张熙博 助理教授
张熙博,1984年生于河南卫辉。2005年7月在北京大学物理系获得学士学位,导师为刘川教授;2012年3月在美国芝加哥大学物理系获得博士学位,导师为金政(Cheng Chin)教授;2012年7月至2015年12月在美国科罗拉多大学博尔德分校(CU Boulder)实验天体物理联合研究所(JILA)从事博士后研究,导师为叶军(Jun Ye)教授;2015年12月加入北京大学量子材料科学中心,被聘为研究员,博士生导师。办公室:北京大学物理学院西楼529室电话:010-62768901电子邮箱:xibo@pku.edu.cnXiboZHANG_Curriculum Vitae 202403.pdf
21. Realization of Qi-Wu-Zhang model in spin-orbit-coupled ultracold fermions. Ming-Cheng Liang, Yu-Dong Wei, Long Zhang, Xu-Jie Wang, Han Zhang, Wen-Wei Wang, Wei Qi, Xiong-Jun Liu, and Xibo Zhang, Physical Review Research 5, L012006(2023).
20. Quantum precision measurement of two-dimensional forces with 10-28-Newton stability. Xinxin Guo, Zhongcheng Yu, Fansu Wei, Shengjie Jin, Xuzong Chen, Xiaopeng Li, Xibo Zhang, and Xiaoji Zhou, Science Bulletin 67 2291-2297(2022).
Science Bulletin 67 2291-2297.pdf
19. Power-law scalings in weakly-interacting Bose gases at quantum criticality. Ming-Cheng Liang, Zhi-Xing Lin, Yang-Yang Chen, Xi-Wen Guan, and Xibo Zhang, Frontiers of Physics 17(6): 61501(2022).
Frontiers of Physics 17(6) 61501.pdf
18. Interaction-induced particle-hole symmetry breaking and fractional exclusion statistics. Xibo Zhang, Yang-Yang Chen, Longxiang Liu, Youjin Deng, and Xiwen Guan, National Science Review 9: nwac027(2022).
National Science Review 9 nwac027.pdf
17. Experimental Realization of Degenerate Fermi Gases of 87Sr Atoms with 10 or Two Spin Components. Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, and Xibo Zhang, Chinese Physical Letter 36, 093701(2019).
Chinese Physical Letter 36,093701.pdf
16. Spin-orbit-coupled fermions in an optical lattice clock. Kolkowitz S., S. Bromley, T. Bothwell, M.L. Wall, E. Marti, A.P. Koller, X. Zhang, A.M. Rey, and J. Ye, Nature 542, 66–70 (2017).
15. Precision measurement and frequency metrology with ultracold atoms. X. Zhang and J. Ye, Invited review article by National Science Review 3, 189-200(2016).
National Science Review 3 189-200.pdf
14. Collective atomic scattering and motional effects in a dense coherent medium. S. L. Bromley, B. Zhu, M. Bishof, X. Zhang, T. Bothwell, J. Schachenmayer, T. L. Nicholson, R. Kaiser, S. F. Yelin, M. D. Lukin, A. M. Rey, and J. Ye, Nature Communications 7, 11039(2016).
Nature Communications 7, 11039.pdf
13. Syntheic spin-orbit coupling in an optical lattice clock. M. L. Wall, A. P. Koller, S. Li, X. Zhang, N. R. Cooper, J. Ye, and A. M. Rey, Physical Review Letters 116, 035301(2016).
12. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S. Safronova, P. Zoller, A. M. Rey, and J. Ye, Science 345, 1467-1473(2014). Science Express, 21 August 2014.
11. An Optical Lattice Clock with Accuracy and Stability at the 10-18 Level. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, And J. Ye, Nature 506, 71-75(2014).
10. An optical spectrum analyzer with quantum limited noise floor. M. Bishof, X. Zhang, M. J. Martin, and J. Ye, Physical Review Letters 111, 093604(2013).
9. A quantum many-body spin system in an optical lattice clock. M. J. Martin, M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von-Stecher, A. V. Gorshkov, A. M. Rey, and J. Ye, Science 341, 632-636(2013).
8. Strongly interacting two-dimensional Bose gases. L.-C. Ha, C.-L Hung, X. Zhang, U. Eismann, S.-K. Tung, and C. Chin, Physical Review Letters 110, 145302(2013).
7. Observation of quantum criticality with ultracold atoms in optical lattices. X. Zhang, C.-L. Hung, S.-K. Tung, and C. Chin, Science 335, 1070-1072(2012). Science Express, 16 February 2012.
6. Extracting density-density correlations from in situ images of atomic quantum gases. C.-L. Hung, X. Zhang, L.-C. Ha, S.-K. Tung, N. Gemelke, and C. Chin, New Journal of Physics 13, 075019(2011).
New Journal of Physics 13, 075019.pdf
5. Exploring quantum criticality based on ultracold atoms in optical lattices. X. Zhang, C.-L. Hung, S.-K. Tung, N.Gemelke, and C.Chin, New Journal of Physics 13, 045011(2011).
New Journal of Physics 13, 045011.pdf
4. Observation of scale invariance and universality in two-dimensional Bose gases. C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Nature 470, 236-239(2011).
3. Slow mass transport and statistical evolution of an atomic gas across the superfluid-Mott insulator transition. C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Physical Review Letters 104, 160403(2010).
2. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, Nature 460, 995-998(2009).
1. Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps. C.-L. Hung, X. Zhang, N. Gemelke, and C. Chin, Physical Review A 78, 011604(R).