei Jiao, Jing Luo, Jing Lu*, Rsc Adv. 10, 16071-16078 (2020).

53.    Two-dimensional single-layer PC6 as promising anode materials for Li-ion batteries: The first-principles calculations study, Jianning Zhang, Lianqiang Xu, Chen Yang, Xiuying Zhang, Ling Ma*, Min Zhang, Jing Lu*, Appl. Surf. Sci. 510, 145493 (2020).

54.    Ultrahigh Capacity of Monolayer Dumbbell C4N as a Promising Anode Material for Lithium-Ion Battery, Chen Yang, Xiuying Zhang, Jiachen Ma, Bowen Shi, Han Zhang, Linqiang Xu, Jie Yang, Shiqi Liu, Ruge Quhe, Feng Pan, Jing Lu*, Dapeng Yu, J. Electrochem. Soc. 167, 020538 (2020).

55.    Planar Direction-Dependent Interfacial Properties in Monolayer In2Se3-Metal Contacts, Chen Yang, Xiuying Zhang, Xiaotian Sun, Han Zhang, Hao Tang, Bowen Shi, Hua Pang, Linqiang Xu, Shiqi Liu, Jie Yang, Jiahuan Yan, Lin Xu, Zhiyong Zhang, Jinbo Yang, Dapeng Yu, Jing Lu*, Phys. Status Solidi BBasic Solid State Physics 257, 1900198 (2020).

56.    Imprinting Ferromagnetism and Superconductivity in Single Atomic Layers of Molecular Superlattices, Zejun Li†, Xiuying Zhang†, Xiaoxu Zhao, Jing Li, Tun Seng Herng, Haomin Xu, Fanrong Lin, Pin Lyu, Xinnan Peng, Wei Yu, Xiao Hai, Cheng Chen, Huimin Yang, Jens Martin, Jing Lu, Xin Luo, A. H. Castro Neto, Stephen J. Pennycook, Jun Ding, Yuanping Feng, Jiong Lu*, Adv. Mater. 1907645 (2020).

57.    Designing sub-10-nm Metal-Oxide-Semiconductor Field-Effect Transistors via Ballistic Transport and Disparate Effective Mass: The Case of Two-Dimensional BiN, Wenhan Zhou, Shengli Zhang*, Shiying Guo, Yangyang Wang, Jing Lu, Xing Ming, Zhi Li, Hengze Qu, Haibo Zeng*, Phys. Rev. Appl. 13, 044066 (2020).

 

 

2019

58.    High-performance sub-10 nm monolayer Bi2O2Se transistors, Ruge Quhe*, Junchen Liu, Jinxiong Wu, Jie Yang, Yangyang Wang, Qiuhui Li, Tianran Li, Ying Guo, Jinbo Yang, Hailin Peng, Ming Lei* and Jing Lu*, Nanoscale, 11, 532-540 (2019). ESI Highly Cited Paper

59.    A sub-10 nm monolayer ReS2 transistor for low-power applications, Ruge Quhe*, Jianxiu Chen and Jing Lu*, J. Mater. Chem. C, 7. 1 imaging the st604 (2019).

60.    Pervasive Ohmic Contacts in Bilayer Bi2O2Se-Metal Interfaces, Xu, Lianqiang; Liu, Shiqi; Yang, Jie; Shi, Bowen; Pan, Yuanyuan; Zhang, Xiuying; Li, Hong; Yan, Jiahuan; Li, Jingzhen; Xu, Linqiang; Yang, Jinbo; Lu, Jing*, J. Phys. Chem C 123(14), 8923-8931 (2019).

61.    Sub 10 nm Bilayer Bi2O2Se Transistors. Jie Yang, Ruge Quhe, Qiuhui Li, Shiqi Liu, Lianqiang Xu, Yuanyuan Pan, Han Zhang, Xiuying Zhang, Jingzhen Li, Jiahuan Yan, Bowen Shi, Hua Pang, Lin Xu, Zhiyong Zhang, Jing Lu* and Jinbo Yang*, Adv. Electron. Mater. 5, 1800720 (2019).

62.    Unusual Fermi‐Level Pinning and Ohmic Contact at Monolayer Bi2O2Se–Metal Interface, Shiqi Liu, Lianqiang Xu, Yuanyuan Pan, Jie Yang, Jingzhen Li, Xiuying Zhang, Lin Xu, Hua Pang, Jiahuan Yan, Bowen Shi, Xiaotian Sun, Han Zhang, Linqiang Xu, Jinbo Yang, Zhiyong Zhang, Feng Pan* and Jing Lu*, Adv. Theory Simul. 2, 1800178 (2019).

63.    Schottky Contact in Monolayer WSField‐Effect Transistors, Hao Tang, Bowen Shi, Yuanyuan Pan, Jingzhen Li, Xiuying Zhang,  Jiahuan Yan, Shiqi Liu, Jie Yang, Lianqiang Xu, Jinbo Yang, Mingbo Wu and Jing Lu*, Adv. Theory Simul. 2, 1900001 (2019).

64.    Sub-10 nm vertical tunneling transistors based on layered black phosphorene homojunction, Hong Li*, Jing Lu*, Applied Surface Science, 465 (28) 895-901 (2019).

65.    Sub-10 nm Tunneling Field Effect Transistors Based on Monolayer Group-IV Mono-Chalcogenides, Hong Li*, Peipei Xu, and Jing Lu*, Nanoscale 11, 23392 (2019).

66.    Excellent Device Performance of Sub-5-nm Monolayer Tellurene Transistors, Jiahuan Yan, Hua Pang, Lin Xu, Jie Yang, Ruge Quhe, Xiuying Zhang, Yuanyuan Pan, Bowen Shi, Shiqi Liu, Lianqiang Xu, Jinbo Yang, Feng Pan, Zhiyong Zhang, and Jing Lu*, Adv. Electron. Mater. 5, 1900226 (2019).

67.    Directly imaging the structure–property correlation of perovskites in crystalline microwires, Xiao-Wei Zhang, Zhen-Qian Yang, Jing-Zhen Li, Yu-Hao Deng, Yu-Min Hou, Yi-Fei Mao, Jing Lu*, and Ren-Min Ma*, J. Mater. Chem. A 7(21), 13305-13314 (2019).

68.    Monolayer GaS with high ion mobility and capacity as a promising anode battery material, Xiuying Zhang, Chen Yang, Yuanyuan Pan, Mouyi Weng, Linqiang Xu, Shiqi Liu, Jie Yang, Jiahuan Yan, Jingzhen Li, Bowen Shi, Jinbo Yang, Jiaxin Zheng, Feng Pan, and Jing Lu*, J. Mater. Chem. A, 7, 14042–14050 (2019).

69.    Sub‑5 nm Monolayer BiH Transistors, Meng Ye, Shiqi Liu, Han Zhang, Bowen Shi, Jingzhen Li, Xiuying Zhang, Jiahuan Yan, and Jing Lu*, ACS Appl. Elec. Mater. 1, 2103 (2019). 

70.    Computational Study of Ohmic Contact at Bilayer InSe-Metal Interfaces: Implications for Field-Effect Transistors, Lin Xu, Yuanyuan Pan, Shiqi Liu, Bowen Shi, Jie Yang, Jiahuan Yan, Hua Pang, Xiuying Zhang, Chen Yang, Jinbo Yang, Yangyang Wang, Zhiyong Zhang*, and Jing Lu*, ACS Appl. Nano mater. 2, 6898 (2019).

71.    Reexamination of the Schottky Barrier Heights in Monolayer MoS2 Field Effect Transistors, Yuanyuan Pan, Jihuan Gu, Hao Tang, Xiuying Zhang, Jingzhen Li, Bowen Shi, Jie Yang, Han Zhang, Jiahuan Yan, Shiqi Liu, Han Hu, Mingbo Wu, Jing Lu*, ACS Appl. Nano mater. 2, 4717 (2019).

72.    Adsorption and Diffusion of Lithium on Layered InSe, Xiuying Zhang, Sibai Li, Jingzhen Li, Meng Ye, Zhigang Song, Shan Jin, Bowen Shi, Yangyang Wang*, Jiaxin Zheng*, Feng Pan*, Jing Lu*, Comp. Condense Matter 21, e00404 (2019).

73.    Bilayer tellurene-metal interfaces, Hua Pang, Jiahuan Yan, Jie Yang, Shiqi Liu, Yuanyuan Pan, Xiuying Zhang, Jinbo Yang, Qihang Liu, Lianqiang Xu, Yangyang Wang, and Jing Lu*, Journal of Semiconductors 40(6), 062003-062003-10 (2019).

74.    Interfacial properties of monolayer antimonene devices, Han Zhang, Junhua Xiong, Meng Ye, Jingzhen Li, Xiuying Zhang, Ruge Quhe, Zhigang Song, Jinbo Yang, Qiaoxuan Zhang, Bowen Shi, Jiahuan Yan, Wanlin Guo, John Robertson, Yangyang Wang*, Feng Pan*, Jing Lu*, Phys. Rev. Appl. 11, 064001 (2019).

75.    Negative capacitance tunneling field effect transistors based on monolayer arsenene, antimonene, and bismuthene, Hong Li, Peipei Xu, Lin Xu, Zhiyong Zhang and Jing Lu*, Semicond. Sci. Technol. 34 085006 (2019).

76.    Anisotropic interfacial properties of monolayer GeSe—metal contacts, Ying Guo, Feng Pan, Yajie Ren, Yangyang Wang, Binbin Yao, Gaoyang Zhao and Jing Lu*, Semicond. Sci. Technol. 34, 095021 (2019).

77.    Nitrofullerene, a C60-based Bifunctional Additive with Smoothing and Protecting Effects for Stable Lithium Metal Anode, Zhipeng Jiang, Ziqi Zeng, Chengkai Yang, Zhilong Han, Wei Hu, Jing Lu and Jia Xie, Nano Lett. 19, 8780 (2019).

78.    Dendrite-Free Lithium Deposition via a Superfilling Mechanism for High-Performance Li-Metal Batteries, Qian Wang, Chengkai Yang, Jijin Yang, Kai Wu, Cejun Hu, Jing Lu, Wen Liu, Xiaoming Sun, Jingyi Qiu, and Henghui Zhou, Adv. Mater. 31, 1903248 (2019).

79.    Surface-Based Li+ Complex Enables Uniform Lithium Deposition for Stable Lithium Metal Anodes, Qian Wang, Chengkai Yang, Yufei Zhang, JiJin Yang, Kai Wu, Cejun Hu, Jing Lu, Wen Liu and Henghui Zhou, ACS Appl. Energy Mater. 2, 4602−4608 (2019).

80.    Tracking sodium migration in TiS2 using in situ TEM, Bo Han, Shulin Chen, Jian Zou, Ruiwen Shao, Zhipeng Dou, Chen Yang, Xiumei Ma, Jing Lu, Kaihui Liu, Dapeng YuLiping Wang, Haicheng Wang* and Peng Gao, Nanoscale, 11, 7474 (2019).

81.    Graphene Acoustic Phonon-Mediated Pseudo-Landau Levels Tailoring Probed by Scanning Tunneling Spectroscopy, Cheng Chi, Bowen Shi, Cong Liu, Yimin Kang, Li Lin, Meiling Jiang, Jing Lu, Bo Shen, Feng Lin, Hailin Peng, Zheyu Fang, Small 1905202 (2019).

 

 

2018

82.    Spontaneous valley splitting and valley pseudospin field effect transistors of monolayer VAgP2Se6,Zhigang Song, Xiaotian Sun, Jiaxin Zheng, Feng Pan, Yanglong Hou, Man-Hong Yung, Jinbo Yang* and Jing Lu*, Nanoscale, 10. 13986 (2018)

83.    N-type Ohmic contact and p-type Schottky contact of monolayer InSe transistors, Bowen Shi, Yangyang Wang, Jingzhen Li, Xiuying Zhang, Jiahuan Yan, Shiqi Liu, Jie Yang, Yuanyuan Pan, Han Zhang, Jinbo Yang, Feng Pan* and Jing Lu*, Phys. Chem. Chem. Phys., 20(38), 24641-24651 (2018).

84.    Sub-5 nm monolayer black phosphorene tunneling transistors, Hong Li*, Bowen Shi, Yuanyuan Pan, Jingzhen Li, Lin Xu, Lianqiang Xu, Zhiyong Zhang, Feng Pan and Jing Lu*, Nanotechnology, 29, 485202 (2018).

85.    N- and p-Type Ohmic Contacts at Monolayer Gallium Nitride-Metal Interfaces, Ying Guo, Feng Pan, Yajie Ren, Binbin Yao, Chuanghua Yang, Meng Ye, Yang Yang Wang, Jingzhen Li, Xiuying zhang, Jiahuan Yan, Jin-Bo Yang and Jing Lu*, Phys. Chem. Chem. Phys., 20(37), 24239-24249 (2018).

86.    Dependence of excited-state properties of tellurium on dimensionality: From bulk to two dimensions to one dimensions, Yuanyuan Pan, Shiyuan Gao, Li Yang*, and Jing Lu*, Phys. Rev. B 98, 085135 (2018).

87.    Simulations of Quantum Transport in Sub-5-nm Monolayer Phosphorene Transistors, Ruge Quhe, Qiuhui Li, Qiaoxuan Zhang, Yangyang Wang, Han Zhang, Jingzhen Li, Xiuying Zhang, Dongxue Chen, Kaihui Liu, Yu Ye, Lun Dai, Feng Pan, Ming Lei, and Jing Lu*, Phys. Rev. Appl. 10(2), 024022 (2018).

88.    Sub-5 nm Monolayer Arsenene and Antimonene Transistors, Xiaotian Sun, Zhigang Song, Yangyang Wang, Youyong Li, Weizhou Wang, Jing Lu*, ACS: Applied Materials & Interfaces, 10(26), 22363 (2018).

89.    Many-body Effect and Device Performance Limit of Monolayer InSe, Yangyang Wang, Ruixiang Fei, Ruge Quhe, Jingzhen Li, Han Zhang, Xiuying Zhang, Bowen Shi, Lin Xiao, Zhigang Song, Jinbo Yang, Jun-jie Shi, Feng Pan*, and Jing Lu*, ACS Applied Materials & Interfaces, 10(27), 23344 (2018).

90.    Monolayer Tellurene—Metal Contacts, Jiahuan Yan †, Xiuying Zhang †, Yuanyuan Pan, Jingzhen Li, Bowen Shi, Shiqi Liu, Jie Yang, Zhigang Song, Han Zhang, Meng Ye, Ruge Quhe, Yangyang Wang, Jinbo Yang, Feng Pan* and Jing Lu*, Journal of Materials Chemistry C, 6, 6153-6163 (2018).

91.    Gate-tunable interfacial properties of in-plane ML MX2 1T’–2H heterojunctions, Shiqi Liu†, Jingzhen Li †, Bowen Shi, Xiuying Zhang, Yuanyuan Pan, Meng Ye, Ruge Quhe, Yangyang Wang, Han Zhang, Jiahuan Yan, Linqiang Xu, Ying Guo, Feng Pan* and Jing Lu*, Journal of Materials Chemistry C, 6, 5651 (2018).

92.    Ohmic contacts between monolayer WSe2 and two-dimensional titanium carbides, Qiuhui Li†, Jie Yang†, Ruge Quhe*, Qiaoxuan Zhang, Lin Xu, Yuanyuan Pan, Ming Lei*, and Jing Lu*, Carbon, 135, 125 (2018).

93.    Three layer Phosphorene—Metal Interfaces, Xiuying Zhang†, Yuanyuan Pan†, Meng Ye, Ruge Quhe, Yangyang Wang, Ying Guo, Han Zhang, Yang Dan, Zhigang Song, Jinbo Yang Wanlin Guo, and Jing Lu*, Nano Research, 11, 707 (2018).

94.    Electrical Contacts in Monolayer Blue Phosphorene Devices, Jingzhen Li,† Xiaotian Sun,† Chengyong Xu, † Xiuying Zhang, Yuanyuan Pan, Meng Ye, Zhigang Song, Ruge Quhe, Yangyang Wang, Han Zhang, Ying Guo, Jinbo Yang, Feng Pan* and Jing Lu*, Nano Research, 11, 1834 (2018).

95.    High-performance sub-10 nm monolayer black phosphorene tunneling transistors, Hong Li*, Jun Tie, Jingzhen Li, Meng Ye, Han Zhang, Xiuying Zhang, Yuanyuan Pan, Yangyang Wang, Ruge Quhe, Feng Pan*, and Jing Lu*, Nano Research, 11, 2658 (2018).

96.    Interfacial Properties of Monolayer SnS-Metal Contacts, Sibai Li†, Weiji Xiao†, Yuanyuan Pan†, Jianshu Jie, Chao Xin, Jiaxin Zheng*, Jing Lu*, and Feng Pan*, Journal of Physical Chemistry C, 122(23),12322 (2018).

97.    Epitaxial Single-Layer MoSon GaN with Enhanced Valley Helicity, Y. Wan, J. Xiao, J. Z. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. G. Song, H. Zhang, Y. L. Wang, M. Zhao, J. Lu, N. Tang, G. Z. Ran, X. Zhang, Y. Ye,* L. Dai*, Advanced Materials, 30, 1703888 (2018). 

98.    Direct Observation of Semiconductor−Metal Phase Transition in Bilayer Tungsten Diselenide Induced by Potassium Surface Functionalization, Bo Lei†, Yuanyuan Pan†, Zehua Hu†, Jialin Zhang, Du Xiang, Yue Zheng, Rui Guo, Cheng Han, Lianhui Wang, Jing Lu, Li Yang*, and Wei Chen*, ACS Nano, 12, 2070 (2018).

99.    Enhancement of Photoluminescence and Hole Mobility in 1- to 5-Layer InSe due to the Top Valence-Band Inversion: Strain Effect, Meng Wu, Jun-jie Shi, Min Zhang, Pu Hang, Yi-min Ding, Hui Wang, Yu-lang Cen, Shu-hang Pan, Jing Lu, and Congxin Xia, Nanoscale, 10(24), 11441 (2018).

100. SnO2 quantum dots @ 3D sulfur-doped reduced graphene oxides as active and durable anode for lithium ion batteries, Kai Wu, Bowen Shi, Liya Qi, Yingying Mi, Binglu Zhao, Chengkai Yang, Qian Wang, Hui Tang, Jing Lu, Wen Liu*, Henghui Zhou*, Electrochim. Acta, 291, 24-30 (2018).

 

 

2017

101. Valley Pseudospin with a Widely Tunable Bandgap in Doped Honeycomb BN Monolayer, Zhigang Song, Ziwei Li, Hong Wang. Xuedong Bai, Wenlong Wang, Honglin Du, Sunquan Liu, Changsheng Wang, Jingzhi Han, Yingchang Yang, Zheng Liu, Jing Lu*, Zheyu Fang*, and Jinbo Yang*, Nano Letters 17, 2079 (2017).

102. Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene, Yangyang Wang, Pu Huang, Meng Ye, Ruge Quhe, Yuanyuan Pan, Han Zhang, Hongxia Zhong, Junjie Shi*, Jing Lu*, Chemistry of Materials 29, 2191 (2017).

103. Can a Black Phosphorus Schottky Barrier Transistor Be Good Enough? Ruge Quhe*, Xiyou Peng, Yuanyuan Pan, Meng Ye, Yangyang Wang, Han Zhang, Shenyan Feng, Qiaoxuan Zhang, Junjie Shi, Jinbo Yang, Dapeng Yu, Ming Lei*, and Jing Lu*, ACS: Applied Materials & Interfaces 9, 3959-3966 (2017).

104. Schottky Barriers in Bilayer Phosphorene Transistors, Yuanyuan Pan†, Yang Dan†, Yangyang Wang*, Meng Ye, Han Zhang, Ruge Quhe, Xiuying Zhang, Jingzhen Li, Wanlin Guo, Li Yang, and Jing Lu*, ACS: Applied Materials & Interfaces 9, 12694 (2017).

105. Monolayer Bismuthene-Metal Contacts:a Theoretical Study, Ying Guo*, Feng Pan, Meng Ye, Xiaotian Sun, Yangyang Wang*, Jingzhen Li, Xiuying Zhang, Han Zhang, Yuanyuan Pan, Zhigang Song, Jinbo Yang, Jing Lu*, ACS: Applied Materials & Interfaces 9, 2318, 2017.

106. Electrical Contacts in Monolayer Arsenene Devices, Yangyang Wang, * Meng Ye, † Mouyi Weng, Jingzhen Li, Xiuying Zhang, Han Zhang, Ying Guo, Yuanyuan Pan, Lin Xiao, Junku Liu, Feng Pan,* and Jing Lu*, ACS: Applied Materials & Interfaces 9, 2927, 2017.

107. Black Phosphorus Transistors with van der Waals–type Electrical Contacts, Ruge Quhe, Yangyang Wang, Meng Ye, Qiaoxuan Zhang, Jie Yang, Ming Lei* and Jing Lu*, Nanoscale 9, 14047 (2017).

108. Interfacial properties of borophene contacts with two-dimensional semiconductors, Jie Yang, Ruge Quhe*, Shenyan Feng, Zhang, Qiaoxuan Zhang, Ming Lei*, Jing Lu*, Phys Chem Chem Phys. 19, 23982 (2017).

109. A Computational Study of Monolayer 2H WTe2 - Metal Interfaces, Chol So†, Han Zhang†, Yangyang Wang, † Meng Ye, Yuanyuan Pan, Ruge Quhe, JingZhen Li, Xiuying Zhang, Yunsong Zhou, Jing Lu*, Phys. Status Solidi B, 1600837 (2017).

110. Electronic properties of layered phosphorus heterostructures, Ruge Quhe,   Shenyan Feng,   Jing Lu and   Ming Lei*, Phys Chem Chem Phys. 19, 1229(2017).

111. Electronic and Magnetic Properties Tuning of Armchair BC2N Nanoribbons by Edge Modification, Xiang Xiao, Jing Lu, Tun Tie, Hong Li*, Solid State Communications 257, 27 (2017).

112. Half metallicity in bare BC2N Nanoribbons with zigzag edges, Xiang Xiao, Jing Lu, Tun Tie, Hong Li*, Physics Letters A 381, 1820 (2017).

113.  Electronic and Magnetic Properties of Bare Armchair BC2N Nanoribbons, Xiang Xiao, Jun Tie, Jing Lu, Hong Li*, Journal of Magnetism and Magnetic Materials 426, 641 (2017).

 

 

2016

114. Rise of Silicene: a Competitive 2D Material, Progress in Materials Science, Jijun Zhao*, Hongsheng Liu, Zhiming Yu, Ruge Quhe, Si Zhou, Yangyang Wang, ChengCheng Liu, Hongxia Zhong, Nannan Han, Jing Lu*, Yugui Yao*, Kehui Wu* ,  Progress in Materials Science 83,24 (2016) (invited review). ESI Hot Paper, Highly Cited Paper

115. Monolayer Phosphorene Metal Contacts, Yuanyuan Pan, Yangyang Wang, Meng Ye, Ruge Quhe, Hongxia Zhong, Zhigang Song, Xiyou Peng, Dapeng Yu, Jinbo Yang, Junjie Shi, and Jing Lu*, Chemistry of Materials 28, 2100 (2016). ESI Highly Cited Paper

116. Does P-type Ohmic Contact Exist in WSe2-metal Interfaces? Yangyang Wang, RuoXi Yang, Ruge Quhe, Hongxia Zhong, Linxiao Cong, Meng Ye, Zeyuan Ni, Zhigang Song, Jinbo Yang, Junjie Shi, Ju Li, and Jing Lu*, Nanoscale 8, 1179 (2016). Highly Cited Paper

117. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations, Hongxia Zhong, # Ruge Quhe, # Yangyang Wang Zeyuan Ni, Meng Ye, Zhigang Song, Yuanyuan Pan, Jinbo Yang, Li Yang, Lei Ming, Junjie Shi* and Jing Lu*, Scientific Reports 6, 21786 (2016).  Highly Cited Paper

118. Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions, Han Zhang, Meng Ye, Yangyang Wang, Ruge Quhe, Yuanyuan Pan, Ying Guo, Zhigang Song, Jinbo Yang, Wanlin Guo, and Jing Lu*, Phys. Chem. Chem. Phys. 18, 16367 (2016).

119. Interfacial Properties of Monolayer MoSe2-Metal contacts, Yuanyuan Pan, Sibai Li, Meng Ye, Ruge Quhe, Zhigang Song, Yangyang Wang, Jiaxin Zheng, Feng Pan, Jinbo Yang, and Jing Lu*, J. Phys. Chem. C 120,13063(2016).

120. Does the Dirac Cone of Germanene Exist on Metal Substrates? Yangyang Wang, Jingzhen Li, Junhua Xiong, Yuanyuan Pan, Meng Ye, Ying Guo, Han Zhang, Ruge Quhe*, Jing Lu*, Phys. Chem. Chem. Phys. 18, 19451 (2016).

121. Performance Upper Limit of Sub-10 nm Monolayer MoS2 Transistors, Zeyuan Ni, Meng Ye, Jianhua Ma, Yangyang Wang, Ruge Quhe, Jiaxin Zheng, Lun Dai, Dapeng Yu, Junjie Shi, Jinbo Yang, Satoshi Watanabe, and Jing Lu*, Advanced Electronic Materials 1600191 (2016).

122. Interfacial Properties of Stanene-Metal Contacts, Ying Guo, Feng Pan, Meng Ye, Yangyang Wang, Yuanyuan Pan, Xiuying Zhang, Jingzhen Li, Han Zhang, Jing Lu*, 2D Materials 3, 035020 (2016).

123. Anomalous Light Emission and Wide Photoluminescence Spectra in Graphene Quantum Dot: Quantum Confinement from Edge Microstructure, Pu Huang, Jun-jie Shi*, Min Zhang, Xin-he Jiang, Hong-xia Zhong, Yi-min Ding, Xiong Cao, Meng Wu, and Jing Lu, J. Phys. Chem. Lett. 7, 2888 (2016).

124. Effect of edge modification on the zigzag BC2N nanoribbons, Xiang Xiao, Hong Li, Jun Tie, Jing Lu, Chem. Phys. Lett. 658, 234 (2016).

125. Origin of the wide band gap from 0.6 to 2.3 eV in photovoltaic material InN: quantum confinement from surface nanostructure, Pu Huang, Jun-jie Shi*, Ping Wang, Min Zhang, Yi-min Ding, Meng Wu, Jing Lu and Xin-qiang Wang, J. Mater. Chem. A 4, 17412 (2016).

126. Insights into the inner structure of high-nickel agglomerate as high-performance lithium-ions cathods, Cheng-Kai Yang, Li-Ya Qi, Zicheng Zuo, Ru-Na Wang, Meng Ye, Jing Lu, Heng-Hui Zhou*, Journal of Power Sources 331, 487 (2016).

127. Few-Layer Fe-3(PO4)(2).8H(2)O: Novel H-Bonded 2D Material and Its Abnormal Electronic Properties,  Sibai Li, Ruge Quhe, Mouyi Weng, Yancong Feng,  Yunxing Zuo, Weiji Xiao, Jiaxin Zheng*, Jing Lu, Feng Pan*, J. Phys. Chem. C. 120, 26278 (2016).

 

 

2015

128. Tunable Valley Polarization and Valley Orbital Magnetic Moment Hall Effect in Honeycomb Systems with Broken Inversion Symmetry, Zhigang Song, Ruge Quhe, Shunquan Liu,Yan Li, Ji Feng,YingchangYang, Jing Lu*, Jinbo Yang*, Scientific Reports 5:13906 (2015); DOI: 10.1038/srep13906 (2015).

129. Silicene Spintronics, Yangyang Wang, Ruge Quhe, Dapeng Yu, and Jing Lu*, Chinese Physics B 24, 087201 (2015) (invited review).

130. Silicene Transistors, Ruge Quhe, Yangyang Wang, and Jing Lu*, Chinese Physics B 24, 088105 (2015) (invited review).

131. Silicene on substrates: A theoretical perspective, HongXia Zhong, RuGe Quhe, YangYang Wang, JunJie Shi, Jing Lu*, Chinese Physics B 24, 087308 (2015) (invited review).

132. Graphdiyne-metal contacts and graphdiyne transistors, Yuanyuan Pan, Yangyang Wang, Lu Wang, Hongxia Zhong, Ruge Quhe, Zeyuan Ni, Meng Ye, Wai-Ning Mei, Junjie Shi, Wanlin Guo, Jinbo Yang *Jing Lu*, Nanoscale 7, 2116 (2015).

133. Silicene nanomesh, Fen Pan, Yangyang Wang, Kaili Jiang, Zeyuan Ni, Jianhua Ma, Jianxin Zheng, Ruge Quhe, Junjie Shi, Jinbo Yang, Changle Chen, Jing Lu*, Scientific Reports 5, 9075 (2015).

134. All-metallic Vertical Transistors Based on Stacked Dirac Materials, Yangyang Wang, Zeyuan Ni, Qihang Liu, Ruge Quhe, Jiaxin Zheng, Meng Ye, Dapeng Yu, Junjie Shi, Jinbo Yang, Ju Li, and Jing Lu*, Advanced Functional Materials, 25, 68 (2015).    

135. Origin of 3.45 eV Emission Line and Yellow Luminescence Band in GaN Nanowires: Surface Micro-Wire and Defect, Pu Huang, Hua Zong, Jun-jie Shi, Min Zhang, Xin-he Jiang, Hong-xia Zhong, Yi-min Ding, Ying-ping He, Jing Lu, and Xiao-dong Hu, Acs Nano 9, 9276 (2015).

136. Modeling of stacked 2D materials and devices, Xiaofeng Qian, Yangyang Wang, Wenbin Li, Jing Lu, and Ju Li, 2D Materials 2, 032003(2015).   

137. Electronic Properties of Halogen-Adsorbed Graphene, Chengyong Xu, Paul A. Brown, Jing Lu, Kevin L Shuford, J. Phys. Chem. C. 119, 17271 (2015).

138. Phase formations and magnetic properties of single crystal nickel ferrite IJNiFe2O4 with different morphologies, Aixian Shan, ab Xue Wu, Jing Lu, Chinping Chen* and Rongming Wang, CrystEngComn 17, 1603 (2015).

 

 

2014

139. Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX (X = H, F, Cl, and Br) monolayers with a record bulk band gap, Zhigang Song, Cheng-Cheng Liu, Jinbo Yang*, Jingzhi Han, Meng Ye, Botao Fu, Yingchang Yang, Qian Niu, Jing Lu* & Yugui Yao *, NPG Asia Materials 6, e147 (2014). Highly Cited Paper

140. Does the Dirac Cone Exist in Silicene on Metal Substrates? Ruge Quhe, Yakun Yuan, Jiaxin Zheng, Yangyang Wang, Zeyuan Ni, Junjie Shi, Dapeng Yu, Jinbo Yang*, Jing Lu*, Scientific Reports 4, 5476 (2014).

141. Tunable Band Gap and Doping Type in Silicene by Surface Adsorption: towards Tunneling Transistors, Zeyuan Ni, Hongxia Zhong, Xinhe Jiang, Ruge Quhe, Guangfu Luo, Yangyang Wang, Meng Ye, Jinbo Yang,* Junjie Shi,* and Jing Lu*, Nanoscale 6, 7609 (2014).

142. Gate-induced half-metallicity in semihydrogenated silicene, Feng Pan, Ruge Quhe, Qi Ge, Jiaxin Zheng, Zeyuan Ni, Yangyang Wang, Zhengxiang Gao, Lu Wang, and Jing Lu*, Physica E 56, 43(2014).

143. Strong Band Hybridization between Silicene and Ag (111) Substrate, Yakun Yuan, Ruge Quhe, Jiaxin Zheng, Yangyang Wang, Zeyuan Ni, Junjie Shi, and Jing Lu*, Physica E 58, 38 (2014).

144. Tunable band gap in germanene by surface adsorption, Meng Ye, Ruge Quhe, Jiaxin Zheng, Zeyuan Ni, Yangyang Wang, Yakun Yuan, H. Y. Geoffrey Tse, Junjie Shi, Zhengxiang Gao, and Jing Lu*, Physica E 59, 60(2014).

145. Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures, by Jiaming Wang, Fujun Xu, Xia Zhang, Wei An, Xin-Zheng Li, Jie Song, Weikun Ge, Guangshan Tian, Jing Lu, Xinqiang Wang, Ning Tang, Zhijian Yang, Wei Li, Weiying Wang, Peng Jin, Yonghai Chen, and Bo Shen, Scientific Reports 4, 6521(2014).

146. Photochemical Behavior of Single-Walled Carbon Nanotubes in the Presence of  Propylamine,Yutaka Maeda,* Yuhei Hasuike, Kei Ohkubo, Atsushi Tashiro, Shinya Kaneko, Masayuki Kikuta, Michio Yamada, Tadashi Hasegawa, Takeshi Akasaka,Jing Zhou, Jing Lu, Shigeru Nagase,and Shunichi Fukuzumi,CHEMPHYSCHEM 15, 1821(2014).

147. First-principle calculation and assignment for vibrational spectra of Ba(Mg1/3Nb2/3)O3 microwave dielectric ceramic, Chuan-Ling Diao, Chun-Hai Wang, Neng-Neng Luo, Ze-Ming Qi, Tao Shao, Yu-Yin Wang, Jing Lu, Quan-Chao Wang, Xiao-Jun Kuang, Liang Fang, Feng Shi, and Xi-Ping Jing, J. Appl. Phys. 115, 114103 (2014).

148. Band edge modulation and interband optical transition in AlN: MgAl-ON nanotubes, Huang, Pu; Shi, Jun-Jie; Zhang, Min; Jiang, Xin-he; Zhong, Hong-xia; Ding, Yi-min; Lu, Jing; Wang, Xihua, Materials Research Express 1, 025030 (2014).

149. Enhancement of TE polarized light extraction efficiency in nanoscale (AlN)(m)/(GaN)(n) (m>n) superlattice substitution for Al-rich AlGaN disorder alloy: ultra-thin GaN layer modulation, X Jiang, J Shi, M Zhang, H Zhong, P Hang, Y Ding, T Yu, B Shen, Jing Lu, X Wang, New J Phys 16, 113065 (2014).

 

 

2013

150. Interfacial Properties of Bilayer and Trilayer Graphene on Metal Substrates, Jiaxin Zheng, Yangyang Wang, Lu Wang, Ruge Quhe, Zeyuan Ni, Wai-Ning Mei, Zhengxiang Gao, Dapeng Yu, Junjie Shi, and Jing Lu*, Scientific Reports 3, 2081 (2013).

151. Tunable band gap in few-layer graphene by surface adsorption, Ruge Quhe, Jianhua Ma, Zesheng Zeng, Kechao Tang, Jiaxin Zheng, Yangyang Wang, Zeyuan Ni, Lu Wang, Zhengxiang Gao, Junjie Shi, and Jing Lu*, Scientific Reports 3, 1794 (2013).

152. Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation, Jiaxin Zheng, Lu Wang, Ruge Quhe, Qihang Liu, Hong Li, Dapeng Yu, Wai-Ning Mei, Junjie Shi, Zhengxiang Gao, and Jing Lu*, Scientific Reports, 3, 1314 (2013).

153. Sign-Changeable Spin-filter Efficiency in Linear Carbon Atomic Chain, Jiaxin Zheng, Chengyong Xu, Lu Wang, Qiye Zheng, Hong Li, Qihang Liu, Ruge Quhe, Zhengxiang Gao, Junjie Shi, and Jing Lu*, Physica E 48, 101 (2013).

154. Enhanced many-body effects in one-dimensional linear atomic chains, Ruixiang Fei, Guangfu Luo, Yangyang Wang, Zhengxiang Gao, Shigeru Nagase, Dapeng Yu, and Jing Lu*, Phys. Status Solidi B 250, 8, 1636 (2013).

155. Structural, Electronic, and Optical Properties of Bulk Graphdiyne, Guangfu Luo, Qiye Zheng, Wai-Ning Mei, Jing Lu*, Shigeru, Nagase*, J. Phys. Chem. C 117, 13072 (2013).

156. Intrinsic Region Length Scaling of Heavily Doped Carbon Nanotube p-i-n Junctions, Zheng Li, Jiaxin Zheng, Zeyuan Ni, Ruge Quhe, Yangyang Wang, Zhengxiang Gao, and Jing Lu*, Nanoscale 6, 6999 (2013).

157. Helicity Selective Photoreaction of Single-walled Carbon Nanotubes with Organosulfur Compounds in the Presence of Oxygen, Yutaka Maeda* Junki Higo, Yuri Amagai, Jun Matsui, Kei Ohkubo, Yusuke Yoshigoe, Masahiro, Hashimoto, Kazuhiro Eguchi, Michio Yamada, Tadashi Hasegawa, Yoshinori Sato, Jing Zhou, Jing Lu, Tokuji Miyashita, Shunichi Fukuzumi, Tatsuya Murakami, Kazuyuki Tohji, Shigeru Nagase, Takeshi, Akasaka*, J. Am. Chem. Soc. 135, 6356 (2013).

158. Adsorption configurations of carbon monoxide on gold monolayer supported by graphene or monolayer hexagonal boron nitride: a first-principles study, Jiaxin Zheng, Lu Wang, Khabibulakh Katsiev, Yaroslav Losovyj, Elio Vescovo, D. Wayne Goodman, Peter A. Dowben, Jing Lu and Wai-Ning Mei, Eur. Phys. J. B 86, 441 (2013).

159. Electronic structures and properties of lanthanide hexaboride nanowires, Lu Wang, Guangfu Luo, Daniel Valencia, Carlos H. Sierra Llavina, R. Sabirianov, Jing Lu, J. Q. Lu, W. N. Mei, C. L. Cheung, J. Appl. Phys. 114, 143709 (2013).

160. First-Principle Calculation and Assignment for Vibrational Spectra of Ba(Mg1/2W1/2)O3 Microwave Dielectric Ceramic, Chuan-Ling Diao, Chun-Hai Wang, Neng-Neng Luo, Ze-Ming Qi, Tao Shao, Yu-Yin Wang, Jing Lu, Feng Shi, and Xi-Ping Jing, J. Am. Ceram. Soc. 96, 2898 (2013).

 

 

2012

161. Tunable band gap in silicene and germanene, Zeyuan Ni, Qihang Liu, Kechao Tang, Jiaxin Zheng, Jing Zhou, Rui Qin, Zhengxiang Gao, Dapeng Yu, Jing Lu*, Nano Letters. 12, 113 (2012). ESI Highly Cited Paper

162. Tunable and Sizable Band Gap of Single Layer Graphene Sandwiched between Hexagonal Boron Nitride, Ruge Quhe, Jiaxin Zheng, Guangfu Luo, Qihang Liu, Rui Qin, Jing Zhou, Dapeng Yu, Shigeru Nagase, Wai-Ning Mei, Zhengxiang Gao, and Jing Lu*, NPG Asia Materials 4, e6 (2012).

163. Tunable and sizable band gap in silicene by surface adsorption, Ruge Quhe, Ruixiang Fei, Qihang Liu, Jiaxin Zheng, Hong Li, Chengyong Xu, Zeyuan Ni, Yangyang Wang, Dapeng Yu, Zhengxiang Gao, and Jing Lu*, Scientific Reports 2, 853 (2012).

164. Tunable Charge-transport Property of Ih–C80 Endohedral Metallofullerenes: Investigation of La2@C80, Sc3N@C80, and Sc3C2@C80, Satoru Sato, Shu Seki*, Guangfu Luo, Mitsuaki Suzuki, Jing Lu*, Shigeru Nagase* and Takeshi Akasaka*, J. Am. Chem. Soc. 134, 11681 (2012).

165. Co–crystal of Paramagnetic Endohedral Metallofullerene La@C82 and Nickel Porphyrin with High Electronic Mobility, Satoru Sato*, Hidefumi Nikawa, Shu Seki, Lu Wang, Guangfu Luo, Jing Lu*, Masayuki Haranaka, Takahiro Tsuchiya, Shigeru Nagase* and Takeshi Akasaka*, Angewandte Chemie 7, 1589 (2012).

166.   Tuning Electronic Structure of Bilayer MoSby Vertical Electric Field: A First-Principles Investigation, Qihang Liu, Linze Li, Yafei Li, Zhengxiang Gao, Zhongfang Chen* and Jing Lu*, J. Phys. Chem. C. 116, 21556 (2012).

167. Giant magnetoresistance in silicene nanoribbons, Chengyong Xu, Guangfu Luo, Qihang Liu, Jiaxin Zheng, Zhimeng Zhang, Shigeru Nagase, Zhengxiang Gao, and Jing Lu*, Nanoscale 4,3111 (2012).

168. Structural and Electronic Properties of Bilayer and Trilayer Graphdiyne, Qiye Zheng, Guangfu Luo, Qihang Liu, Ruge Quhe, Jiaxin Zheng, Kechao Tang, Zhengxiang Gao, Shigeru Nagase, and Jing Lu*, Nanoscale 4,3990 (2012).

169. Electromechanical Switch in Metallic Graphene Nanoribbons via Twisting, Hong Li, Nabil Al-Aqtash, Lu Wang, Rui Qin, Qihang Liu, Wai-Ning Mei, R.F. Sabirianov, Zhengxiang Gao, and Jing Lu*, Physica E 44, 2021 (2012).

170. High Performance Silicene Nanoribbon Field Effect Transistors with Current Saturation, Hong Li, Lu Wang, Qihang Liu, Jiaxin Zheng, Wai-Ning Mei, Zhengxiang Gao, Junjie Shi, and Jing Lu*, The European Physical Journal B 85, 274 (2012).

171. Half-Metallic Silicene and Germanene Nanoribbons: towards High-Performance Spintronics Device, Yangyang Wang, Jiaxin Zheng, Zeyuan Ni, Ruixiang Fei, Qihang Liu, Ruge Quhe, Chengyong Xu, Jing Zhou, Zhengxiang Gao, and Jing Lu*, Nano 7, 1250037 (2012).

172. Electronic and transport properties of a biased multilayer hexagonal boron nitride, Kechao Tang, Zeyuan Ni, Qihang Liu­, Ruge Quhe, Qiye Zheng­, Jiaxin Zheng, Ruixiang Fei, Zhengxiang Gao, and Jing Lu*, The European Physical Journal B 85, 301 (2012).

173. Electrically Controlled Electron Transfer and Resistance Switching in Graphene Oxide Noncovalently Functionalized with Dye, Benlin Hu, Ruge Quhe, Cao Chen, Fei Zhuge, Xiaojian Zhu, Shanshan Peng, Xinxin Chen, Liang Pan, Yuanzhao Wu, Wenge Zheng, Qing Yan, Jing Lu, and Run-Wei Li*, J. Mater. Chem. 22, 16422 (2012).

174. Electron Transport through Single Endohedral Ce@C82 Metallofullerenes, Manabu Kiguchi*, Satoshi, Kaneko, Lu Wang, Jing Lu, Shigeru Nagase*, Satoru Sato, Michio Yamada, Zdenek Slanina, Takeshi Akasaka*, Phys. Rev. B, 86, 155406 (2012).

175. Interaction of single-walled carbon nanotubes with amine, Yutaka Maeda, Michio Yamada, Tadashi, Hasegawa, Takeshi Akasaka, Jing Lu, Shigeru Nagase, Nano 7, 130001 (2012).

 

 

2011

176. Functionalized Graphene for High Performance Two-dimensional Spintronics Devices, Linze Li, Rui Qin, Hong Li, Lili Yu, Qihang Liu, Guangfu Luo, Zhengxiang Gao, and Jing Lu*, ACS NANO 4, 2061 (2011).

177. Semi-metallic Single-component Crystal of Soluble La@C82 Derivative with High Electron Mobility, Satoru Sato, Shu Seki, Yoshihito Honsho, Guangfu Luo, Lu Wang, Jing Lu, Hidefumi Nikawa, Masayuki Haranaka, Takahiro Tsuchiya, Shigeru Nagase and Takeshi Akasaka*, J. Am. Chem. Soc. 133, 2766 (2011).

178. Polarized Nonresonant Raman Spectra of Graphene Nanoribbons, Guangfu Luo, Lu Wang, Hong Li, Rui Qin, Jing Zhou, Linze Li, Zhengxiang Gao, Wai-Ning Mei, Jing Lu*, and Shigeru Nagase*, J. Phys. Chem. C. 115, 24463 (2011).

179. Structure, Electronic, and Transport Properties of Transition Metal Intercalated Graphene and Graphene-Hexagonal-Boron-Nitride Bilayer, Jing Zhou, Lu Wang, Rui Qin, Jiaxin Zheng, Wai Ning Mei, * P. A. Dowben, Shigeru Nagase, Zhengxiang Gao, and Jing Lu*, J. Phys. Chem. C. 114, 15347 (2011).

180. Tuning Graphene Nanoribbon Field Effect Transistors via Controlling Doping Level, Lu Wang, Jiaxin Zheng, Jing Zhou, Rui Qin, Hong Li, Wai-Ning Mei, Shigeru Nagase, and Jing Lu*, Theoretical Chemistry Accounts 130, 483 (2011).

181. Sign-changeable spin-filter efficiency and giant magnetoresistance in seamless graphene nanoribbon junctions,Chengyong Xu, Linze Li, Hong Li, Rui Qin, Jiaxin Zheng, Zhengxiang Gao,and Jing Lu*, Comp. Mater. Sci. 50,2886 (2011).

182. Electric-Field-Induced Energy Gap in Few-Layer Graphene, Kechao Tang, Rui Qin, Jing Zhou, Heruge Qu, Jiaxin Zheng, Ruixiang Fei, Hong Li, Qiye Zheng, Zhengxiang Gao, and Jing Lu*, J. Phys. Chem. C 115, 9458 (2011).

183. Half Metallicity in BC2N Nanoribbons: Stability, Electronic Struc-tures, and Magnetism, Lin Lai and Jing Lu*, Nanoscale 3, 2583 (2011).

184. Negative Differential Resistance in Parallel Single-walled Carbon Nanotube Contacts Qihang Liu, Rui Qin, Jing Zhou, Hong Li, Chengyong Xu, Lin Lai, Guangfu Luo, Jing Lu*, Shimin Hou, Enge Wang, and Zhengxiang Gao, Phys. Rev. B 83, 155442 (2011).

185. All-Metallic High Performance Field Effect Transistor Based on Telescoping Carbon Nanotubes: An ab Initio Study, Qihang Liu, Lili Yu, Hong Li, Rui Qin, Zhou Jing, Jiaxin Zheng, Zhengxiang Gao, and Jing Lu*, J. Phys. Chem. C 115, 6933 (2011).

186. Quasiparticle Energies and Excitonic Effects of Graphdiyne: Theory and Experiment, Guangfu Luo, Xuemin Qian, Huibiao Liu, Rui Qin, Jing Zhou, Linze Li, Zhengxiang Gao, Enge Wang, Wai-Ning Mei, Jing Lu*, Yuliang Li* and Shigeru Nagase*, Phys. Rev. B 84,075439 (2011).

187. Family-Dependent Rectification Characteristics in Ultra-Short Graphene Nanoribbon p-n Junctions, Jiaxin Zheng, Xin Yan, Lili Yu, Hong Li, Rui Qin, Guangfu Luo, Zhengxiang Gao, Dapeng Yu, and Jing Lu*, J. Phys. Chem. C 115, 8547 (2011).

188. Negative rectification and negative differential resistance in nanoscale single-walled carbon nanotube p-n junctions, Lili Yu, Xin Yan, Hong Li, Rui Qin, Guangfu Luo, Chengyong Xu, Jiaxin Zheng, Qihang Liu, Jing Lu*, Zhengxiang Gao, and Xuefeng Wang, Theoretical Chemistry Accounts 130, 353 (2011).

189. Structural, Electronic and Magnetic Properties of Ultra-narrow NbSe2 Nanoribbons, Kai Ji, Lili Yu, Jing Lu*, Hong Li, Guangfu Luo, Jing Zhou, Rui Qin, Qihang Liu, Lin Lai, and Zhengxiang Gao, J. Nanosci Nanotech 11, 2075 (2011). 

190. Ultra-narrow WS2 Nanoribbons Encapsulated in Carbon Nanotubes, Zhiyong Wang, Keke Zhao, Hong Li, Zheng Liu, Zujin Shi,* Jing Lu*, Kazu Suenaga,* Soon-Kil Joung, Toshiya Okazaki, Zhaoxia Jin,Zhennan Gu, Zhengxiang Gao, and Sumio Iijima, J Materials Chemistry 21, 171(2011).

191. Preparation and characterization of transparent and conductive thin films of single-walled carbon nanotubes, Yutaka Maeda, Kazuki Komoriya, Katsuya Sode, Junki Higo, Takayuki Nakamura, Michio Yamada, Tadashi Hasegawa, Takeshi Akasaka*, Takeshi Saito, Jing Lu and Shigeru Nagase, Nanoscale 3, 1904 (2011).

192. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach, H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R.Q. Han, J. Kang, B. Yu, Appl. Phys. Lett. 98, 042105 (2011).

 

 

2010

193. Mixed Low-dimensional Nanomaterial: 2D MoS2 Inorganic Nanoribbons Encapsulated in Quasi-1D Carbon Nanotubes, Zhiyong Wang, Hong Li, Zheng Liu, Zujin Shi*, Jing Lu*, Kazu Suenaga*, Soon-Kil Joung, Toshiya Okazaki, Zhennan Gu, Jing Zhou, Zhengxiang Gao, Guangping Li, Stefano Sanvito, Enge Wang, and Sumio Iijima, J. Am. Chem. Soc.132, 13840 (2010).

194. Functionalized Metallic Single-Walled Carbon Nanotubes as High Performance Single-Molecule Organic Field Effect Transistor: an ab Initio study, Hong Li, Xin Yan, Guangfu Luo, Rui Qin, Qihang Liu, Lili Yu, Chengyong Xu, Jiaxin Zheng, Jing Zhou, Jing Lu*, Zhengxiang Gao, Shigeru Nagase, and Wai Ning Mei, J. Phys. Chem. C 114, 15816 (2010)  Highlighted by Nature Asia Materials

195. Half-Metallic Sandwich Organometallic Molecular Wires with Negative Differential Resistance and Sign-Changeable High Spin-filter Efficiency, Lu Wang, Xingfa Gao, Xin Yan, Jing Lu*, Zhengxiang Gao, Shigeru Nagase* and Stefano Sanvito, J. Phys. Chem. C 114, 21893 (2010).

196. Structural, Electronic and Transport Properties of Gd/Eu Atomic Chains Encapsulated in Single-walled Carbon Nanotubes, Jing Zhou, Xin Yan, Guangfu Luo, Rui Qin, Hong Li, Jing Lu*, Wai Ning Mei, * and Zhengxiang Gao, J. Phys. Chem. C 114, 15347(2010).

197. Room-temperature giant magnetoresistance over one billion percent in bare graphene nanoribbon device Rui Qin, Jing Lu*, Lin Lai, Jing Zhou, Hong Li, Qihang Liu, Guangfu Luo, Lina Zhao, Zhengxiang Gao, Wai Ning Mei, and Guangping Li, Phys. Rev. B 81, 233403 (2010).

198. Electron localization and emission mechanism in wurtzite (Al, In, Ga)N alloys, Qihang Liu, Jing Lu*, Zhengxiang Gao, Lin Lai, Rui Rin, Hong Li, Jing Zhou, Guangping Li, Physica Status Solidi B 247, 109 (2010).

199. Polarized Vibrational Infrared Absorption of Graphene Nanoribbons, Guangfu Luo, Jing Lu*, Wai-Ning Mei, Lu Wang, Lin Lai, Jing Zhou, Rui Qin, Hong Li, and Zhengxiang Gao, J. Phys. Chem. C 114, 6959 (2010).

200. Electronic structure and stability of Ultranarrow Single-layer SnS2 Nanoribbons: a First-Principles Study, Linze Li, Hong Li, Jing Zhou, Jing Lu*, Rui Qin, Zhengxiang Gao, and Wai Ning Mei, J. Compu. Theore. Nanoscience 7, 2100(2010).

201. Selection of Single-Walled Carbon Nanotubes According to both Their Diameter and Chirality via Nanotweezers, Jing Zhou, Hong Li, Jing Lu*, Guangfu Luo, Lin Lai, Rui Qin, Lu Wang, Shigeru Nagase, Zhengxiang Gao* Wai Ning Mei, Guangping Li, Dapeng Yu, and Stefano Sanvito, Nano Research 3, 296 (2010).

202. Separation of metallic single-walled carbon nanotubes using various amines, Y. Maeda, K. Komoriya, K. Sode, M. Kanda, M. Yamada, T. Hasegawa, T. Akasaka, J. Lu, S. Nagase, Physica Status Solidi B 247,2641 (2010).

203. Insights into the local electronic structure of semiconducting boron carbides in the vicinity of transition metal dopants, Guangfu Luo, Jing Lu, Jing Liu, Wai-Ning Mei, Peter A, Dowben, Materials Science and Engineering B 175, 1 (2010).

204. Ionic doping effect in ZrO2 resistive switching memory, H. W. Zhang, B. Gao, S. Yu, L. Zeng, L. F. Liu, X.Y. Liu, Y. Wang, J. Lu, R.Q. Han, J.F. Kang*, Appl. Phys. Lett 96, 123502 (2010).

205. Two-Step Alkylation of Single-Walled Carbon Nanotubes: Substituent Effect on Sidewall Functionalization, Yutaka Maeda, Takaaki Kato, Tadashi Hasegawa, Masahiro Kako, Takeshi Akasaka, Jing Lu, and Shigeru Nagase, Organic Lett 12, 996 (2010).

206. First-principles study of the formation mechanisms of nitrogen molecule in annealed ZnO,Jingyun Gao, Rui Qin, Guangfu Luo, Jing Lu, Y Leprince-Wang, Hengqiang Ye, Zhimin Liao, Qing Zhao*, Dapeng Yu*. Phys. Lett. A. 374, 3546, (2010)

 

 

2009

207. Electronic type- and diameter-dependent reduction of single-walled carbon nanotubes induced by adsorption of electron donor molecules, Jing Zhou, Yutaka Maeda, Jing Lu*, Atsushi Tashiro, Tadashi Hasegawa, Guangfu Luo, Lu Wang, Lin Lai, Takeshi Akasaka*, Shigeru Nagase,* Zhengxiang Gao,* Rui Qin, Wai Ning Mei, Guangping Li, Dapeng Yu, Small 5, 244 (2009).

208. A facile, low-cost and scalable method of selective etching semiconducting single-walled carbon nanotubes by a gas reaction, Y. Liu*, H. Zhang, L. Cao, D. Wei, Dr. Y. Wang, H. Kajiura*, Dr. Y. Li, K. Noda, G. Luo, L. Wang, J. Zhou, J. Lu*, Z. Gao, Advanced Materials 21, 813 (2009).

209. Magnetism in carbon nanoscrolls: quasi-half-metal and half-metal in pristine hydrocarbon, Lin Lai, Jing Lu*, Lu Wang, Guangfu Luo, Jing Zhou, Rui Qin, Yu Chen, Hong Li, Zhengxiang Gao,Guangping Li, Wai Ning Mei, Yutaka Maeda, Takeshi Akasaka, and Stefano Sanvito, Nano Research, 2, 844(2009). 

210. Origin of p-Type Doping in Zinc Oxide Nanowires Induced by Phosphorus Doping: A First Principles Study, Rui Qin, JX Zheng, J. Lu*, Lu. Wang, L. Lai, GF. Luo, J. Zhou, H.Li, ZX. Gao*, GP. Li, WN, Mei, J. Phys. Chem. C 113, 9541 (2009).

211. Optical Absorption Spectra of Charge-Doped Single-Walled Carbon Nanotubes from First-Principles Calculations, GF. Luo, J. Lu*, WN, Mei, L. Lai, J. Zhou, Rui Qin, H. Li, ZX. Gao, J. Phys. Chem.C 113, 7058 (2009).

212. Adsorption of Nucleic Acid Bases and Amino Acids on Single-Walled Carbon and Boron Nitride Nanotubes: A First-Principles Study, Jiaxin Zheng, Lu Wang, Jing Lu*, Wei Song, Guangfu Luo, Jing Zhou, Rui Qin, Hong Li, Zhengxiang Gao, Lin Lai, Guangping Li, Wai Ning Mei, Journal of Nanoscience and Nanotechnology, 9, 6376 (2009).

213. Study on the Dispersion of Charged Single-Wall Carbon Nanotube Bundles by First Principles Calculation, Wenshuo Liu, Lu Wang, Lin Lai, Guangfu Luo, Jing Lu*, Zhengxiang Gao, Journal of Nanoscience and Nanotechnology, 9, 5170 (2009).

214. Magnetic properties of fully- and half-bare boron nitride nanoribbons, Lin Lai, Jing Lu*, Lu Wang, Guangfu Luo, Jing Zhou, Rui Qin, Zhengxiang Gao*, Wai Ning Mei, J. Phys. Chem. C 113, 2273 (2009).

215. Stability, Electronic Structure, and Optical Property of Surface Passivated Silicon Nanowires: Density Functional Calculation, Chen, RY,  Wang, L,  Lai, LJ. Lu*  Luo, GF,  Zhou, J , Gao, ZX, J. Nanosci. Nanotech., 9, 1754 (2009).

216. Tuning of Electronic Properties of Single-Walled Carbon Nanotubes under Homogenous Conditions, Y. Maeda, A. Sagara, M. Hashimoto, Y. Hirashima, K. Sode, T. Hasegawa, M. Kanda, MO. Ishitsuka, T. Tsuchiya, T. Akasaka, T. Okazaki, H. Kataura, J. Lu, S.Nagase, S. Takeuchi, ChemPhysChem. 10, 926 (2009).

217. XRD and Raman Studies on the Ordering/Disordering of Ba(Mg1/3Ta2/3)O-3, CH, Wang, XP Jing, Lu Wang, Jing Lu, J. Amer. Ceramic Soc. 92, 1547 (2009).

218. Effects of Ionic Doping on the Behaviors of Oxygen Vacancies in HfO2 and ZrO2: A First Principles Study. Haowei Zhang, Bin Gao, Shimeng Yu, Lin Lai, Lang Zeng, Bing Sun, Lifeng Liu, Xiaoyan Liu, Jing Lu, Ruqi Han, Jinfeng Kang*, 2009 International Conference on Simulation of Semiconductor Processes and Devices, 1-4 (2009).

219. Magnetic properties of undoped Cu2O fine powders with magnetic impurities and/or cation vacancies, Chinping Chen*, Lin He, Lin Lai, Hua Zhang, Jing Lu, Lin Guo*, Yadong Li, Journal of Physics: Condensed Matter 21 (14), 145601, (2009).

220. Electronic and mechanical coupling in bent ZnO nanowires, Xiaobing Han, Liangzhi Kou, Xiaoli Lang, Jianbai Xia, Ning Wang, Rui Qin, Jing Lu, Jun Xu, Zhimin Liao, Xinzheng Zhang, Xudong Shan, Xuefeng Song, Jingyun Gao, Wanlin Guo*, and Dapeng Yu*, Advanced Materials, 21, 4937 (2009).

 

 

2008

221. Novel One-Dimensional Organometallic Half Metals: Vanadium-Cyclopentadienyl, Vanadium-Cyclopentadienyl-Benzene, and Vanadium-Anthracene Wires: Lu Wang, Zixing Cai, Junyu Wang, Jing Lu*, Guangfu Luo, Lin Lai, Jing Zhou, Rui Qin, Zhengxiang Gao*, Dapeng Yu, Guangping Li, Wai Ning Mei, and Stefano Sanvito, Nano Lett. 8, 3640 (2008).

222. First-principles calculation of 13C NMR chemical shifts of infinite single-walled carbon nanotubes:New data for large-diameter and four helical nanotubes, Lin Lai, Jing Lu*, Wei Song, Ming Ni, Lu Wang, Guangfu Luo, Jing Zhou, Wai Ning Mei, Zhengxiang Gao*, Dapeng Yu, J. Phys. Chem. C 112, 16417 (2008).

223. Tuning of Hole Doping Level of Iodine-Encapsulated Single-Walled Carbon Nanotubes by Temperature Adjusting, Zhiyong Wang, Lu Wang, Zujin Shi,* Jing Lu* and Zhennan Gu, Zhengxiang Gao, Chem. Comm. 29, 3429 (2008)

224. Selective adsorption of cations on single-walled carbon nanotubes:a density functional theory study, Dan Wang, Jing Lu*, Lin Lai, Lu Wang, Guangfu Luo, Jing Zhou, Guangping Li, Wai Ning Mei, Shigeru Nagase, Yutaka Maeda, Takeshi Akasaka, Zhengxiang Gao, *Yunsong Zhou, Comp. Mater. Sci. 43, 886 (2008).

225. Preparation of transparent and conductive thin films of metallic single-walled carbon nanotubes, Y. Maeda, A. Hashimoto, S. Kaneko, M. Kanda, T. Hasegawa, T. Tsuchiya, T. Akasak, Y. Naitoh, T. Shimizu, H. Tokumoto, Jing Lu, S. Nagase, J. Mater. Chem. 18, 4180 (2008).

226. Simple purification and selective enrichment of metallic SWCNTs produced using the arc-discharge method, Y. Maeda, Y. Takano, A. Sagara, M. Hashimoto, M. Kanda, S. Kimura, Y. Lian, T. Nakahodo, T. Tsuchiya, T. Wakahara, T. Akasaka, T. Hasegawa, S. Kazaoui, M. Minami, Jing Lu, S. Nagase, Carbon, 46, 1563 (2008).

227. Photoluminescence and energy transfer of phosphor series Ba2-zSrzCaMo1-yWyO6: Eu, Li for white light UVLED applications, S. Ye, C. H. Wang, Z. S. Liu, J. Lu, X. P. Jing, Appl. Phys. B 91, 551 (2008).

228. Far infrared reflection spectrum and IR-active modes of MgTiO3, C.H. Wang, X.J. Kuang, X.P. Jing, Jing Lu, X. Lu, J. Shao, J. Appl. Phys. 103, 074105(2008).

229. Assignment of Raman-active vibrational modes of MgTiO3, C.H. Wang, X.P. Jing, W. Feng, Jing Lu, J. Appl. Phys. 104, 034112 (2008).

230. Electronic and magnetic properties of endohedrally doped fullerene Mn@C60: a total energy study,Guangping Li , R. F. Sabirianov, Jing Lu, X. C. Zeng and W. N. Mei, J. Chem. Phys. 128, 074304(2008).

231. C(60)(OH)(n)- Assisted dispersion of single-walled carbon nanotubes ,Maeda, Yutaka, Kato, Takaaki, Higo, Junki, Hasegawa, Tadashi, Kitano, Takahiro, Tsuchiya, Takahiro, Akasaka, Takeshi, Okazaki, Toshiya, Lu, Jing, Nagase, Shigeru, Nano, 3(6), pp 455-459, (2008).

 

 

2007

232. Static and Optical Transverse and Longitudinal Screened Polarizabilities of Boron Nitride Nanotubes, Lu Wang, Jing Lu*, Lin Lai, Zhengxiang Gao* and Wai Ning Mei, J. Phys. Chem. C 111,3285 (2007).

233. Why are Semiconducing Single-wall Carbon Nanotubes Abnormally Separated from Their Metallic Counterparts, Jing Lu*, Lin Lai, Guangfu Luo, Jing Zhou, Rui Qin, Lu Wang, Mingwei Jing, Wai Ning Mei, Guangping Li, Shigeru Nagase, Yutaka Maeda, Takeshi Akasaka, Zhengxiang Gao, Dapeng Yu, Small 3, 1566 (2007).

234. Structural and electronic properties of nanoscrolls rolled up by single graphene sheet, Yu Chen, Jing Lu*, Zhengxiang Gao, J. Phys. Chem. C 111, 1625 (2007).

235. Optical Absorption Spectra and Polarizabilities of Silicon Carbide Nanotubes: A First Principles Study, Lu Wang, Jing Lu*, Guangfu Luo, Wei Song, Lin Lai, Mingwei Jing, Rui Qin, Jing Zhou, Zhengxiang Gao* and Wai Ning Mei, J. Phys. Chem. C 111, 18864 (2007).

236. First-principles study of the hydrogen-passivated single-crystalline silicon nanotubes: electronic and optical properties, Ming Ni, Guangfu Luo, Jing Lu*, Lin Lai, Lu Wang, Mingwei Jing, Wei Song, Zhengxiang Gao*, Guangping Li, Wai Ning Mei, Dapeng Yu, Nanotechnologe 18, 505707 (2007)

237. Effects of hole doping on selectivity of naphthalene towards single-wall carbon nanotubes, Dan Wang, Jing Lu*, Ming Ni, Lin Lai, W. N. Mei, S. Nagase, Y. Maeda, T. Akasaka, Zhengxiang Gao, Yunsong Zhou, Comp. Mater. Sci. 40, 354 (2007).

238. Structural and Electronic Properties of One Dimensional KxC60 Crystal Encapsulated in Carbon Nanotube, W Song, Jing Lu*, ZX Gao, M Ni, LH Guan, ZJ Shi, ZN Gu, S Nagase, DP Yu, HQYe, XW Zhang, International Journal of Modern Physics B 21, 1705 (2007).

239. Extraction of metallic nanotubes of Zeolite-supported single-walled carbon nanotubes synthesized from alcohol, Y. Maeda, S. Hashimoto, T. Hasegawa, M. Kanda, T. Tsuchiya, T. Wakahara, T. Akasaka, Y. Miyauchi, S. Maruyama, Jing Lu, S. Nagase, Nano 2, 221 (2007).

240. Correlation effects and electronic structure of Gd@C60, R. F. Sabirianov, W. N. Mei, Jing Lu, Y. Gao, R.D. Bolskar, P. Jeppson, Ning Wu, A.N. Caruso, P.A. Dowben, J. Phys. Condens. Matter 19, 082201 (Fast Track Communication) (2007).

 

 

2006

241. Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: critical role of the molecular size and orientation, Jing Lu*, Shigeru Nagase*, Xinwei Zhang, Dan Wang, Ming Ni, Yutaka Maeda, Takatsugu Wakahara, Tsukasa Nakahodo, Takahiro Tsuchiya, Takeshi Akasaka*, Zhengxiang Gao, Dapeng Yu, Hengqiang Ye, W. N. Mei, Yunsong Zhou, J. Am. Chem. Soc., 128, 5114 (2006).

242. Dispersion and Separation of Small Single-Walled Carbon Nanotubes, Yutaka Maeda, Makoto Kanda, Masahiro Hashimoto, Tadashi Hasegawa, Shin-ichi Kimura, Yongfu Lian, Takatsugu Wakahara, Takeshi Akasaka, Said Kazaoui, Nobutsugu Minami, Toshiya Okazaki, Yuhei Hayamizu, Kenji Hata, Jing Lu, Shigeru Nagase, J. Am. Chem. Soc. 128, 12239 (2006).

243. Structural and magnetic properties of Gd3N@C80Jing Lu*, R. E. Sabirianov, W. N. Mei, Y. Gao, C. G. Duan, X. C. Zeng, J. Phys. Chem. B (Letter) 110, 23637 (2006).

244. Structural and electronic properties of fluorinated boron nitride nanotubes, Lin Lai, Wei Song, Jing Lu*, Zhengxiang Gao, Shigeru Nagase, Ming Ni, W. N. Mei, Jianjun Liu, Dapeng Yu, Hengqiang Ye, J. Phys.Chem. B. 110, 14092 (2006).

245. Anisotropic and Passivation Dependent Quantum Confinement Effects in Germanium Nanowires: A Comparison with Silicon Nanowires, Mingwei Jing, Ming Ni, Wei Song, Jing Lu*, Zhengxiang Gao, Lin Lai, Wai Ning Mei, Dapeng Yu, Hengqiang Ye, Lu Wang, J. Phys. Chem. B 110, 18332 (2006).

246. Structural and electronic properties of Gd@C60: All-electron relativistic total-energy study, Jing Lu*, W.N. Mei a,Yi Gao, Xiaocheng Zeng,Mingwei Jing,Guangping Li, Renat Sabirianov, Zhengxiang Gao, Liping You , Jun Xu ,Dapeng Yu , Hengqiang Ye, Chem. Phys. Lett. 425, 82 (2006)

247. Evolution of the electronic properties of metallic single-wall carbon nanotubes with the degree of CCl2 covalent functionalization, Jing Lu*, Dan Wang, Shigeru Nagase, Ming Ni, Xinwei Zhang, Yutaka Maeda, Takatsugu Wakahara, Tsukasa Nakahodo, Takahiro Tsuchiya, Takeshi Akasaka, Zhengxiang Gao, Dapeng Yu, Hengqiang Ye, Yunsong Zhou, W. N. Mei, J. Phys. Chem. B, 110,5655 (2006).

248. Preparation of Single-Walled Carbon Nanotube-Organosilicon Hybrids and Their Enhanced Field Emission Properties, Yutaka Maeda, Yoshinori Sato, Masahiro Kako, Takatsugu Wakahara, Takeshi Akasaka, Jing Lu, Shigeru Nagase, Yumiko Kobori, Tadashi Hasegawa, Kenichi Motomiya, Kazuyuki Tohji, Atsuo Kasuya, Dan Wang, Dapeng Yu, Zhengxiang Gao, Rushan Han, and Hengqiang Ye, Chem. Material, 18, 4205 (2006).

 

 

2005

249. Interplay of single-wall carbon nanotubes and encapsulated La@C82, La2@C80, and Sc3N@C80Jing Lu*, Shigeru Nagase*, Dapeng Yu, Hengqiang Ye, Rushan Han, Zhengxiang Gao, Shuang Zhang, and Lianmao Peng, Physical Review B 71, 235417 (2005).

250. Adsorption configuration of NHon single-wall carbon nanotubes, Jing Lu*, Shigeru Nagase*, Dapeng Yu, Hengqiang Ye, Rushan Han, Zhengxiang Gao, Chem. Phys. Lett. 405, 90 (2005).

251. Structural evolution of [2+1] cycloaddition derivatives of single- wall carbon nanotubes: from open structure to closed three-membered ring structure with increasing tube diameter, Jing Lu*, Shigeru Nagase*, Xinwei Zhang, Yutaka Maeda, Takatsugu Wakahara, Tsukasa Nakahodo, Takahiro Tsuchiya, Takeshi Akasaka, Dapeng Yu, Zhengxiang Gao, Rushan Han, Hengqiang Ye, J. Mol. Struc. (Theochem), 725, 255 (2005).

252. Encapsulations of La@C82 and La2@C80 inside single-walled boron nitride nanotubes Wei Song, Ming Ni, Jing Lu*, Zhengxiang Gao*, Shigeru Nagase, Dapeng Yu, Hengqiang Ye, Xinwei Zhang, J. Mol. Struc. (Theochem), 730, 119 (2005).

253. Electronic Structures of Semiconducting Double-Walled Carbon Nanotubes: important effect of interlay interaction, Wei Song, Ming Ni, Jing Lu*, Zhengxiang Gao*, Shigeru Nagase, Dapeng Yu, Hengqiang Ye, Xinwei Zhang, Chem. Phys. Lett.414, 429 (2005).

254. Large-Scale Separation of Metallic and Semiconducting Single-Walled Carbon Nanotubes, Yutaka Maeda, Shin-ichi Kimura, Makoto Kanda, Yuya Hirashima, Tadashi Hasegawa, Takatsugu Wakahara, Yongfu Lian, Tsukasa Nakahodo, Takahiro Tsuchiya, Takeshi Akasaka, Jing Lu, Xinwei Zhang, Zhengxiang Gao, Dapeng Yu,Shigeru Nagase, Said Kazaoui, Nobutsugu Minami, Tetsuo Shimizu, Hiroshi Tokumoto, Riichiro Saito, Journal of the American Chemical Society 127, 10287 (2005).

255. Physical origin of the ferromagnetic ordering above room temperature in GaMnN nanowires, Y. P. Song, P. W. Wang, H. Q. Lin, G. S. Tian, J. Lu, Z. Wang, Y. Zhang, D. P. Yu*, J. Phys.: Condens. Matter 17 (33), 5073-5085, (2005).

 

 

2004

256. Amphoteric and controllable doping of carbon nanotubes by encapsulation of organic and organometallic molecules, Jing Lu*, Shigeru Nagase*, Dapeng Yu, Hengqiang Ye, Rushan Han, Zhengxiang Gao, Shuang Zhang, Lianmao Peng, Physical Review Letters 93, 116804 (2004).

257. A new approach to simulate the depolymerization process of a two- dimensional hexagonal C60 polymer, Jing Lu*, Shigeru Nagase*, Shuang Zhang, Lianmao Peng, Chem. Phys. Lett. 398, 484 (2004).

258. Counterion-driven spontaneous polymerization of the linear C60n- chains in the fcc fullerides and its magic number behavior, Jing Lu*, Shigeru Nagase*, Shuang Zhang, and Lianmao Peng, Chem. Phys. Lett. 395, 199 (2004).

259. Energetic, geometric and electronic evolutions of single-wall nanotube cabon ropes with K intercalation concentration, Jing Lu*, Shigeru Nagase*, Shuang Zhang, and Lianmao Peng, Phyical Review B 69, 205304 (2004).

 

 

2003

260. Structural and electronic properties of metal-encapsulated silicon clusters in a large size range, Jing Lu* and Nagase*, Physical Review Letters 90, 115506 (2003).

261. Strongly size-dependent electronic properties in C60-encapsulated zigzag nanotubes and lower size limit of carbon nano peapods, Jing Lu*, Shigeru Nagase*, Shuang Zhang, and Lianmao Peng, Phyical Review B 68, Rapid Communication, 121402 (2003).

262. Theoretical identification of carbon clusters C20: prevalence of the monocyclic isomer and existences of the smallest fullerene and bowl isomer, Jing Lu*, Suyong Re, Yoongkee Choe, Shigeru Nagase*, Yunsong Zhou, Rushan Han, Lianmao Peng, Xinwei Zhang, and Xiangeng Zhao, Physical Review B 67, 125415 (2003).

263. Metal-doped germanium clusters MGens at the sizes of n=12 and 10: divergence of growth patterns from the MSin clusters, Jing Lu*, Shigeru Nagase*, 372 (3), 394-398 (2003).

 

 

2002

264. Density functional theory studies of beryllium-doped endohedral fullerene Be@C60: on center displacement of beryllium inside the C60 cage,Jing Lu*, Yunsong Zhou, Xinwei Zhang, Xiangeng Zhao, Chem. Phys. Lett. 352, 8 (2002).

 

 2001

265. Structural and electronic properties of endohedral and exohedral complexes of silicon with C60,Jing Lu, Yunsong Zhou, Shuang Zhang, Xinwei Zhang, Xiangeng Zhao, Chem. Phys. Lett. 343, 39 (2001).

266. Structural and electronic properties of heterofullerene C59P,Jing Lu,Yunsong Zhou,Yin Luo, Yuanhe Huang, Xinwei Zhang, Xiangeng Zhao, Molecular Physics 99, 1203 (2001).

267. Structural and electronic properties of endohedral phosphorus fullerene P@C60: an off-center displacement of P inside the cage,Jing Lu, Yunsong Zhou, Xinwei Zhang, Xiangeng Zhao, Molecular Physics 99, 1199 (2001).

268. Structural and electronic properties of oxygen-doped heterofullerene: Is the O-C single bond shorter than the C-C single bond?, Jing Lu, Yin Luo, Yuanhe Huang, Xinwei Zhang, Xiangeng Zhao, Solid State Communication 118, 247 (2001).

269. Semiempirical calculations on heterofullerene C59Si: Structural and electronic localization, Jing Lu, Yin Luo, Yuanhe Huang, Xinwei Zhang, Xiangeng Zhao, Solid State Communication 118, 309 (2001).

 

 

2000

270. Strong metal-cage hybridization in endohedral La@C82, Y@C82, and Sc@C82, Jing Lu, Xinwei Zhang, Xiangeng Zhao, S. Nagase and K. Kobayashi, Chem. Phys. Lett. 332, 219 (2000).

271. Metal-cage hybridization in endohedral La@C60, Y@C60, and Sc@C60, Jing Lu, Xinwei Zhang and Xiangeng Zhao, Chem. Phys. Lett. 332, 51 (2000).

272. Relativistic electronic structure calculations on endohedral Gd@C60, La@C60, Gd@C74 and La@C74, Jing Lu, Xinwei Zhang, Xiangeng Zhao, Applied Physics A 70, 461 (2000).

273. Electronic properties of heterofullerenes C59X (X=Si, O, and Be), Jing Lu, Xinwei Zhang, Xiangeng Zhao, Mod. Phys. Lett. B 14, 23 (2000).

 

 

1999

274. Electronic structures of endohedral N@C60, O@C60 and F@C60, Jing Lu, Xinwei Zhang, Xiangeng Zhao, Chem. Phys. Lett. 312, 85 (1999).

275. Electronic structures of endohedral Ca@C60, Sc@C60 and Y@C60, Jing Lu, Xinwei Zhang, Xiangeng Zhao, Solid State Communication 110, 565 (1999).

276. Electronic structures of endohedral Sr@C60, Ba@C60, Fe@C60 and Y@C60, Jing Lu, Xinwei Zhang, Xiangeng Zhao, Mod. Phys. Lett. B 13, 97 (1999).

 

 

1998

277. Valence-band electronic structure of the simple-cubic C60, Jing Lu, Xinwei Zhang, Xiangeng Zhao and Liyuan Zhang, Solid State Communication 108, 89 (1998).

278. Effects of the tangentially directed C-σ orbital on the conduction-band electronic structure of the simple-cubic Na2CsC60, Jing Lu, Xinwei Zhang, Xiangeng Zhao, and Liyuan Zhang, Int. J. Mod. Phys. B 12, 1985(1998).

279. Effects of molecular orientational disorder on the electronic structure of K3C60: with the inclusion of the tangentially directed C-σ orbital, Jing Lu, Xinwei Zhang, Xiangeng Zhao, and Liyuan Zhang, Int. J. Mod. Phys. B 12, 3521(1998).

280. Lattice constant dependence of the electronic structure of simple-cubic Na2MC60 (M =Cs, Rb), Jing Lu, and Liyuan Zhang, Solid State Communication 105, 99(1998).

 

 

1997

281. Determination of the mixing potential V between the bipolaron and the itinerant electron and possible two component interaction superconductivity based on a low N(EF) for doped fullerenes, Jing Lu, Xiaobing Feng, and Liyuan Zhang, Physica C 279, 209 (1997).

282. Application of the recursion method to the electronic structure of Na2CsC60 and K6C60, Jing Lu, and Liyuan Zhang, Mod. Phys. Lett. B 11, 659 (1997).

283. Electronic structure of Hg0.8Pb0.2Ba2Ca2Cu3O 8+δ: The role of Pb doping, oxygen doping and high pressure, Jing Lu, Li-yuan Zhang, Xue-jun Hao, Acta Phys.Sin. (overseas Edition) 6, 40-51 (1997).

 

 

1996

284. Effects of orientational disorder on the electronic structure of K3C60, Jing Lu, Liyuan Zhang, and Ziliang Cao, Mod. Phys. Lett. B 10, 1417 (1996).

285. Numerical application of the recursion method to the electronic structure of C60, Jing Lu, and Liyuan Zhang, Mod. Phys. Lett. B 10, 1133 (1996).

286. Two-component superconductivity for doped fullerenes, Jing Lu and Liyuan Zhang, Mod. Phys. Lett. B 10, 823(1996).

287. Effects of Pairing Correlations on the Korringa Relation in Doped Fullerenes, Jing Lu, Li-yuan Zhang, Xiao-bing Feng, Chin. Phys. Lett. 13 (11), 859-862 (1996).


专利

暂无内容

著作成果

暂无内容

科研项目

暂无内容